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In this paper, we investigate induced oscillations by the gravitational field of a fast stellar
object, such as a neutron star or a black-hole in a near miss collision with another star.
Nonadiabatic collision conditions may lead to large amplitude oscillations in the star.
We show that for a solar-type star a resonant condition can be achieved by a fast moving
stellar object with velocity in the range of 100 to 1000 km/s, passing at a distance of a
few multiples of the star radius. Although such collisions are rare, they are more frequent
than head-on collisions, and their effects could be observed through a visible change of
the star luminosity occurring within a few hours.
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1. Introduction

Stellar oscillations, commonly known as pulsations, are understood in terms of
modulation geared by the interaction of radiation with matter on its way from
the center of the star.1 Little is known about how other kinds of oscillations can
be generated in stellar encounters, although an effort has been made in studying
tidal oscillations due to the gravitational interaction with a companion in a binary
system (see e.g. Refs. 2–4). Stellar encounters are often investigated in the context
of gravitational waves which could, in principle, be detected by ground and space-
based laser interferometers.5 Gamma-ray bursts arising from tidal disruption of
neutron stars (NS) in NS–NS or NS–Black-hole (BH) binary coalescence have also
attracted interest.6–10 Stellar oscillations excited by the tidal field of a compact
object in binary systems have been the subject of several publications.11–15

The kinetic energy of a star with m� and velocity v = 1000km/s is about 1049

ergs, which is enough energy to power the luminosity of the Sun for one billion years.
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A central collision between such objects would be nothing less than spectacular. But
if only a small fraction of this energy is transformed into the internal energy of a star
during a relatively short time, the consequences would also be dramatic. This can be
achieved in near miss encounter, with impact parameters larger than the sum of the
radii of the collisional partners. There is plenty of available space for near misses,
but very little room for central collisions and far collisions are much more frequent.
It is therefore relevant to find out what are their consequences. Such processes have
been previously studied for the specific purpose of assessing tidal oscillations in
NS.2,16 Here we show that a resonant condition arises for solar-like stars within the
range of possible velocities, leading to effects within our observational reach.

2. Collision Model

We consider the internal response of a star due to the passage of a fast stellar
object (FSO), e.g. an NS or a BH, at large impact parameters. This response can
be modeled by considering the tidal force on a mass element dms of the star,
roughly given by17,18 dF ∼ 2GM dmsx/R3, where M is the mass of the FSO, G

the gravitational constant, R is the distance between the center of mass of the FSO
and the star, and x is the distance of the mass element dms from the center of the
star. The tidal force is best described by expanding the gravitational field of the
FSO into multipoles, yielding at a position x inside the star19

V (x, t) = −GM
∑
lm

4π

2l + 1
Ylm(R̂(t))

xl

Rl+1(t)
Y ∗

lm(x̂). (1)

In the center of mass of the star, the force on a mass element at x is obtained from
the derivative of Eq. (1) with respect to x. The distance R(t) is a function of time,
and t = 0 is taken when the two stars are at the periapsis, or distance of closest
approach. In the frame of reference of the star, the tidal force acts in opposite sides
from its center, trying to elongate it and leading to a time-dependent ellipsoidal
shaped oscillation. To lowest order, the passage of a FSO will induce quadrupole
shaped vibrations, as seen in Fig. 1. Higher multipole vibrations such as octupole
oscillations are also possible, but are orders of magnitude smaller and have been
neglected here.

The time dependence of R(t) and θ(t) is described by a hyperbolic Kepler tra-
jectory, parametrized by an orbital eccentricity ε > 1, where θ(t) is the angular
position of the FSO measured from the center of mass of the system and with
respect to the line joining it to the star so that, at t = 0, θ = 0, and R = a,
the distance at the periapsis. For an encounter with impact parameter b, one has
a = 2b/(α +

√
α2 + 4) where α = GMms/(Eb), E = µv2/2 is the collision energy

and µ = Mms/(ms + M) is the reduced mass. The relation between the angular
position and time can be obtained solving coupled equations for R and t along the
trajectory (see e.g. Ref. 20).

Nonradial stellar oscillation modes can be described with hydrodynamical mod-
els to high accuracy (see e.g. Ref. 21). We adopt a simple model including only (a) a
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∆x 

Fig. 1. (Color online) Tidal oscillations induced in a star by the passage of a fast stellar object.

single inertia parameter, (b) a linear restoring force, and (c) a damping parameter.
The model should be useful for a rough estimate of the induced oscillations. The
simplest model of this kind was developed by Lord Kelvin, described, e.g. in Refs. 2,
22–25. For quadrupole oscillations in a spherically homogeneous self-gravitating star
with radius rs, mass ms, and average density ρ0 = ms/(4πr3

s/3), the assumption
of an incompressible fluid yields a natural oscillation frequency

ω2
0 =

K2

M2
=

16πGρ0

15
=

4Gms

5r3
s

, (2)

where M2 and K2 are the respective quadrupole inertia and stiffness parame-
ters. For small amplitude quadrupole oscillations, the inertia parameter has been
deduced in Ref. 26 from which one also obtains the stiffness parameters, namely

M2 =
3msr

2
s

10
and K2 =

6Gm2
s

25rs
. (3)

The stiffness arises from increase of gravitational energy due to the quadrupole
deformation from a spherical star shape. Stellar oscillation damping is difficult to
model as it can arise from “gas”, “radiation” and “turbulence” contributions, each
of them varying wildly over temperature, density, and other properties of the stellar
interior. For a gas the viscosity varies as γg ∼ T 5/2, whereas for radiation γr ∼ T 4.
In the presence of turbulence, γt = Reγr/3, where Re is the Reynolds number and
the viscosity is several orders of magnitude larger than the radiative (or Jeans)
viscosity.27 In the absence of turbulence, radiation damping dominates over gas
viscosity. To avoid dealing with specific stellar conditions, we assume a friction
coefficient of the form γ = AγM2ω0, with Aγ taken as a free parameter.

The velocity distribution of nearby stars (� 100pc), obtained with the Hyppar-
cos satellite, shows a non-negligible number of stars moving at speeds in excess of
100km/s.28 Hypervelocity stars, with v � 1000km/s are rare, and able to escape
the galaxy, but have already been observed.29 To maximize the effect, we are look-
ing after we consider an FSO moving at a high speed, v = 1000km/s, relative to
the star. For an encounter with an impact parameter b, the “collision time”, i.e.
the time during which the gravitational force is most effective, is tcoll ∼ b/v. For
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an encounter with b = 5r� and v = 1000km/s, one gets tcoll ∼ 1 h. The period of
oscillations associated with Eq. (2) for a ST star is tosc = 2π/ω0 ∼ 3 h. Hence, we
expect a resonating response of oscillations in this system for impact parameters in
the range of a few times rs.

The stellar oscillations can be disentangled into a mixture of transverse and lon-
gitudinal oscillations, as displayed in Fig. 1. For collisions with impact parameters
equal to 5rs and larger and for velocities v ∼ 1000km/s, the orbital eccentricity is
large for ST stars, and the hyperbolic orbits become nearly straight lines. There-
fore, we can safely consider transverse (t) and longitudinal (l) oscillations as being
those transverse and along the asymptotic velocity, respectively. The equations of
motion for small forced harmonic oscillations can be derived from Eq. (1) in terms
of the inertia and stiffness parameters of Eqs. (2) and (3), yielding

fi(t) = ẍi(t) + βẋi(t) + ω2
0xi(t), i = t, l, (4)

along the two directions, where fi(t) is the driving tidal force per unit mass, and β =
Aγω0. For a straight line trajectory (R2 = b2 + v2t2) with no coupling among the
orthogonal oscillations, this problem is solvable in analytical form. For hyperbolic
trajectories with large eccentricities, our simulations show that accurate results can
be obtained replacing the impact parameter b by b′ = a in the analytical solutions
below, with a equal to the distance of closest approach at the periapsis.

The solution of Eq. (4) is expressed in terms of the Fourier transform xi(t) =
(2π)−1/2

∫
x̃i(ω) exp(iωt)dω. For a straight line trajectory with effective impact

parameter a, the amplitudes x̃i(ω) are given by

x̃t(ω) =
(

8
π

)1/2 GM
av

ξK1(ξ)
[(ω2

0 − ω2)2 + 4β2ω2]1/2
, (5)

where K1 is the first order modified Bessel function, and

x̃l(ω) = i

(
8
π

)1/2 GM
av

ξK0(ξ)
[(ω2

0 − ω2)2 + 4β2ω2]1/2
, (6)

with K0 the corresponding zeroth order modified Bessel function. The “adiabacity”
parameter ξ = ωa/v measures the degree to which the star responds adiabatically
to the driving tidal force. The function ξK1(ξ) is nearly constant (K1 ∼ 1/ξ) for
ξ < 1, and decays exponentially K1 ∼ exp(−ξ) for ξ > 1. Hence, oscillation modes
with frequencies up to ω ∼ v/a will be preferred and those with larger frequencies
will be suppressed exponentially.

3. Results and Discussion

In Fig. 2, we plot the amplitudes |x̃i(ω)|2 (multiplied by 10−22 m2s2) as a function of
frequency, for longitudinal (dashed line) and transverse (solid line) oscillations. We
used M = 2m�, b = 5r�, v = 1000 km/s, ms = m�, rs = r�, and Aγ = 0.1. Radii
and masses are taken in units of the solar mass, m�, and radius, r�, respectively. We
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Fig. 2. (Color online) The amplitudes |x̃i(ω)|2 multiplied by 10−22 (m2s2 units) as a function
of the ratio of the frequency ω and the natural oscillation frequency ω0, for longitudinal (dashed
line) and transverse (solid line) oscillations.

observe a remarkable resonant condition for these choice of parameters. As expected,
the resonance peak decreases as the stellar viscosity increases (increasing Aγ). The
resonance peak also decreases with the stellar radius because the star gets softer as
the radius decreases, if its mass is kept constant. In this case the natural oscillation
frequency ω0 becomes large and the resonance matching condition b/v ∼ 1/ω0 does
not take place, except for very high FSO velocities, beyond reasonable expectations
from present observations. Keeping the same parameters above but varying rs, we
conclude that for white dwarfs (WD) (rs ∼ r�/102) and NS (rs ∼ r�/105) the
natural oscillation frequency is too high to match the resonant condition.

Note that the collision mechanism discussed here is different than the stellar
tidal disruption or breakup in a head-on collision binary coalescence of either a BH
or a NS with another NS,6 or those induced in mergers in binary systems.31–34 A
distant encounter with a FSO (unless its mass is very large) is unable to yield a tidal
disruption of either a WD or a NS, unless maybe for very small impact parameters
(see below and also Ref. 16).

In Fig. 3, we show the time-dependent oscillation displacements from equilib-
rium in units of the stellar radius with the same parameters used in Fig. 2. At
the periapsis the oscillation amplitudes can reach 10% of the star radius. This is
a large amplitude oscillation, unprecedented by any known observation. Evidently,
for large amplitudes one expects a nonlinear behavior of the oscillations, requiring
a more sophisticated model than adopted here. The stellar oscillations start well
before the FSO reaches the periapsis (t = 0) and are largest at t = 0. The results
displayed in Fig. 3 are close to resonance. An even larger effect would be obtained
for a grazing impact parameter, when the stars nearly touch each other at the peri-
apsis. As expected, induced longitudinal oscillations are smaller than transverse
ones, but not by much. The difference between oscillations along the two directions
increases for conditions off the resonance region. By increasing the star radius by
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Fig. 3. (Color online) Oscillation amplitudes in units of the stellar radius as a function of time.
The same parameters were used as in Fig. 2.

a factor of 10, resonance conditions can be achieved even for a distant collision,
b = 100rs and larger.

The energy transferred to the stellar oscillations can be obtained from ∆E =∑
j=l,t

∫ ∞
−∞ Fj(t)ẋj(t) or ∆E = −2Re

∑
j

∫ ∞
0

iωx̃j(ω)F̃ ∗
j (ω)dω. The momentum

transferred to the recoil, or center of mass motion, of the star is approximately
given by ∆pcm = 2GMms/bv and the recoil energy by ∆Ecm = (∆p)2cm/2ms. For
an encounter with M = 2m�, b = 5r�, v = 1000km/s, ms = m�, rs = r�, we get
∆Ecm = 5.5× 1046 ergs, e.g. 0.3% of the FSO bombarding energy is transferred to
recoil. A much smaller energy is transferred to tidal oscillations. Using Aγ = 0.1,
one obtains 0.49 × 1041 ergs and 1.6 × 1041 ergs transferred to longitudinal and
transverse stellar oscillations, respectively. This is larger than energies emitted in
X-ray bursts from accretion in binary systems. However, this energy is transferred
to the star (and possibly released in form of radiation) in a much larger time scale:
A few hours instead of seconds as in X-ray bursts. Only a fraction of 2.8× 10−6 of
the recoil energy goes into internal excitation of the star. But assuming this star
radiates all this energy in form of light with the sun’s luminosity (3.9× 1026 W), it
would be enough for 1.3 years of steady solar luminosity. An appreciable amount
of this energy may be emitted in long wavelength radiation of long duration, i.e.
within few hours. The characteristics of this radiation depend on many intrinsic
stellar properties.

Figure 4 shows the energy in ergs transferred to longitudinal (dashed line) and
transverse (solid line) oscillations in a solar mass star as a function of the impact
parameter in units of the star radius. We use the same parameters for M , rs, ms

and Aγ as in Fig. 2. The thin lines show the results obtained with exact hyperbolic
trajectories. Only for small impact parameters there is a visible deviation from the
results using straight-line trajectories with recoil correction. The inset shows that
the ratio between the two energies increases in the same impact parameter range.
For large b the longitudinal contribution becomes as relevant as the transverse one.

The resonant conditions for induced oscillations by a FSO are ideal for ST stars.
But it is worthwhile to investigate what happens in the case of an NS or a WD.
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Fig. 4. (Color online) Energy, in ergs, transferred to oscillations in a solar-type star along (l:
longitudinal) and perpendicular (t: transverse) the direction of incidence of a fast stellar object
as a function of the impact parameter and in units of the star radius. The thin lines represent
calculations obtained with parametrized hyperbolic trajectories. The inset shows the ratio between
the two transferred energies as a function of the same impact parameter measure.

Table 1. The longitudinal and transverse energy transferred to a NS, WD and a
solar-type (ST) star, all with masses ms = 1.4m�, due to a collision with a fast
stellar object with mass M = 2m� passing by an impact parameter b = 5r�. The
first column lists the assumed radius for the star. The last column gives the maximum
tidal displacement in units of the assumed stellar radius.

rs (km) ∆El (ergs) ∆Et (ergs) xmax/rs

10 (NS) 1.09 × 102 2.09 × 102 0.986 × 10−22

7 × 103 (WD) 1.76 × 1032 1.88 × 1032 1.07 × 10−5

7 × 105 (ST) 0.324 × 1042 0.608 × 1042 0.128

In Table 1, we show the longitudinal and transverse energy transferred to a NS,
WD and a ST star, all with masses ms = 1.4m�, due to a collision with a fast
stellar object with mass M = 2m� passing by an impact parameter b = 5r�.
The first column lists the assumed radius for the star. The last column gives the
maximum tidal displacement in units of the assumed stellar radius. One observes a
dramatic change in the energy transfer due to the smaller star size in contrast to a
ST star. For NS the energy transfer is negligible. The larger stiffness of a compact
star corresponds to a large natural frequency, thus quenching the aforementioned
resonant condition.

The results in Table 1 are for b = 5r�. But compact stars also allow closer
encounters if the FSO is a WD, a NS, or a BH. Table 2 shows the same as in
Table 1, but for closer encounters of the FSO with a WD and a NS. The collision
impact parameter b is measured in units of 5 times the WD (rows 2 and 3) radius,
or 5 times the NS radius (row 4). In these cases, the trajectories are significantly
modified by the gravitational attraction and we solve Eq. (1) parametrized by a
hyperbolic trajectory. A close encounter of a FSO and a NS might require the
solution of general relativity equations for the trajectory, which we do not consider.
Our results show that the energy emitted over a few hours is well below those of
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Table 2. Same as in Table 1, but for closer encounters of the FSO with an WD

and a NS. The collision impact parameter b is measured in units of 5 times the
WD (rows 2 and 3) radius, or 5 times the NS radius (row 4).

b rs (km) ∆El (ergs) ∆Et (ergs) xmax/rs

5rWD 10 (NS) 4.56 × 1027 1.92 × 1028 4.17 × 10−6

5rWD 7 × 103 (WD) 1.75 × 1043 3.28 × 1043 0.101
5rNS 10 (NS) 1.19 × 1046 2.27 × 1046 0.102

known cosmic cataclysmic events, such as gamma-ray bursts,33 but not worthless
more investigation.

In the case of NS–NS collisions, our calculated energy transfer is ∼ 1046 ergs at
b = 5rNS . Note that we do not explore the equation of state of nuclear matter,
relying solely on the physics of an incompressible fluid. According to Ref. 34, this
energy would induce high frequency seismic oscillations in the NS which can couple
to the magnetic field and spark a particle fireball burst. For solar-like stars and
WDs, a close encounter with an ultrafast and ultramassive FSO can lead to stellar
fission, similar to those occurring in a stretched water droplet. Although rare, such
phenomena would be amenable to observation.
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