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Abstract We evaluate the reaction cross sections of heavy jon colli-
sions for E‘aym > 30 MeV and we put emphasis on the effects of the
Pauli principle and of the electromagnetic excitations. Both effects
are shown to be of great importance and can be handled by means of
simple geometrical and semiclassical ideas.

1. INTRODUCTION

Heavy ion collisicns at intermediate and high energies are a
subject of increasing experimental and theoretical interest!. vary
little is known experimentally about the physics of such highly charged
particle collisions. In order to study the reactions in this realm some
basic quantities as the total reaction cross sections are of useful in-
formation for the design of future accelerators and experimentsz.

Normally the data are compared with the standard geometrical
overlap model which assumes that the total reaction cross section must
be proportional to the sguared sum of the radii of the ions. Devl-
ations from this crude approximation are guessed to come from transpar-
ency e_Ffects3 and from the electromagnetic contribution to the fragmen-
tation of the nuclei®.

Our purpose in this paper is to develop a microscopic calcula-
tion, which starts from the experimental data on nucleon-nucleon free
cross section$, in order to describe the nuclear contribution to the
total reaction cross sections of heavy ion collisions with laboratory
energy above 30 MeV per nucleon. We make a detailed study of the effect

of the Pauli principle for intermediate energy collisions up to

*On leave of absence from the Universidade Federasl do Ric de Janeiro,
Brasil, and supported by the Deutscher Akademischer Austauscndienst/
CAPES. ‘
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300 MEV/A and the inclusion of the electromagnetic fragmentation mechan
ism is performed by means of the recent theoretical results of Refs. 5
and¢ 6. To that aim we start in section 2 with an analysis of the effect
of the Pauli principle in the binary collisions between the nucleons of .
a two-nuclear-matter system in relative motion. We show that it reduces
to a geometrical problem in the momentum space of the system and an ana
lytical derivation for it is presented in the appendix. The results of
such a derivation are used in section 3, together with the Boltzmann
equation, to proceed to a study of the approach to equilibrium of the
two-nuclear-matter system. These calculations are intended to give a
clearer insight on this subject and are useful in the analysis of nu-
cleus-nucleus collisions,

In section % we develop a semiclassical derivation of the
heavy ion cross sections whose inputs are the results of section 2, In
section 5 we add the contribution of the electromagnetic interactions
and we make a comparison with the geometric overlap model for the cross
sections of a special group of reactions. The regions of influence of
the nucleon-nucleon collisions and of the electromagnetic effects are

inferred.

2. PAULI BLOCKING IN NUCLEAR MATTER COLLISIONS

The effect of Pauli blocking, i.e. Pauli principle, in ou
cleon-nucleus collisions was first investigated by Goldberger-'r and by
Clementel and Villi® on the basis of the geometry for a single nucleon-
-nucieon collision in momentum space. Their approach is still used in
the microscopic descriptions of nucleon-nucleus cross sectieons with
good agreement with the experimental data (see e.g. Ref. 9). We will
show how one can extend their ideas to the study of the collision be-
tween two nuclear matters.

The fundamental input of the calculations is the free nucleon-

-nucieon cross section G};ﬂ:ee_ Fig. 1 displays the interpolated curves
. fre .
for the experimental data'”»!! of ONN ® as a function of the laboratory

energy

e =V nt e*im*e* - me® (2.1}

2
lab klab
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The energy dependence of the cross sections can be qualitatively de-

scribed by
ofret e 1 w5 E < 100 Mev (2.2a)
N z lab .23
lab
and
free :
Jyy = constant for E}ab > 100 Mev (2.2b)

Goldberger's work is based upon the approximation (2.2b) and Clementel
and Villi's work upon the approximation (2.2a). We shall use these pre-
scriptions to proceed to a qualitative study of the effect of Pauli
blocking in ﬁuclear matter collisions, before we use the interpolation

of the experimental data presented in fig. 1 for a more quantitative

analysis.
3
10 & L T T ll'lrll' T T T T UTrrTgT T T T rrrr]
E ™ ]
a2 -
AN . FREE 1
\ NUCLEON-NUCLEON CROSS SECTION q
2 [
E 10°L 4
= C ]
10 Lo a il I Ll { L1t
3 4
10 10° 10 10
E __(MeV)
LAB
Fig.l - Free nucleon-nucleon cross section as a function of the
laboratory energy. The Coulomb contributicon has been removed in
T, .
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By nuclear matter collisions we mean two Fermi fluids, one of
which is initially 2s rest and the other is moving against the first

> .
with a momentum kla = iu per nucleon. Each of these fluids possesses a

Ferm) motion in itsbrest frame and the initial state of the system is '
described by twe filled spheres of radii kF and kF , <corresponding
respectively te the larger and smaller sphe?es, with the position of
their centers separated by k;, as shown in fig. 2. I(n the initial stage
of the system a binary cellision between a pair of nucleons will only
be possible if they pertain to different Fermi fiuids. [f initially
they have momenta 1_51 ang Zz, after the collision they will possess mo
men ta Z; and Q, which by the Pauli principle must lie outside both
Fermi spheres. These momenta are also reiated by the energy-momentum

conservation laws

i(’; ?zg = ii+zi
{2.3)
z{'ié =§|z1"z‘2|

wnere € is a unit vector in the direction of 2 solid angle d. We ob-
serve that the conservaticn of .the energy of relative motion in the
binary collision is only valid for energies below the pion-threshold
E]ab = 300 MeV above which most of the collision cross section will be
inelastic due to pion production. Nevertheless, we shall see that for
relative motion energy of the Fermi fluids greater than this value the
Pauli principle has a rapidly decreasing importance and the above as--
sumpt ion can be used without major consequences.

in fig. 2 we oioserve that, due to the Pauli principle and the
conservation laws (2.3), the available solid angie lmms for scattering
of the pair is restricted to the non-hatched region inside the auxili-
ary sphere of radius g = |?rfz]/2. Te this solid angle not only a pair
but aii pairs of nucleons can scatter which lie on the surface of this
auxiliary sphere and inside the double~hatched region of fig. 2. This
double-hatched region forms a solid angle ’-&TrwI. The calculation of wS
and Wy is of great relevance in our following analysis and we show that

it can be transiated inte a beautiful problem of spherical geometry.

383



Revista Brasileira de Fsica, Vol. 16, n@ 3, 1886

Fig. 2 - Diagram exhibiting
the kinematics of the two
nucleon coliision. The in-
itial momenta of the pair,
1 and Kp, together with kg,
= -+
p and g are represented by
arrows as indicated. The
third sphere is the Jocus
of the end points of the
vector g'. The non-shaded
region corresponds to the
allowed scattering angle.
The cross—-hatched region in
dicates the admissible
angles for initial pairs
with the same total momen-
tum 2p and the same modulus
2g for the relative momen-
tum.

|

We present the solution to this problem in the appendix where analyt-
=
ical expressions are deduced for ws(kl,zz,ko,kF ’kF ) and wI(Zl,fz,ko,
> T«
kF>,kF<) . ‘
In order to measure the effect of the Pauli blocking upon the
nucleon-nucieon cross section in the Fermi fluid mediz we define the

averaged quantity
bound _ (i -1

3
o el )

F

LEPERS 37, 23 2g free
S g (3 nkF<) jF> fF< k17K wg M (2.4}

ko, W

where the integrations are carried out inside different Fermi spheres.
The factor w, 15 the fraction of the solid angle available for a spe-

cific collision between a nucleon with momentum -P:] and another with mo-
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- . free \
mentum Xz. The free nucleon~nuclecn cross section © (E) isa func-

tion of k; and k, by means of E = ¢/h2(zi—i§)zcz+mzc“'— me®. The factor

%ﬁ corrects for the flux difference between the laboratory system and’
aosystem in which cne of the nucleons is at rest, in reality the effect
of the Pauli principle must be greater than that expressed by eq. (2.4).
This is because we assume that the free nucleon-nuclecn cress sectiocn
is isotropic while it is actually lower at the 9p° angte of scattering
in the center of mass frame of reference of the pair, specially for p—p
collisions, and it is this anguiar region which contributes mostly to
the binary collisions in the two-nuclear-matter system.

Due to the cylindrical symmetry in the momentum space distribu
tion, eq. (2.4} can be reduced to a five-fold integratioﬁ and the re-

sult can be put inte the form

bound _ free
Tyw (£} = P(E,n)ow (E) (2.5
where
ke e
£ and n=—% (2.6)
kF> kF>

In fig. 3 we present the results of the numerical calculation
for PA and PB corresponding to the assumptions (2.2a) and {2.2b), re-
spectively. The curves for n = 0 reproduce exactly the results of Refs.
7 and 8, as it should be. For n = 1, meaning two colliding nuclear mat-
ters of the same density, the -Pauli blocking is more effective and
there will exist an appreciable reduction of the free nucleon-nucleon
cross section up to ko/kF =5, i.e., for energy of relative motion per
nucleon approximately equal to 17 times the Fermi energy if we take
kF = 1.35.

For £ < 1+n the two Fermi spheres overlap and we come to the
problem of double-counting of nué]eons in the overlap region, which is
not allowed by the Pauli principle. One can imagine that the momentum
distribution of the nucleons wiil be somehow rearranged before this im-

possible situation occurs. We make no such speculaticns in our calcu-
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lations but we suppose that, whatever may happen, the curves of fig. 3

will closely reproduce the average influence of the Pauli blocking in

the binary collisions also for § < 1+7n. Of course, within this ap-’

proach, a pair of nucleons whose momenta lie inside this overlap region
are not scattered at all, and this leads to an increasing transparency
of the nuciear matters with decreasing energy of retative motion. That

is why P, and PB quickly go to zero for £ < 1+n, even in the case

A
n=1.
1.00
0.75
&
" 0.50
@
0.25

E=(K /K )

Fig. 3 - The ratio of the average nucleon-nucieon cross section in
the two nuclear matter system and its value in free-space. 1 s
the ratio between the smaller and the larger of the Fermi momenta,
kE’< and kg respectively. £ is the ratio between the momentum of

relative motion of the system and kF .
>
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3. TIME DEVELOPMENT OF THE MOMENTUM DISTRIBUTION

The binary collisions wil) modi fy the momentum distribution of
the nucleons, which we shall study by means of the Boltzmann equation. )

This is a balance equation of the form

of (&) I .
— = ¢{&y)-r(k,) (3.1}
at

where the gain and loss terms are respectively

dakz
¢ =0-r) | vy (=) [ &0 £l & (3.2)
{2m)
and
&kz do
L=#f] vi2 f2 f &U-f10-7) £ (3.3)
(2x) 3 &

- -
The function f{k) is the occupation number for the momentum state X and

we have used in the above equatiens the short notation

fio= fED, ete.
The factor w12 is the relative velocity of a given colliding pair of
mucleons with momenta le and ?{1. Eq. (3.1), together with the defini-
tions (3.2} and (3.3) for the gain and loss terms, differs from the
classical Boltzmann equation cnly by the introduction of the Pauli
blocking factar!? {1-f,) (1-f2) in the collision integrals.

Just in order to obtain a qualitative view of the time develop
ment of the momentum distribution, at least in the initial stage of
evolution, we zssume an isotropic free nucleon-nuclecn cross section
and use the parametrizations of eqs. (2.2). The collision of nucleons
inside the same sphere is forbidden because of the exclusion principle;
therefore, the collision mechanism depletes both spheres simultanecusly
throwing the colliding pair into the outside region of the Fermi

spheres. Within these assumptions the gain and loss terms take the form

387



Revista Brasileira de Fisica, Vol. 18, n® 3, 1986

&k, free

¢ =t-f f ams 212 (T e (3.4)

and
d3k2 free

L=7 | (23 V2 2 we Cup (3.5)
where

w &k gny = L @ rip _ (3.6)

4T

and

wg k) %ouE0) = — [ da0-71) O-7p) (3.7)

47

Since f(i-;} is initially equal te one if k lies inside one of the Fermi
spheres, and zero otherwise, eqs. (3.6) and 13.7) are exactly equal to
the definitions.of wy and wo given in the last section and whose ana-
lytical expressions are deduced in the appendix.

All terms in the integrands of eqs. (3.4) and {3.5) can be
written as functions of 21, zz, £ and n and the three-fold integrals
can be salved numerically. Fig. 4 displays the results of these inte-
grations for - L(z) (fig. ba) and G(Z) (fig. 4b) and for the parametri-
zation of eq. (2.2b). We have taken £ = 2 and n = 0.5. Actually the num

bersare normalized such that they represent the functions

E(i) - _—f’_@)__ and g(k+) = _f(-i)—- {3.8)
I X R 77
F (2m)? Fo{2m)?

where the integral in the denominators is carried out inside one of the
two Fermi spheres. This integral is equal to the total rate of loss of
nucleons inside one sphere and, by censervation of particles, it must
be the same in both spheres. Of course, by using the definition (3.8},
% and g will be indepandent of the proportionality coastants of eqs.
(2.2). The functions z(k’) and g(g) possess c¢ylindrical symmetry in
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{a)

{p)

01 01

Fig. 4 - The functions £{%) and g{&), normalized according to egs.(3.8)
and for § = 2.0 and N = 0,5. Apart from the two circles that indicate
the contour of the two Fermi spheres, the curves exhibited are lines of
constant value of & and g with the corresponding value indicated over

Elzae l)ine. This pattern corresponds to the use of the parametrization
2b) .
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K—Space and we plotted in fig. 4 the curves of constant values of % and
g. In fig, ba we observe that, because of the more available scattering
angle, the binary collisions are more favoured for pairs of nucleons
with larger .relatfve momentum |Z1-EZI and this is refiected in the fact
that the rate of loss 2(.‘7(’) is greater in the opposite extremes of the
Fermi spheres. In fig. 4b we see thal the nucleons are preferentially
scattered in a direction perpendicular to the momentum Zo of relative

motion of the Fermi fluids. Thuir final momenta after the first colli-

sions tend to be concentrated in a toroidal region lying on a plane

passing between the two spheres.

In fig. 5 we present the same functions 13.8) but correspond
ing to the parametrizarion‘ of eq. (2.2a). We observe that there are two
compet ing mechanisms which produce the pattern exhibited in fig. 5:
The exclusion princinle favours the depletion of the large relative
momentum nucieons aud the enen;gy dependence of the cross section fa-
vours the small relative momentum collisions. This results in the ap-
pearance, in the large sphere, of a region of least probability of col-
tision somewher: near its center. In fig. 5b we exhibit the plots of
constant value. of g and we note that the effect of preferential scat-
tering perpenidicular to 720 is stronger than in the case of fig. bo.
Since the parametrization (2.2a) is more proper for low energy colli-
sions, the inclusion of the Pauli principle is shown to be of extreme
importance in the analysis of nuclear collisicns in the low and inter-
mediate energy regime.

For a more quantitative study of the relaxation of the two nu-
clear matter system by means of the Beltzmann equation, one can use an
interpolation of the experimental data, as the one shown in fig. 1, and
make an average over spin and isospin degrees of freedom. The time can

" be divided into small steps Ot and the momentum distribution at time

t+0t is obtained from the distribution at time & by soiving eg. (3.1):
FE, bty =fE,8) + sy (3.9)
8t ¢

Of course, this will be a problem of formidable computational task,
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Fig. 5 - The same as fig. 4 but with the parametrization {2.2a).
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since the expressions (3.6) and (3.7) are na longer analytical as in
the initial stage of evolution of the system, and one is obnliged to
sotve two five-fold integrations, i.e., the egs. (2.2) and (3.3} at
each time step. To obtain the time evolution of a physical quantity one
has to perfarm an additional three-fbid integration in the z—Space,
which makes the problem of extreme practical difficulty. Nevertheless,
one can already infer a lot of information by the use of the seolution
(ﬁiét =0 for the initia) stage of evolution, as we shall demosntrate
by means cof some reasonable assumptions.

It is clear that for t -+ © the momentum distribution will tend
to a spherically symmetrig distribution in the center of mass reference
frame of the system. The phys?ca! gquantities of interest like the total
momentum or energy of the relative motion oflthe.system will reach a
constant value asymptotically. We make the simplifying assumptions that
the nuclear matters possess the same number of protons and neutrons and

" the same Fermi momentum kF = 1.35 fm_l, corresponding to saturated nu-

clear matters. We define

T
[—f] [ up,) £ 2K 2 (3.10)
3mes (2m)2 - 2

which is the averagé fé]ative momentum‘pér nucieon diminished by the -

center of mass momentum k /2, with respect to the laboratory system of
reference (where ane of the nuclear matters is |n|t|ally at rést). The
factor 4 mult|p1y|ng the distribution function f(k t) |n5|de the inte-
gral accounts for the |sosp|n spin degeneracy of the nuc]ear matters.

We suppose that this quantity decreases exponentially in time:

éx) = o) T (3.11)
from which it follows that the relaxation time of the system is ob-
tained by

1 (dQ/dt)t=0 . 1972 %%, F&ﬂ 3k G
T o1 k; ko lagle=0 (20)°

These assumptions allow us to use eqs. (3.4) and (3.5) to calculate the
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initial rate of change (%%}t=0 of the momentum distribution. Due to the
cylindrical symmetry of 5pr G- (3.12} can be expressed as &
five-fold integration which we solved by numerical methods. For the nu-

cleon-nucleon cross section we used

free 1 free free
G () == [o_"V(E) + o "T(E)
NN 2 [ v T pr ]
and the fit of the experimental data of 0;;33 and Ufree displayed in

fig. 1.

In fig. 6_we present the results of this numerical integration
where TBN is the relaxation time due to the binary collisions, without
accounting fosr the Pauli principle, which means to put ms =1 in eq.
(3.5). The curve assigned by TBNP is the same calculation but with the
inclusion of the Pauli principle. Gne observes in this figure that the
inclusion of the Pauli principle dramatically changes the time develop-
ment of the two=nuclear-matter system up to energies Elab/A = 300 MeV.
For low energies the system will be more ''transparent’ to the binary
collisions and the relaxation time can be some orders of magnitude
greate? than TBN.

in principie it is of no fundamental difficulty to apply the
Bel tzmann equationAto the analysis of finite-nuclel collisions (see_e.g.
Ref. 13). But the spatial inhomogeneity complicates the description
substantially and, unless some additional simplifications are done, the
problem turns to be unpractical.

In the next section we calcule the contribution of the bi nary
collisions to the total heavy ion readtion cross sections. The colli-
sional time Tcoll’ i.e., the time interval in which the ions are in
contact, is about 10 fin/c. We then expect to treat properiy the effect
of Pauti -principle by using the local density approximationr as we shall
explain there. The use of this approximation is justified because the
Pauli principle affects appreciably the cross sections only in the pe-
ripheral collisions for which the momentum distributions of the partici
pant nucleons have a relaxation time TB ? < Toll? when Elab/Af 300MeV
For higher energies this condition fails but then this approximation

will have no more influence on the results, either.
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Fig. 6 - Relaxation time of the two nuclear matter system as a func
tion of the laboratory energy per nucleon. The solid (dashed) line
includes (does not inciude) the Pauli principle effect.

4, HEAVY ION COLLISION CROSS SECTIONS

A semi—empirical "black sphere expression for the reaction
cross section of projectile and target nuclei, with mass numbers 4 and
AT’ respectively, introduced by Bradt and Peters'* and extensively used
in the literature is

- /
o= bl e a4 0) (1)

" = H
The '"overlap parameter” & is meant to represent the diffuseness and par

tial transparency of the nuclear surfaces. Nevertheless, it was shown

394

Revista Brasileira de F/sica, Vol. 16, n® 3, 1986

in &2 recent experiment?® that the fit of expressions like eq. (4.1) with
the data is quite poor. The overprediction at low prejectile and/or tar
get masses 15 thought to be due to nuclea} transparency effects and the
underprediction at larger masses might be explained by the addition of
Coulomb processes.

The effects of nuclear transparency were calculated by Devries
and Peng® using the optical limit of Glauber fheory. They ISUQgested
that the dip of the experimental nucieon-nucleon cross section GJ;ee
around E, . = 200 MeV should be reflected in the heavy ion tatal reaec-
tion cross sections, provided that bulk effects (e.g. collective excit-
ations, hydrodynamic effects, ete.) do ﬁpt play a dominant role; and
they were able to reproduce the experiméﬁta] data for light projectiles
such as protons, a-particles, He and deuterons in various target nu-
clei. Nevertheless, effects of Pauli pr?nkiple and Coulomb fragmenta-
tion were not included which could subéfantiaily modify their results,
specially for larger projectile and target masses.

We follow a similar path here, only we base ourselves on semi-
classical ideas without explicit relatidn with the Glauber theory. We
aiso include Pauli principle and Coulomb effects. Qur fundamental as-
sumption is the local density approximation by means of which we can
associate local Fermi momenta to each point inside the space overlap

region of the two ions by

.\ R |
X (P) = {'?i ,01,2}1 ) {4.2)
2

where py{p2) is the nuclear matter density of the projectile (target)
-+

at the position r. We use the mass density experimentally determined by

electron scattering or muonic level measurements over the periodic

tablel®

plr) = pg/sil + exp[(r-RD)/aD]} (4.3a)

with

Ry = 1.12 41/ - 0.86 477 (4.3b)
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= 0.54 fm

The mass density is - normalized by

fodir =4, sothat py =0.17 > . (4.3¢)

The projectile is assumed to wmove in a straight line with constant vel-
ocity 7 and we do not consider the recoil of the target nucleus. In a
semiclassical sense we can say that in a nucleon-nucleus reaction the
probability that the nucleon goes through the nucleus without suffering

any binary collision is given by

T=EWPJ (4.4)
n Ma)!
where
bound, _
A= ooy )

is the local mean free path of the incident nucleon inside the nucleus.
We extend this formulation to the case of nucleus-nucleus collisions by
taking the total transmission probability of the projectile passing
through the targgt as the product of the transmission probability Tn

for each projectile nucleon separately. The following expression re-

sults
7= expl - [ —%2 ) (4.5a)
Alz,b)
where
-1 bound 3
A7z,b) = [ pypa CNN d’r (4.5b;

and b is the impact parameter of the heavy ion collision. We use the
parametrization of eq.i (2?) for the bound nuclecn~nucleon ¢ross sec-

tions with P = PA when EI‘:ES/A < 100 MeV and F = PB when E’]ab/AleGMeV.
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Qf -course, ngund will depend on the local densities py and 0 through

eq. (#.2); to account, at least partially, for the nuclear charge symme

try we take the isospin averaged cross section

1
=— p/ o .o
mi " (2,2, + 00, + {20, + 240p) pn] (4.6)
7y
For an application we choose the particular reactions {(a) “°Ca + “°ca ;

(b) ““ca + 2%%u; and 1o} 2Pfu 4+ 3Ry,
In fig. 7 we display the cpacity function for each of these

reactions, defined by

Opac. = 1 - T(b} 7 (8.7}

1.0
0.5 ¢t
>_
b~
—
O 0.0
@
o
O
C.5 ¢
0.0

15 20

b (fm?)

Fig. 7 - The opacity functlon of the |mgact parameter and for the ggree
chosen reactions (a) “%Ca + *’Ca; Ca + 238, and (c) 27%0 + %%y,

The solid {dashed) line include (do not,lnciude) the Pauli principle
effect.
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and which measures the reaction probability as.a functijon of the impact
parameter b. The dashed lines correspond to the neglect of the Pauli
principle and the solid cones include the Pauli principle. One notes
that there is an appreciable difference between the two curves for
lower laboratory energies. This 'is primarily a surface effect since for
" central collisions there is no probability that the nuclei will main-
tain their identities after the scattering. This does not mean, however,
that the influence of the Pauli principle is timited to peripheral col-
lisions because, as we saw in section 3, it will greatly affect the
angular distributions of the scattered nucleons, principally in the re-
gions of higher nuclear mass densities which are invelved in the cen-
tral collisions. ihe spectra ofrnuc-ﬂeons emitted during the early
stages of a nuclear callision (the knock-out nucleons'®) must reflect
the structure of these angular distributions.
~The total reaction cross sections are obtained by

= an [ B[1-T() ] (4.8)

where the index ¥ indicates that it is from nuclear interaction erigin.
In fig. 8 we present the reaction cross sectibns in barns for the three
chosen reacticns and as a function of the laboratory energy per nucleon
Elabm in MeV. The dashed curves corlrespond to the neglect of the Pauli
principle. It is clear that these curves must have a form similar to
the nuclecn-nucleon &ross sections because of the way they were deduced.
The solid curves include the Pauli principle and we observe that for

energies E, /A < 300 MeV they are shifted downwards relative to the

first onesjzze to a larger transparency of the ions to binary colli-
sions. ‘

The dip in the cross secticns around E]ab/A = 200 Mev is not
as pronounced as in fig. 1 and it does not create more than a 5% devi-
ation from an average constant value. Without appreciable error we take
the high-energy 1imit for this average value, which for the reaction
{a) is 2.6 barns, for the reaction (b) is 5.0 barns and for the reac-

tion ¢) is 8.2 barns. If we try to fit these numbers to the relation
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(4.1) we find, using »g = 1.2 fm, that § = 0.74 for (a), 8 = 0.92 for
{b) and & = 1.1 for (c). Thus the concept of a geometrical cross sect-
tion, as implied by eq. {4.1), is useless. This is because one assumes
a sharp cutoff radius for the nuclei and tries to account for surface
effects by means of the quantity &. But for larger-mass targets the pro
jectile will have tc overcome a greater path length as it moves through
the nucjear density tail of the target and the reaction probability
will be greater than that correspoending to lighter nuclei. Thus & must

vary with 4, and AT'

10

LN 238 238 -
N U+ U
~
~
s~ ——
T Fig. 8 - Nuclear con-
tributions to the
G — total reaction cross
— \\ 4oca+238U sections ds functions
£ ~ of the laboratory en-
~ r —_—e ergy per nucleon.The
= * solid {dashed) lines
= .include (deo not in-
© 4+ : ~ clude) the Pauli prin-
40 40 ciple effect.
N Cat Ca
B S~
""-\
<r i
BN BNP
r———-a —C
O el s vk 1 oeanm

10 10 10° 10%
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The contribution of electromagnetic effects is not included in
eq. (4.1}, either. It Ts already known” that this contribution in-
creases with increasing nuclear charges and with increasing Elab/A‘ In
the next section we show how this contribution can be incorporated eas-

ily in the total reaction cross sections.

5. ELECTROMAGNETIC EFFECTS

A standard way of studying the eléctromagnetic effects in rela
tivistic heavy ion collisions is the use of the Weizsicker-Williams ap-

'7 which properly accounts for the electric dipole excit-

proximation
ation of the fons. But the inclusion of other multipolarities of excit
ation is also very important and recently an extension of the
Weizs3acker-Williams method to include ajl other multipolarities was ac-
complished®+®. In this theory the excitation cross section of one nu-
cleus by an energy amount #w due to the electromagnetic interaction

with the other nucleus is given by
co_ ph ph dw
gv = % { frp (el (w) + n,, (whapy ()} ” | (5.1)

where n (w) is the equivalent number of photons with the frequency w

{also cff?ﬁd by virtual photon numers) of the electric or magnetic radi
ation and multibolarity £. They are given in an analytical form in Ref,
S. The funictions Ggﬁﬂsz) are the photonu;lear absorption <cross sec-
tions for the excitation energy #w.

In high erergy collis}ons the electromagnetic excitation is a
very sudden process and the excited states concentrate in a narrow re-
gion around the socalled giant resonances. These resonances = normally
decay by particle emission or by fission, thus also contributing to the
fragmentation of the nuclei. We shali study here only the >EFFec|:s of
the most important resonances, namely the electric dipole 1 and the

electric quadrupele £2 giant resonances. We qucte from Ref. 5:

Aigy (@) = a2 [EJZ [gkoky - 2252 (a3 - K5)] (5.2a)
Ty 22°
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rgple) = 7 L [9] 0 -2 sege - 257 kr + £ [2] (D))
) e

£2 i 2

(5.2b)

where Z is the projectile charge (for target excitations) or the target’
charge (for projectile excitations), @ is the fine-structure constant,
v is the relative velocity of the jons, ¢ s the speed of light, and K,

are the modified Bessel functions of n-th order as functions of

& =— (5.3)
Yo

In the above formula ¥ is the relativistic factor

v=1{1 - p?/e2}-1/2 (5.4

and R is the sum of the two nuclear radii. For ogz we use the theoreti-

cal definitions®

3
ofF - 18 pm) (5.52)
9 <
3 3
0B = T [ﬂ] 8(82) (5.5b)
5 e

where we' take the followingla sum rules for the reduced transition

probabilicies B(EL).

B(E1) = 14.8 M2 1 ey o fmt (5.6a)
4 Enp
B(E2) =502 (1.2 41/%)2- mey ? pu? (5.6b)
Eor
and the charge and atomic numbers are those relative to the excited nu-
¢leus. The rescnance energy E,p = % is taken to be
80
r=1) = M .

Bt ) VIVE eV (5.7a)

62

=2) =

EGR(Q ) VE MeV (5.7b)
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In fig. 9 we present the cross sections for the excitation of
the giant &1 and £2 resonances of the projectile (P) and of the target
{7) due to the electromagnetic interaction between them. The cross sec-
.tions are given in miliibarns and as a function of the laboratory ea
ergy per nucleon in MeV. The solid curves represent the sum of al these
partial cross sections. We notice that the &2 contribution is more im
portant in the intermediate-energy regime and that the F1 contribution

predominates for high energies, above some hundred MeV per nucleon.

T —r ;
: uctPHocH) -
¥Q
=
[ !GGF
“ F
10° | .
2 F Fig. 3 - Electric dipole
10” ¢ (E1) and quadrupole {£2)
= . E excitation ¢ross sections
a 10" of the giant resonances
= o F in the projectile (P) and
v, 10 | in the target (7). The
o F solid line represents the
10 g sum of all four contribu-
F tions,
102 2
A
~ 10 L
0 E
E 3
o - r
= 100 E
107}
10
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Instead of eqs. (5.5) one could also use the experimentally
measured photonuclear fragmentation cross sections in eq. (5.1). Al-
tough- most of the experimental results are for the Ei cross sections,
some informatien about the £2 photonuclear fragmentation cross sections
is now becoming available (see e.g. Ref. 19). We expect, however, that
eqs. (5.5) and (5.6} are sufficiently good for cur purposes.

Adding the nuclear and electromagnetic contributions we find

the total reaction cross sections which are illustrated in fig. 10.
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We cbserve the increasing importance of the electromagretic ¢ross sec-
tions with increasing energy. We also note that for large mass nuclei
the electromagnetic contribution can even become the greatest one for
enerygies above some hundred MeV per nucleon. Of course, there can be no
parametrization of the total reaction cross section OR as the one im-
plied by eq. {(4.1)

6. CONCLUSIONS

Any serious study of heavy ion cellisions at intermediate and
high energies must include the effects of the Paull exciusion principle
and electromagnetic excitation. The geometrical concept of the reaction
cross sections loses its significance when these effects are included.
We showed that one can account for the Pauli principle by means of
simpie geometrical methods as soon as one assumes that the binary cot-
lisions between the nucleons are the most important nuclear mechanism
in the heavy ion reactions at intermediate and high energies. The elec
tromagnetic contributions must include not only the electric dipole ex-
citations but also other multipolaricies‘and are shown to be of funda-

mental importance for higher energies and heavier ions.

The author is grateful to Prof. L.C. Gomes Ffor useful dis-
cussions and to Dr. G. Baur for a critical reading of the manuscript.
He also acknowledges the support and hospitality by Prof. J. Speth at

the Kernforschungsaniage Jilich.

APPENDIX: CALCULATION OF mS AND ml_
We consider the collision between one nucleon of momentum f;
from one Fermi fluid with another of momentum %2 from the other Fermi

fluid. We define

K1+%2
T2
- . At
% -7, {A.1}
2
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and

5ok

After the collision S'and B stay constant while 3 changes only its di-
rection.

Fig. 2 of section 2 shows schematically the geometry of the
collision. The aliowed scattering angle of the pair corresponds to the
non-hatched region of the spherical surface with center in 5 and radius
equal to g. This angle is equal to uﬂgs, according to the definition
given in section 2. The possible angle of origin of nucieon-pairs with
the same momentum 5 and same modulus g of the relative momentum is
given by the double-hatched region in fig. 2, We c&ll this angle 28 and
we note that it corresponds to ban, according to the definition given
in section 2. This solid angle is geometrically originated by the inter
section of two hour glass-shaped angles each of whfch is single-hatched
in fig. 2 and which we Fali EQa and‘ZQb. These éngles are esasily re-
lated to the momenta defined in"eq. (A.1). This can be verified in Fig.

2 from which we infer that

8, = 2m(1 - cosg)

¢ (a.2)
Qb = 2m{i - cosab)
where )
Pt
cosg, = ————
2pq
and (a.3)
2,2
b +g kF<
Coseb =
Zbq
We then immediately have that
bma, = 4m-2(0 +0, -0)
) ) a b (a.4)
hﬂml. = 20
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The angle { depends on Ba, eb and on the angle 6 between B and ; This
situation is shown more clearly in fig. Al where the axes Xy and X, are
respectively parallel to E and Z{ The solid angles Qa, Qb and § are
now given by the corresponding areas inscribed over the surface of a

sphere of unit radius. |t is clear from this figure that

i) Q=g if 8<b -8 >0 {A.5a)
ii) £=0, if 6<6 -8, >0 (A.5b)
i) Q=0 if 828, + 6 (A.5¢)

Fig.Al - Spherical surface of unit radius
over which we traced two circles originated
by its intersection with the solid angles
fig and Q. The solid angle 9, () pos-
sesses a symmetry angle 8, {83) with res-
pect to the axis ¥, (xp). These axes have
an angle & between them. The shaded area
is simyltaneously inside ﬂa and ﬂb.

The case |9a—6b| S8 <8 +8,as itappears in fig. A2,
needs a more detailed study. In Fig. A2, Rand T are the centers of

these circular areas, § and P are the intersection-points of the cir-
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cular contours of these areas and § is the point where the geodesic
tine?® joining R and T crosses the geodesic line joining S and 2 . The
goints R, P and S define a spherical triangle of area 24,. The points _
5, P and T define a spherical triangle of area 24,. These triangles

have intemal angles @ and B arcund R and T, respectively.

“‘WV

Fig. AZ - The projection into a plane of the areas {i; and .
R and T are their geometrical centers. $ and P are the intef-
section points of rheir contours.Alt lines joining these points
are segments of great circles over the spherical surface. 41
and Az are the areas of two spherical triangles limited by
some of these lines.

The part of the circular area Qa which is inside the lines &S
and BP is equal to 2—0:—; ﬂa. The part of the circular area Qb, which is

inside the lines TS and TP is equal to—z% Qb We then easily deduce
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from fig. A2 that the intersection area between Qa. and Qb is
= _ o B
ﬂ.—-——ﬂaﬁ-——ﬁb-ZAl—ZAz {A.6)
2m 2w

To obtain the angle @ we use two new auxiliary axes Xp and XS
passing by the center of the spherical surface and by the points P and
3, respectively. Adopting a polar coordinate system in which Xy is the
z-axis, the angle @ will be the difference between the azimuthal angles
between ¥ and Xg- in this coordinate system (ea,¢p) and (e,¢b) are the
potar and azimuthal angles corresponding to the axes Xp and X0 respect

ively. Since the angle between %, and Xp is &, then
cosby, = césea cos? + sing sinBcos (¢b-¢p)

from which we infer that

o B cpseb—cosecosea
== tbb-im = ar¢ ¢o§|———m
2 4

(A.7)
sinfsing,
Following the same.lines one can find that 8/2 is given by & similar
equation: we must only exchange Ba with Bb in the above resuit.
The areas A, and 42 can be obtained by means of a known the-
arem for spherical triangles, which states that
{sum of internal angles) - 7 = area (n.8)
RZ
where R is the radius of the spherical surface over which the triangle

lays and in our case is equal to unify. For the area 4) we deduce

=4 £ - =4, (A.9)
where & is the angle between the lines @5 and AS. In fig. AJwe show
how this area arises from'the intersection of the great circles in-

scribed over the spherical surface. Now the z-axis is chosen so that

the line @5 lies on a great circle in the XY-plane and the line RY lies
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on a great circie in the plane X2. The angle £ will be g4jyen by tNE
scalar product between & unitary vector perpendicular o the great
circle which contains the line RS and a unitary vector ip the .Z-direc~
tion. Iln terms of the auxiliary angles By and Py, we obtain

sinBgsingg

£ = arc cos {a.10)
¥ cos?Bg+ sin®8, sinzcb‘o‘

42

Fig. A3 - Three great circles
over the spherical surface
o and a spherical triangle of
area 4 limited by the 59~

ments of their {pgersections.
With respect to 5 convenient
i by chosep coordinate-axis sysS
9 tem, R lies on the XZ-plane

Q and has polar ¢pordinate 8o,

X S S lies on the yy-plane and
has azjmuthal ¢ggrdinate ®g-

The angle between the lines

joining R and § to the origin

R i's 8,. From thig picture one

deduces the interpal angles

& £ and £ of the spherical tri-
gng]e as functigns of o, %o

. tk\\\ N\ S and 8 _.

Taking the scalar product of the same unit vector with a unit
vactor in the Y-direction, we find
cosBgycosdy

& - are cos = = {p.11}
2 Y cos?8p + sin‘By sin Py

The angle Sa is also related with 8, and ¢¢ by

cosﬁa = sinBycost, {n.12)
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Eliminating By and ¢y from these relations and using the equation (A.7)

we obtaln that

cos8, - cosBcose
T. £ = arc cos b —— g AAJ
2 sin®_ ¥ cos?8 4+ cos?@ - ZcosBeos8 cosh j
a a b a b
(8.13)

Substituting egs. {A.7) and (A.13) in eq. (A.9) we reach

[%oseb ~ cosBcosd
a
Ay = are¢ cos|]——m—m——

5indsind
a

coseb - cosfcosh
a

- arc cos — {A. 14}

. 2 2 —
5|n6a J’cos Sa + cos Bb Zcosecoseacossb

Following the same procedure one finds a similar equation for Agz:
we must only exchange SQ with Gb in the above expression,
Gathering these results in eq. {A.6) we find finally that

ﬁ(e,ea,eb) = 2 arc cos{s

cosf. - cosBeosd }
b a

in8 eroszsa + coszab - Zcosecosaacoseb

cosea - cosecoseb

+ arc cos[ —
-sianV coszﬁa + coszeb - ZCOSGCOSOGCDSSbJ

fcoseb - c056c05901
cos8  arc cos
a . .
[ sunBSlnBa

cosg, - cosecoseb]

{A.15)
!

- cosab arc cos
sinesineb

for

;ea-ebl B8 ey

To complete the calculation we note that, if BS = 0 +Ba+6 >,

b
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thare will exist an extra intersection between the hour glass-shaped
solid angles of fig. 2 and in this case the tota] intersection angle
will be

(A.16)

(0,6 ,0,) + n-8,8,,8,)
with the function {i(6,6 ,eb) given by eq. (A.15).
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Resumao

Calcula-se as secdes de choque em reagbes com [ons pesados a
energias de laboratorio acime de 30 MeV por nucleon. Considera-se espe-
cialmente os efeitos do principio de Pauli e das excitagdes eletromagné-
ticas. Ambos ‘efeitos sdc de grande importincia ¢ foram tratados por meic
de simples calculos semiclassicos e geométricos.
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Pulsar Precession: A Nod is not as Good as a Wink!
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Abstract The question of the reality of pulsar precession is reas-
sessed and the relevant precession periods and ampiitudes are reesti-
mated. It is argued that the pulsar timing data provide evidence for
the viewpoint that pulsars do indeed precess and that they turn off
after some 10* precessional turns because they align their magnetic
fields with their rotation axis due to viscous damping. Chances for an
actual detection in the long known pulsars are small but PSR 1510-53
and some more recently discovered young pulsars are promisiag candi-
dates.

1. INTRODUCTION

It is sometimes said that pulsars could have been predicted be-
fore their actual discovery (in 1967), but this is certainly not the
case, as evidenced by the fact that even 15 years later the emission
mechanism, i.e. the very basis for their detection, is still unknown
and is likely to remain so for quite some time. As a matter of fact,
the now genérally accepted pulsar model (a rotating, magnetized neutron
star) was developed in an astonishingly short time and has remained es-
sentially unchanged since. To the very few predictions which can be
made on general grounds, beiong the observed siowing down of a pulsar's
rotation, the ungbserved internal excitations of a neutron star, such
as pulsation or torsional oscillation and, last but not least, pre=
cession. All these effects have by now been observed in the case of the
Earth.

As all these effects are important indicators of the global

structure of a rigid body, they have received considerable attention in
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