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Abstract

A stellar plasma, such as in the sun, consists of ions surrounded by

electron clouds. The electrons “shield” the target ion, thus lowering

the Coulomb potential around the ion. This lower potential increases

the nuclear fusion reaction rate by a factor known as the screening en-

hancement factor (SEF). We review the derivation of the potential and

subsequent SEF. One incorporates a parameter for the degeneracy of

the electrons which allows an accurate description of screening for dif-

ferent stellar environments. We derive the SEF for non-degenerate, in-

termediate degenerate and completely degenerate stellar environments.

Further, we apply a modification of the SEF accounting for the dis-

tance at which the nuclear reaction takes place. Finally, we evaluate

and graph the resulting SEFs for these different stellar environments.

1 Introduction

In his pioneering book “The Internal Constitution of the Stars,” Sir Arthur

Eddington described the inside of a star as a “hurly-burly of atoms, electrons,

and aether waves.”[1] This collection of ions and electrons at a high temper-

ature is known as a plasma. If we assume the plasma contains completely

ionized atoms that have Coulomb interactions of a lower energy than their

kinetic energy, we can evaluate the internal structure of a star as an ideal gas.
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This simplifies the calculation of the equation of state by utilizing statistical

mechanics.

The positive ions in the stellar plasma will attract the electrons in the

medium to form a negatively charged cloud around each ion. This cloud can

reduce the amount of energy required for two ions to react, thus increasing the

fusion reaction rate. This modification to the calculation of the reaction rate

is known as the screening enhancement factor (SEF).

Beginning with Salpeter’s [3] determination of the screening enhancement

factor over sixty years ago, many attempts at deriving the SEF have been

made and have resulted in different values based on differing assumptions and

approximations. We will focus on the approach by Liolios [5] which incorpo-

rates a parameter that represents the degeneracy of the electrons in the stellar

plasma. The degeneracy of the electrons can range from nondegenerate, or

partially degenerate as in our sun, or completely degenerate as found in stars

of higher density and temperature. Inclusion of a degeneracy parameter allows

determination of the SEF for a variety of stellar compositions.

2 Ionization in the stellar plasma environment

The first and major constraint in the determination of the SEF is that the

stellar plasma be completely ionized. Ionization occurs when electrons leave

their orbits around the nucleus resulting in a positively charged ion and free

electrons. Salpeter defined a parameter Iz as the ratio of the ionization po-

tential for a hydrogen-like atom with charge Z to the mean thermal energy.

That is,

Iz =

(
Ze2

2a0

)
(kT6)−1, (1)

where e is the fundamental charge of 4.8× 10−10statcoulombs,1 a0 is the Bohr

radius of the atom equal to 5.292 × 10−9centimeters, k is the Boltzmann

constant equal to 1.381 × 10−16erg/K , and T6 the temperature in units of

1We use cgs units, common in nuclear astrophysics.
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million degrees Kelvin. With the constants included, the ionization parameter

simplifies to

Iz = 0.16
Z2

T6

� 1, (2)

where the inequality arises in most environments of interest in nuclear as-

trophysics. We can call the environment completely ionized if the inequality

above holds. This is the case for our sun where T6 > 10 and Z = 1 with

predominantly hydrogen ignition.

3 The degeneracy parameter

In order to determine the screening enhancement factor (SEF) and its sub-

sequent effects on nuclear reaction rates in a stellar plasma, our calculations

depend on the determination of the effective Coulomb potential around the re-

acting ions. We can use Poisson’s equation to get the potential from the charge

density. The charge density is sum of the products of the number densities of

the elements in the plasma with their respective charges.

Let Ni be the number density of element (i) related to the plasma density,

ρ by the formula Ni = ρ(Xi/Ai)N0 where Xi is the fraction by weight (mass

fraction), Ai is the mass number, and N0 being the Avogadro’s number. The

total number density of free particles in the plasma is the sum of number

densities for ions and electrons. Because, based on the assumption of total

ionization, each atom releases all of it’s electrons, there are Zi electrons in the

plasma. Thus, the number density of electrons is Ne = ρN0
∑
i Zi(Xi/Ai). The

global charge density for the completely ionized plasma is sum of the products

of the number densities with their respective charges (Zie for the ions and e

for the electrons).

ρq =
∑
i 6=e

NiZie−Nee. (3)

In a neutral plasma the value of ρq is zero because the positive charges balance

with the negative charges.
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Because the electrons and ions are fermions, we need to use the Fermi-Dirac

statistical formulation for the number density as a function of the momentum(p),

namely[2],

ni(p) =
8πp2/h3

exp
[(

p2

2mi
− µi

)
/kT

]
+ 1

,
∫ ∞

0
ni(p)dp = Ni (4)

where h is Planck’s constant (6.626 × 10−34m2kg/s), mi is the mass of the

respective ion, k is Boltzmann’s constant, and µi is the chemical potential2.

There is a number density for each species of ion, as well as for the electrons.

The Coulomb potential varies as a function of position within the plasma,

and we call it by Φ. With the introduction of a point nucleus Z0e in the plasma,

the new number densities for ions and electrons include an adjustment to the

chemical potential

ñe =
8πp2/h3

exp
{[

p2

2me
− (µe + eΦ)

]
/kT

}
+ 1

(5)

and

ñi =
8πp2/h3

exp
{[

p2

2mi
− (µi − eZiΦ)

]
/kT

}
+ 1

(6)

with eΦ and −eZiΦ being the additional energy needed to add one electron

and a point nucleus, respectively.

In quantum mechanics, an energy level is said to be degenerate when it

corresponds to two or more different states of the system. The degeneracy of

an electron gas is related to the electron density. We incorporate a parameter

for the degeneracy of the plasma (αe for the electrons and αi for the ions)

ñe(p) =
8πp2/h3

exp{ p2

2mekT
+ αe}+ 1

, (7)

ñi(p) =
8πp2/h3

exp{ p2

2mikT
+ αi}+ 1

, (8)

2The chemical potential is defined as the energy required to add or remove one extra

particle in the plasma.
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where αe = −(µe + eΦ)/kT and αi = −(µi − eZiΦ)/kT . Equations (7) and

(8) will allow us to determine the number densities and subsequent screening

enhancement factors for stellar environments with different degeneracy values.

Integrating the number densities from zero to infinity and multiplying by

their respective charges (Zie for the ions and −e for the electrons) will give us

the total charge density of the plasma.

ρ̃(r) =
∑
i

Ñi(Zie) =
∫ ∞

0

∑
i 6=e

ñi(p)Zie− ñe(p)e

 dp. (9)

Using Poisson’s equation with the total charge density we can calculate the

potential around the reacting ion and obtain the SEF.

Recall that the number density of each ion is the integration of the number

of ions with momentum (p) going from zero to infinity,

Ni =
∫ ∞

0
ni(p)dp =

∫ ∞
0

8πp2/h3

exp{ p2

2mikT
+ αi}+ 1

dp. (10)

Evaluation of the ion density is facilitated with the introduction of the Fermi-

Dirac function of order one-half, defined as

F1/2(a) =
∫ ∞

0

u1/2du

exp(a+ u) + 1
.

With u = p2/2mkT , u1/2 = p/
√

2mkT and du = pdp/mkT , the number

densities are obtained in terms of the Fermi-Dirac function of order one-half.

Ni(α) =
8π

h3

√
2(mkT )3/2

∫ ∞
0

p√
2mkT

p
mkT

dp

exp{ p2

2mkT
+ α}+ 1

, (11)

and

Ni(α) =
4π

h3
(2mkT )3/2

∫ ∞
0

u1/2du

exp{u+ α}+ 1
, (12)

with the number density becoming

Ni(α) =
4π

h3
(2mikT )3/2F1/2(α), (13)

with the degeneracy parameter, α, being the variable in the function, taking

on different values depending on the nature of the stellar plasma.
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4 Non-degenerate, weak screened environment

Let us designate Λ = exp(−α). For αi > 0 then Λ is less than unity and

corresponds to a non-degenerate environment. Then the Fermi-Dirac one-half

integral can be written as

F1/2 =
∫ ∞

0

u1/2du

(1/Λ)eu + 1
=
∫ ∞

0
Λe−uu1/2 1

1 + Λe−u
du (14)

The term (1 + Λe−u)−1 can be expanded into a binomial series

F1/2(Λ) = Λ
∫ ∞

0
e−uu1/2[1− Λe−u + (Λe−u)2 − (Λe−u)3 + . . .]du (15)

which can be integrated term by term

F1/2(αi) =
∫ ∞

0
e−αe−uu1/2 −

∫ ∞
0

e−2αe−2uu1/2 +
∫ ∞

0
e−3αe−3uu1/2 − . . . (16)

to give

F1/2(αi) = −
√
π

2

∞∑
n=1

(−1)ne−nαi

n3/2
. (17)

When αi ≥ 2 all the terms in the summation beyond the first term are very

small and can be neglected. Then the Fermi-Dirac function of order one-half

is simply

F1/2(αi) = −
√
π

2
e−αi (18)

Since αe = −(µe + eΦ)/kT for the electrons and αi = −(µi − eZiΦ)/kT for

the ions then the exponent can be separated yielding for the electrons

F1/2(αe) = −
√
π

2
exp

{
µe
kT

}
exp

{
eΦ

kT

}
(19)

and for the ions,

F1/2(αi) = −
√
π

2
exp

{
µi
kT

}
exp

{
−eZiΦ

kT

}
. (20)

We can see that the number density around the point nucleus which incor-

porates this approximation of the Fermi-Dirac one-half integral is simply the

original number density (Ne and Ni) times an exponential factor,
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Ne(r) ' Ne(ae) exp

(
eΦ(r)

kT

)
(21)

and

Ni(r) ' Ni(ai) exp

(
−eZiΦ(r)

kT

)
(22)

where ak = µk/kT is the degeneracy parameter without correction for the

charge of the point nucleus.

If the environment is weakly screened with

eΦ(r)

kT
� 1,

ZieΦ(r)

kT
� 1, (23)

then we can expand the exponential function into a power series with the

higher order terms discarded,

Ne(r) ' Ne(ae)

(
1 +

eΦ(r)

kT

)
, Ni(r) ' Ni(ai)

(
1− ZieΦ(r)

kT

)
. (24)

The charge density is the sum of the number densities times their respective

charges. With the charge density in Poisson’s equation, ∇2Φ = −4πρc, we can

get the potential, Φ(r), around the reacting ion,

∇2Φ(r) = −4πe

∑
i 6=e

Ni(ai)

(
1− ZieΦ(r)

kT

)
Zi −Ne(a)

(
1 +

eΦ(r)

kT

) . (25)

Plasma neutrality implies that the charge of the ions cancel the charge of

the electrons resulting in the elimination of two terms in the Poisson’s equation.

One gets

∇2Φ(r) =
4πe2

kT

∑
i 6=e

Ni(ai)Z
2
i +Ne(a)

Φ(r). (26)

On the right-hand side of the equation, we can group all of the components

that are multiplied by the potential variable Φ(r) into a single unit known as

the Debye radius RD:

R−2
D =

4πe2

kT

∑
i 6=e

Ni(ai)Z
2
i +Ne(a)

 . (27)

The Poisson equation can be expressed in a single radial coordinate (from the

location of the ion). That is

1

r2

d

dr

(
r2dΦ(r)

dr

)
=

1

R2
D

Φ(r). (28)
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Then moving the r2 from the left side to the right side we get a simple differ-

ential equation
d

dr

(
r2dΦ(r)

dr

)
=
(
r

RD

)2

Φ(r). (29)

The solution to this differential equation is

Φ(r) = A exp(−r/RD), (30)

where A is a normalization constant. If we add the important boundary con-

dition that, as r goes to zero, Φ(r) goes to Zie/r, we can solve for the constant

A to get the final equation for the Debye-Huckel Coulomb potential around

the reacting ion to be

Φ(r) =
Zie

r
exp(−r/RD), (31)

with

Φ(0) =
Zie

r
− Zie

RD

. (32)

Salpeter [3] originally used the Debye-Hueckel Coulomb potential just de-

rived to determine the screening enhancement factor for a non-degenerate,

weakly screened stellar plasma environment. The nuclear fusion reaction rate

for unscreened nuclei is proportional to the following integral,∫ ∞
0

dE[E1/2e−E/kT ]P (E)σ(E), (33)

where the second term is the barrier penetration factor (P (E)).

There is a critical distance (rc) at which the energy Emax in the collision

between two nuclei of charge Z1 and Z2 is defined by

Emax =
Z1Z2e

2

rc
. (34)

P(E) at this critical distance, rc, is dependent on the expression[
E − U(r12)− Z1Z2e

2

r12

]
, (35)

where the first term is the relative kinetic energy between the two nuclei, the

second term is the adjustment of energy from the screening electrons, and the
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third term is the potential energy of the reacting nuclei. The function U(r12)

is small for r12 � RD and approaches U0 as r12 approaching zero. But if the

inequality
rc
RD

∼ U0

Emax
� 1 (36)

holds; then we can replace U(r12) with U0. The nuclear fusion reaction rate

integral now becomes

∫ ∞
0

dE[(E + U0)1/2e−E/kT e−U0/kT ]P (E)σ(E). (37)

Because U0 is small, (E + U0)1/2 can be approximated as E1/2 . Now we have

the original integral (33) for unscreened nuclei including a factor

e−U0/kT . (38)

Since U0 = Z2eΦ(0) where Φ(0) is defined by equation (32) we have the

solution for the screening enhancement factor is

fs = exp
Z1Z2e

2

RDkT
(39)

with RD defined by equation (27).

5 Completely degenerate stellar environment

In section 3 the number density of the electrons and ions incorporated the

Fermi-Dirac function of order one-half with the degeneracy parameter of α.

For a non-degenerate environment we used a value of α ≥ 2. Now we can set

α to a large negative number for a completely degenerate environment. Recall

the incorporation of the parameter Λ = exp(−α) in the Fermi-Dirac function

of one-half,

F1/2 =
∫ ∞

0

u1/2du

(1/Λ)eu + 1
. (40)

If we take the variable u1/2 to be the derivative of a function φ(u) that is

a sufficiently regular function which vanishes for u = 0 then we can use the
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Sommerfield-Lemma (Appendix A) to expand the Fermi-Dirac function of one-

half [2]:

∫ ∞
0

du

(1/Λ)eu + 1

dφ(u)

du
= φ(u0) + 2

[
c2

(
d2φ

du2

)
u0

+ c4

(
d4φ

du4

)
u0

+ . . .

]
(41)

where u0 = ln Λ and c2, c4, . . . are numerical constants defined by

cν = 1− 1

2ν
+

1

3ν
− 1

4ν
+ . . .

with the summations equal to

c2 =
π2

12
c4 =

7π4

720
c6 =

31π6

30, 240
.

Applying the Sommerfield-Lemma to the Fermi-Dirac function of one-half

yields the following expansion (Appendix B)

F1/2(α) =
2

3
(−α)3/2

(
1 +

π2

8α2
+

7π4

640α4
. . .

)
. (42)

Replacing α with α + y where y = −eΦ/kT > 0 we have

F1/2(α) =
2

3
[−(a+ y)]3/2

(
1 +

π2

8
(a+ y)−2 +

7π4

640
(a+ y)−4 + . . .

)
. (43)

Each summation in parentheses raised to a power can be expressed in a bi-

nomial expansion (a + b)n = an + nan−1b with the discarding of higher order

terms. This results in a revised equation for the Fermi Dirac function of order

one-half to be (Appendix C)

F1/2(α) ' F1/2(a)
[
1 + θ(a)

eΦ

kT

]
, (44)

with

θ(a) =
3

2
(−a)−1 − 2

3

(−a)1/2

F1/2(a)

(
π2

4a2
+

7π4

160a4

)
. (45)

When the degeneracy parameter a < −3 and 0 < θ(a) < 1 then we can

simplify θ(a) to (Appendix D)

θ(a) = − 5

2a

384a4 − 16π2a2 − 7π4

640a4 + 80π2a2 + 7π4
. (46)

10



We can further simplify θ(a) by taking only terms larger than the term with

a−2 giving (Appendix E)

θ(a) = − 1

2a

[
24a2 − π2

8a2 + π2

]
(47)

which gives results for large negative degeneracy parameters. Setting the limit

of the degeneracy parameter to negative infinity gives the simple equation

lim
a→−∞

θ(α) =
3

2
(−α)−1. (48)

Our resulting equations for theta can be compared to Mitler’s derivation [4]

θ(α) =

[
1 +

4

9

[
3

2
F1/2(α)

]4/3
]−1/2

. (49)

Figure 1 illustrates the value of theta resulting from the different derived

equations. The thin solid line represents the value of theta from eqn.(42).

The dashed line shows theta from eqn.(43). The dotted line presents theta for

eqn.(44). The dash-dot line gives theta from eqn.(45). Finally, the solid line

gives theta from Mitler’s equation (46).

This theta function is incorporated into the electron number density to

yield

Ne(r) = Ne(a)
[
1 + θ(a)

eΦ

kT

]
, (50)

which is used in the Poisson’s equation to get the potential around the reacting

ion resulting in a new Debye radius of

R−2
D =

4πe2

kT

∑
i 6=e

Ni(ai)Z
2
i + θ(a)Ne(a)

 . (51)

This Debye radius, modified by the inclusion of the parameter θ(a) for com-

pletely degenerate electrons, is used in the screening enhancement factor such

that

fs = exp

(
Z1Z0e

2

kTRD(a)

)
(52)
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Figure 1: Evaluation of theta using different approximations.

6 Degeneracy effects in different stellar envi-

ronments

From equation (13) and equating the stellar electron density, ρ and mean

molecular weight per electron, µe we have

ρN0

µe
= Ne(α) =

4π

h3
(2mekT )3/2F1/2(α) (53)

where N0 = 6.022 × 1023 mole−1, h = 6.626 × 10−27 erg − sec, me = 9.109 ×

10−28 grams, and k = 1.381× 10−16 erg/deg(K). Incorporating the constants

and taking the logarithm we get the value of the degeneracy parameter, α is

related to the stellar environment by

log10

(
ρ

µe
T−3/2

)
= log10

F1/2(α)

9.04887× 10−9
= log10 F1/2(a)− 8.044. (54)

Then we can write the inequality for (a ≥ a∗) of

ρ

µe
≤ 109+Q(a∗)T

3/2
6 , (55)
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where Q(a∗) = log10 F1/2(a∗)− 8.044 and T6 is million degrees of temperature

T , ( T6 = T × 106).

For the boundary between non-degenerate and partially degenerate plasma

environments we set a∗ = 2 we have

log10 F1/2(2)− 8.044 = log10 0.11994− 8.044 ∼= −9, (56)

and we get the inequality of

ρ

µe
≤ 10(9−9)T

3/2
6 = T

3/2
6 . (57)

This defines the criteria for the non-degenerate environment (α ≥ 2) with the

use of an uncorrected factor while evaluation of the partially degenerate stellar

plasma (−3 ≤ α < 2) must incorporate the correction of the θ(α) factor given

by Salpeter [3] as

θ(α) = F−1
1/2(α)

dF1/2(α)

dα
. (58)

For a strongly degenerate stellar plasma environment in which α ≤ −5 we

use equation (39) with α = −5,

F1/2(−5) =
2

3
(5)3/2

(
1 +

π2

8 ∗ (−5)2
+

7π4

640 ∗ (−5)4

)
(59)

resulting in F1/2(−5) = 7.8227 and log10 F1/2(−5) = 0.8934. Thus

10(9+.8934−8.044) ' 71 (60)

and
ρ

µe
≥ 71T

3/2
6 . (61)

This equation represents the criteria for a stellar environment that is inter-

mediate degenerate. For a completely degenerate environment with α ≤ −10

we again use equation (39) and set α = −10 resulting in F1/2(−10) = 21.3422

and log10 F1/2(−10) = 1.3292 with

10(9+1.3292−8.044) ' 193. (62)
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Thus
ρ

µe
≥ 193T

3/2
6 . (63)

This equation illustrates the criteria for a stellar environment that is com-

pletely degenerate. The dividing line between non-degenerate and completely

degenerate stellar environment is determined by equating the non-degenerate

electron pressure to the completely degenerate electron pressure,

N0kT

(
ρ

µe

)
=

h2

20me

(
3

π

)2/3

(N0)5/3

(
ρ

µe

)5/3

. (64)

Incorporating the constants gives

8.3145× 107T = 1.004× 1013

(
ρ

µe

)2/3

, (65)

resulting in
ρ

µe
= 24T

3/2
6 . (66)

This equation represents the point at which the the stellar environment tran-

sitions from non-degenerate to completely degenerate.

Salpeter’s SEF is valid in a plasma consisting of Hydrogen and Helium

with zero additional metals. Recalling inequality (23) we have

ZiZ0e
2

〈r〉i
exp

(
−〈r〉i
RD

)
� kT. (67)

In this plasma the inter-ionic distances between H − H and H − He

are of the same order of magnitudes as the inter-electronic distances. That

is 〈r〉ee ∼ n−1/3
e with ne = ρN0/µe. If we apply the constants of e =

4.8032 × 10−10 statcoulombs, N0 = 6.0221 × 1023 mole−1, k = 1.3807 ×

10−16 erg/deg(K) and approximate the exponent to be an exponent of a small

number and equal to one, then for the Hydrogen ion

ρ

µe
� 350T 3

6 , (68)

and for the Helium ion with Zi = 2,

ρ

µe
� 350

8
T 3

6 . (69)
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These equations represent the range at which the first derivation of the SEF

are valid.

10 50 100 200 500
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ρ
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Degeneracy in Different Stellar Environments

Figure 2: Lines demarcating degeneracy in different stellar environments.

Figure 2 shows the lines of demarcation of the degeneracies within the dif-

ferent stellar environments. Below the solid black line we evaluate the screen-

ing enhancement factor using the non-degenerate parameter (α ≥ 2). Above

the dotted line indicates the stellar environment in which an intermediate de-

generacy is used (α ≤ −5). Complete degeneracy (α ≤ −10) is evaluated in the

stellar environments indicated above the dash-dotted line. In a zero-metalicity

environment the H-H SEF can be determined in a stellar environment indi-

cated by the dashed line. Finally, the H-He SEF can be evaluated in the stellar

environment indicated by the upper solid line.
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7 A modified screening enhancement factor

The previous screening enhancement factors for non-degenerate and com-

pletely degenerate environments rely on a Debye radius and a Debye radius

with a theta incorporated, respectively. However, the nuclear fusion reac-

tions take place at an inter-ionic distance that is much shorter than the Debye

length. We need to modify the screening enhancement factor to account for

reactions at this shorter distance.

7.1 Nonlinear sreening effect

For the Debye-Huckel Coulomb potential, ΦDH(r) to be valid in the tunneling

region of the WKB integral used in the penetration factor the same inequalities

used to derive the Debye-Huckel potential should be valid within that region,

ZieΦDH(r)

kT
� 1 that is

ZiZ0e
2

kTr
exp

(
− r

RD

)
� 1. (70)

Equating x = r/RD we can rearrange the inequality to form

e−x

x
� (ln fmax)

−1 (71)

where

fmax = exp

(
ZmaxZ0e

2

RDkT

)
(72)

is Salpeter’s screening factor for the heaviest ion interacting with the central

nucleus of Z0e. The condition that fmax > 1 indicates that there is an xmin

such that x � xmin. That means there is a critical value x0 below which the

previously derived Debye-Huckel screening enhancement factors are not valid.

We can convert the inequality to an equation from which we can solve for that

minimum value x0. When we incorporate a tuning factor, β, in the equation,

the inequality is still valid and we have

ex0

x0

= β(ln fmaxs )−1. (73)
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We can use the value of β to tune the equation for specific plasma environments

and setting β = 0.1 provides a minimal one percent error in the linearization

of the number densities used to obtain the Debye-Huckel potential.

7.2 Evaluation of critical distance and the central den-

sity

In our previously derived screening enhancement factors we assumed the charge

density to be constant and equivalent to the average charge density of the

electrons. We will now take the approach that the charge density around the

nucleus is an exponentially decreasing function of distance of the form

ρin(r) = ρ(0) exp(−r/R0) (74)

where R0 is a new value replacing RD.

At the critical point r0 the density inside of r0 is equal to the density

outside of r0 and

ρin(r0) = ρout(r0) =

(
− Z0e

4πR2
D

)
exp(−r0/RD)

r0

. (75)

Let x0 = r0/RD and equation (75) becomes

ρin(x0) = ρout(x0) =

(
− Z0e

4πR3
D

)
exp(−x0)

x0

. (76)

Since (
− Z0e

4πR3
D

)
= ρout(RD) exp(1), (77)

we can substitute equation (77) into equation (76) to get the density at r0 in

terms of the density at the Debye radius

ρin(x0) = ρout(x0) =
e1−x0

x0

ρout(RD). (78)

Rearranging equation (74) we get that the central charge density is defined as

ρ(0) = ρin(x0) exp (x′0) , (79)
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Substituting the definition of the density inside r0 being equation (78) into

the definition of the central charge density (79) results in an equation that

includes the values of x0 and x′0,

ρ(0) = ρin(x0) exp (x′0) =
ex
′
0−x0

x0

(
− Z0e

4πR3
D

)
, (80)

where x0 = r0/RD and x′0 = r0/R0.

The charge normalization condition states that the total charge of the

system is the sum of the charge inside r0 and the charge outside r0,∫ r0

0
ρin(r)4πr2dr +

∫ ∞
r0

ρout(r)4πr
2dr = −Z0e. (81)

Inserting the definitions of the densities we have

4πρ(0)R3
0

∫ x′0

0
x2e−xdx− Z0e

∫ ∞
x0

xe−xdx = −Z0e. (82)

These integrals are trivial and can be solved analytically

I1 (x′0) =
∫ x′0

0
x2e−xdx = −e−x′0

(
x′20 + 2x′0 + 2

)
+ 2 (83)

and

I2(x0) =
∫ ∞
x0

xe−xdx = e−x0 (x0 + 1) . (84)

Then equation (82) becomes

4πρ(0)R3
0I1 (x′0)− Z0eI2(x0) = −Z0e. (85)

Combining eqns. (74),(77),(78) and (79) we get the equation which can be

solved for x′0 given x0,

ex
′
0

x′30
I1(x′0) =

ex0

x2
0

[1− I2(x0)]. (86)

7.3 Derivation of the screened Coulomb potential

Once the inner charge density has been derived, we can obtain the screened

Coulomb potential from Poisson’s equation

∇2Φ = −4πρ(0) exp(−r/R0), (87)
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with the solution in the form of

Φ(r) =
Z0e

r
F (r). (88)

Applying spherical symmetry and boundary conditions we obtain the function

F (r) = c2 + c1r −
4πρ(0)R3

0

Z0e

(
2 +

r

R0

)
e−r/R0 , (89)

with

c2 = 1− 2
x2

0

x′30
ex
′
0−x0 , (90)

and

c1 = −R−1
D

[
1

x0

− e−x0

x0

− 2
x0

x′30
ex
′
0−x0 +

x0

x′30
(2 + x′0) e−x0

]
. (91)

7.4 Derivation of the screening enhancement factor

Mitler’s derivation of the screening enhancement factor was greatly facilitated

by the concept that the charge density was constant in the region of the nuclear

interaction which allowed an analytical solution. However, our charge density

is more complicated and the derivation of the screening enhancement factor

will be developed under certain assumptions.

a) Z0e and Z1e are symmetric and the impinging nucleus Z1e is considered

unscreened, which means it carries no electron cloud. As it collides with ion

Z0e it encounters the screening cloud which creates the potential Φ(r).

b) We consider the charge Z0e is significantly larger than Z1e. Conse-

quently, the electron cloud around Z0e is much larger than the cloud around

Z1e and we can disregard the screening effect from Z1e. In such a case, the

classical turning point lies so deeply within the screening configuration that it

makes no difference whether the cloud is attributed to Z0e or Z1e.

Because the classical turning point is much smaller than R0 we can truncate

the Coulomb potential to

Φ(r) =
Z0e

r
− Z0e

RD

G(x0, x
′
0) +O(r2), (92)

19



where the quantity G(x0, x
′
0) is given by

G(x0, x
′
0) =

1

x0

− e−x0

x0

− 2
x0

x′30
ex
′
0−x0 +

x0

x′30
(2 + x′0)e−x0 +

x0

x′20
ex
′
0−x0 . (93)

Consequently, the screening energy is shifted by the function G(x0, x
′
0) with

the new energy value related to the screening energy of the previously derives

factors as

U ′0 = U0G (x0, x
′
0) (94)

and using the definition of Salpeter’s screening enhancement factor, the new

factor is

f = e
−UeG(x0,x

′
0)

kT = exp
(
− Ue
kT

)G(x0,x′0)

= fG(x0,x′0)
s . (95)

8 Evaluation of the derived SEFs

We have derived the screening enhancement factor (SEF) for stellar environ-

ments that are non-degenerate and completely degenerate. Additionally, we

have formulated a new SEF taking in the consideration that the nuclear re-

action takes place at a distance much closer than the Debye radius. We will

now evaluate the SEF for each of these derivations.

8.1 SEF for a non/partially degenerate stellar environ-

ments

Recall that the SEF is determined by the equation

fs = exp

(
Z1Z0e

2

kTRD

)
, (96)

where the Debye radius is

R−2
D =

4πe2

kT

∑
i 6=e

Ni(ai)Z
2
i +Ne(a)

 , (97)

for a non-degenerate environment.
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Having Ni = ρ(Xi/Ai)N0 and Ne = ρN0
∑
i(Xi/Ai) we can expand the

equation for the SEF with the Debye radius to

fs = exp

Z1Z0e
2

kT

√√√√√4πe2ρN0

kT

∑
i 6=e

(Xi/Ai)Z2
i +

∑
i

(Xi/Ai)


 . (98)

For simplification we assume a stellar environment consisting of only Hydrogen

with zero metalicity. Then Z1, Z0, Xi, Ai = 1 and incorporating the constants

the equation for the SEF becomes

fs = exp
(
0.188ρ1/2T

−3/2
6

)
. (99)
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Figure 3: SEF for non-degenerate and partially degenerate stellar environ-

ments.

In figure 3, we display the SEF for a non-degenerate and partially degen-

erate environments in which the density is low and the temperature is high.

The solid line shows a partially degenerate environment with T6 = 50 K and

the dashed line illustrates a non-degenerate environment with T6 = 200 K.

Recall that T6 = T × 106K. We can see that the SEF approaches one as the

stellar environment approaches non-degeneracy.
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8.2 SEF for intermediate/completely degenerate stellar

environments

A stellar environment in which the density is high and the temperature is low

results in an intermediate or completely degenerate system. We use the same

equation for the SEF in a completely degenerate environment as that for the

non-degenerate stellar environment. However, the Debye radius includes the

function of theta,

R−2
D =

4πe2

kT

∑
i 6=e

Ni(ai)Z
2
i + θ(a)Ne(a)

 , (100)

with theta evaluated by

θ(a) = − 5

2a

384a4 − 16π2a2 − 7π4

640a4 + 80π2a2 + 7π4
. (101)
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Figure 4: SEF for intermediate and completely degenerate stellar environ-

ments.

Just as in the evaluation of the SEF for a non-degenerate stellar environ-

ment we assume all hydrogen with zero metalicity and combine the constants
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to give the SEF as

fs(ρ, T6) =
[
exp

(
0.188ρ1/2T

−3/2
6

)]√1+θ(ρ,T6)
. (102)

Figure 4 shows the evaluation of the SEF with the solid line being an inter-

mediate degenerate environment and the dashed line showing the completely

degenerate system. The screening enhancement factor is significant in a stellar

environment that is completely degenerate.

8.3 Revised SEF for different stellar environments

Derivation of the previous SEFs did not take into consideration the fact that

the nuclear reaction takes place at a distance much shorter than the Debye ra-

dius. A modified SEF was derived with this correction. The original screening

enhancement factor was derived as

fs = eUDH . (103)

The revised SEF involves a shift in the screening energy

Ue = UDHG (x0, x
′
0) =

Z0Z1e
2

RD

G (x0, x
′
0) (104)

with G(x0, x
′
0) given by equation (88). The function G(x0, x

′
0) incorporates

the values of x0 and x′0 which are obtained from eqns. (70) and (81). This

makes the new SEF defined as

f = eUDHG(x0,x′0) = f
G(x0,x′0)
s . (105)

The power of G(x0, x
′
0) ranges from zero to one depending on the degeneracy

with non-degenerate being closer to one.

The final results are shown in figures 5-8 with the solid line being the

original SEF and the dashed line representing the revised SEF. The high tem-

perature and low density produces a non-degenerate and partially degenerate

stellar environment and the SEF is hardly modified by the factor G(x0, x
′
0).

As the temperature decreases and the density increases the SEF is reduced by

the influence of the revised reaction distance.
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Figure 5: Revised SEF for non-degenerate stellar environment.
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Figure 6: Revised SEF for partially degenerate stellar environment.

9 Conclusion

In stellar environments such as the sun, the plasma consists of ions and elec-

trons. Because of their charge, each ion is surrounded by a cloud of electrons.
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Figure 7: Revised SEF for intermediate degenerate stellar environment.
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Figure 8: Revised SEF for completely degenerate stellar environment.

This negatively charged cloud “screens” the fusion reaction between two ions

and alters the reaction rate by a factor known as the screening enhancement
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factor (SEF). We have derived the screening enhancement factor for several

different stellar environments.

The derivation of the SEF involves the determination of the charge density

around the reacting ion. From the charge density we obtain the Coulomb

potential which includes a factor known as the Debye radius. The Debye

radius is the distance at which the electron cloud has a significant effect on

the Coulomb potential and is a critical distance for the SEF.

We have derived the SEF, which includes a factor for the Debye radius, for

a non-degenerate stellar environment. Evaluation of the SEF shows that in

this environment the factor is close to one and the reaction rate is not altered

much.

For intermediate and completely degenerate stellar environments the SEF

includes a Debye radius that incorporates a function θ. This factor accounts

for the degeneracy of the electron cloud. Our evaluation of the SEF in this

environment indicates that the reaction rate is significantly increased by the

SEF.

Finally, we have revised the SEF with consideration for the fact that the

reaction takes place at a distance much smaller than the Debye radius. The

modified SEF results from the original SEF raised to a factor that includes

this critical distance. Our evaluation of the revised SEF indicates that as the

degeneracy goes from non-degenerate to completely degenerate, the SEF is

reduced from its originally derived SEF.

The study presented in this thesis clearly points to the necessity of going

beyond the old Salpeter’s [3] theory of electron screening. It can have an

important impact on the calculation of fusion reactions in stars. More work

in this direction is worthwhile.
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A Proof of Sommerfeld Lemma [6]
∫ ∞

0

du
1
Λ
eu + 1

dφ(u)

du
=
∫ ∞

0

du
1
Λ
eu + 1

dφ(u)

du
+
dφ(u)

du
− dφ(u)

du
(106)

∫ ∞
0

du
1
Λ
eu + 1

dφ(u)

du
=

∫ u0

0

dφ(u)

du
du+

∫ u0

0

(
1

1
Λ
eu + 1

− 1

)
dφ(u)

du
du

+
∫ ∞
u0

du
1
Λ
eu + 1

dφ(u)

du
(107)

∫ ∞
0

du
1
Λ
eu + 1

dφ(u)

du
= φ(u0)−

∫ u0

0

du

1 + Λe−u
dφ(u)

du

+
∫ ∞
u0

du
1
Λ
eu + 1

dφ(u)

du
. (108)

Now let u = u0(1 − t) in the first integral on the right hand side of equation

(104) and u = u0(1+t) in the second integral on the right hand side of equation

(104). and having u0 = log Λ,

∫ ∞
0

du
1
Λ
eu + 1

dφ(u)

du
= φ(u0)− u0

∫ 1

0

φ′[u0(1− t)]
1 + eu0t

dt

+u0

∫ ∞
0

φ′[u0(1 + t)]

1 + eu0t
dt. (109)

Now we extend the range of the first integral on the right hand side of equation

(105) to infinity which adds an error of the order of e−u0 , which is beyond the

range of accuracy for the asymptotic formula we are establishing. Hence, we

have

∫ ∞
0

du
1
Λ
eu + 1

dφ(u)

du
' φ(u0) + u0

∫ ∞
0

φ′[u0(1 + t)]− φ′[u0(1− t)]
1 + eu0t

dt(110)

= φ(u0) + 2
∑

ν=2,4,6,...

uν0φ
(ν)(u0)

(ν − 1)!

∫ ∞
0

tν−1

1 + eu0t
dt. (111)

However the integral in equation (107) can be expanded:

∫ ∞
0

tν−1

1 + eu0t
dt =

∫ ∞
0

tν−1(e−u0t − e−2u0t + e−3u0t − . . .)dt (112)

=
(ν − 1)!

uν0

(
1− 1

2ν
+

1

3ν
− . . .

)
. (113)
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Inserting the integral equivalent of equation (109) into equation (107) yields∫ ∞
0

du
1
Λ
eu + 1

dφ(u)

du
' φ(u0) + 2[c2φ

′′(u0) + c4φ
(iv)(u0) + . . .], (114)

c2 = 1− 1

22
+

1

32
− . . . =

π2

12
, (115)

c4 = 1− 1

24
+

1

34
− . . . =

7π4

720
, (116)

c6 = 1− 1

26
− 1

36
− . . . =

31π6

30, 240
. (117)

B Sommerfeld Lemma Applied to Fermi Dirac

Let dφ(u)/du = u1/2, Λ = exp(−α) and u0 = log Λ then

φ(u0) =
2

3
(−α)3/2, (118)(

d2φ

du2

)
u0

=
1

2(−α)1/2
=

2

3
(−α)3/2 3

4α2
, (119)(

d4φ

du4

)
u0

=
3

8(−α)5/2
=

2

3
(−α)3/2 9

16α4
. (120)

∫ ∞
0

du

(1/Λ)eu + 1

dφ(u)

du
= φ(u0) + 2

[
c2

(
d2φ

du2

)
u0

+ c4

(
d4φ

du4

)
u0

+ . . .

]
(121)

=
2

3
(−α)3/2 + 2

(
π2

12

3

4α2

2

3
(−α)3/2

)
+ 2

(
7π4

720

9

16α4

2

3
(−α)3/2

)
+ . . . (122)

=
2

3
(−α)3/2

[
1 +

π2

8α2
+

7π4

640α4
+ . . .

]
(123)

C Derivation of Fermi Dirac with Theta

With y = −(eΦ/kT ) and replacing α with α + y we begin

F1/2(α̃) ' 2

3
[−(α + y)]3/2

[
1 +

π2

8
(α + y)−2 +

7π4

640
(α + y)−4

]
. (124)

Using binomial expansion of the terms with exponents we get

' 2

3

[
(−a)3/2 +

3

2
(−a)1/2(−y)

] [
1 +

π2

8
(a−2 − 2a−3y) +

7π4

640
(a−4 − 4a−5y)

]
.

(125)
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Multiplying out the terms in the second half of the equation gives

F1/2(α̃) '
[
2

3
(−a)3/2 − (−a)1/2y

] [
1 +

π2

8a2
− π2

4a3
y +

7π4

640a4
− 7π4

160a5
y

]
.

(126)

Distributing the factors results in four components,

F1/2(α̃) ' 2
3
(−α)3/2

[
1 + π2

8α2 + 7π4

640α4

]
(127)

+2
3
(−α)3/2

[
− π2

4α3y − 7π4

160α5y
]

(128)

−(−α)1/2y
[
1 + π2

8α2 + 7π4

640α4

]
(129)

−(−α)1/2y
[
− π2

4α3y − 7π4

160α5y
]
. (130)

Now puttting in y = −(eΦ/kT ).

F1/2(α̃) ' 2
3
(−α)3/2

[
1 + π2

8α2 + 7π4

640α4

]
(131)

−2
3
(−α)1/2

[
π2

4α2 + 7π4

160α4

]
eΦ
kT

(132)

+(−α)1/2
[
1 + π2

8α2 + 7π4

640α4

]
eΦ
kT

(133)

−(−α)1/2y2
[
− π2

4α3 − 7π4

160α5

]
. (134)

Term number (126) is simply

F1/2(α) =
2

3
(−α)3/2

[
1 +

π2

8α2
+

7π4

640α4

]
. (135)

Because it includes y2, which approaches zero, term (129) is approximately

zero.

Terms number (127) and (128) are incorporated in to the equation of theta

F1/2(α)θ(α) = (−α1/2)

[
1 +

π2

8α2
+

7π4

640α4

]
eΦ

kT
(136)

− 2

3
(−α)1/2

[
π2

4α2
+

7π4

160α4

]
eΦ

kT
(137)

= F1/2(α)
3

2
(−α)−1 eΦ

kT
(138)

− F1/2(α)
2

3

(−α)1/2

F1/2(α)

[
π2

4α2
+

7π4

160α4

]
eΦ

kT
, (139)
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Giving the final form of the Fermi Dirac integral of order one-half with the

function theta as

F1/2(α) ' F1/2(a)
[
1 + θ(a)

eΦ

kT

]
, (140)

and theta equal to

θ(a) =
3

2
(−a)−1 − 2

3

(−a)1/2

F1/2(a)

(
π2

4a2
+

7π4

160a4

)
. (141)

D Simplification of Theta I

θ(a) =
3

2
(−a)−1 − 2

3

(−a)1/2

F1/2(a)

(
π2

4a2
+

7π4

160a4

)
(142)

θ(a) =
3

2
(−a)−1 − (2/3)(−a)1/2

(2/3)(−a)3/2

(
π2/4a2 + 7π4/160a4

1 + π2/8a2 + 7π4/640a4

)
(143)

θ(a) = −1

a

[
3

2
−
(

π2/4a2 + 7π4/160a4

1 + π2/8a2 + 7π4/640a4

)]
(144)

θ(a) = −1

a

[
3 + 3π2/8a2 + 21π4/640a4 − 2π2/4a2 − 14π4/160a4

2 + 2π2/8a2 + 14π4/640a4

]
(145)

θ(a) = −1

a

[
1920a4/640a4 + 240π2a2/640a4 + 21π4/640a4 − 320π2a2/640a4 − 56π4/640a4

1280a4/640a4 + 160π2a2/640a4 + 14π4/640a4

]
(146)

θ(a) = −1

a

[
1920a4 − 80π2a2 − 35π4

1280a4 + 160π2a2 + 14π4

]
(147)

θ(a) = − 5

2a

[
384a4 − 16π2a2 − 7π4

640a4 + 80π2a2 + 7π4

]
(148)

E Simplification of Theta II

θ(a) = − 5

2a

[
384a4 − 16π2a2 − 7π4

640a4 + 80π2a2 + 7π4

]
(149)

Eliminate terms lower than a−1.

θ(a) = − 5

2a

[
384a4 − 16π2a2

640a4 + 80π2a2

]
(150)

θ(a) = − 5

2a

[
(24× 16)a4 − 16π2a2

(8× 80)a4 + 80π2a2

]
(151)
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θ(a) = −(5× 16)a2

(2× 80)a3

[
24a2 − π2

8a2 + π2

]
(152)

θ(a) = − 1

2a

[
24a2 − π2

8a2 + π2

]
. (153)
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