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Abstract. We discuss recent developments in indirect methods used in nuclear astrophysics to
determine the capture cross sections and subsequent rates of various stellar burning processes,
when it is difficult to perform the corresponding direct measurements. We discuss in brief,
the basic concepts of Asymptotic Normalization Coefficients, the Trojan Horse Method, the
Coulomb Dissociation Method, (d,p), and charge-exchange reactions.

1. Introduction
In astrophysics there is a plethora of interesting questions related to the evolution of the Universe,
of processes responsible for energy generation in stars and how the nuclei that are observed
on Earth are formed. Particularly, one is concerned with various processes in the pp-chain,
CNO-cycle, r-process, s-process, etc., through which elements are created in the Universe. The
knowledge of cross sections of some specific nuclear reactions such as capture reactions (p, γ),
(n, γ), (α, γ) give important information about these processes.

Although direct experiment are preferable, in a large number of cases they are difficult to
carry out. This is mainly due to the following reasons:

(i) Experiments have to be performed at stellar energies which are usually very small (of the
order of tens or hundreds of keV/u). The cross sections for the reactions involving charged
particles are very small (nano barns or pico barns). Often, even after long hours of data
collection only a few events are obtained. Background and stability problems have to be
taken care of [1]. Direct measurements at low energies can also be affected by electron
screening, requiring a difficult and uncertain treatment. An alternative way is to perform
experiments at higher energies (few MeV/u) and then extrapolate the results down to the
desired energies. But this procedure also involves considerable uncertainties.

(ii) Many of the stellar reactions involve unstable nuclei with very short life time.
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2. Indirect methods
To mitigate these problems, alternate indirect methods (a combination of experimental and
theoretical analysis) are currently being used where equivalent information can be extracted by
performing reactions at much higher beam energies. The indirect methods depend upon the
type of reaction involved. Of these, three indirect methods stand out in present day nuclear
astrophysics: (a) Asymptotic Normalization Coefficient method, (b) Trojan horse method and
(c) Coulomb dissociation method. See, e.g., the review articles [2, 3].

2.1. Asymptotic Normalization Coefficient
The Asymptotic Normalization Coefficient (ANC) method is based on the normalization of the
tail of the quantum overlap of bound state wave functions of the initial and final nuclei [2, 4].
Capture reactions in stellar environments take place either by direct capture or by resonant
capture. Direct capture reactions of charged particles usually involve systems with small binding
energies and they are mostly peripheral at stellar energies. On the other hand, neutron capture
reactions may contain contributions from the nuclear interior and are very sensitive to the
spectroscopic factor (SF) of the final state [5]. The presence of the Coulomb barrier for charged
particle capture causes the reaction to be peripheral. Classically, if the incident particle energy
is below the barrier then no capture will occur, however quantum mechanical ‘tunneling’ gives
a probability of barrier penetration. Therefore, the capture in such case proceeds through the
tail of the nuclear overlap of the initial and final bound state wave functions whose shape is
completely determined by the Coulomb force and the amplitude of the tail is given by the ANC.
Although the ANC method has been mostly used for charged particle direct capture reactions,
it can also be used for neutron capture (n, γ) reactions, as explained in Ref. [5]. One can extract
the ANC from differential cross section data of peripheral particle transfer reactions having the
same vertex or from the one-nucleon breakup reaction of loosely bound nuclei.

Consider the virtual decay process B → A + a. If φB(ζa, ζA; r), φa(ζa) and φA(ζA) are the
bound state wave functions for respective nuclei with ζ’s being the internal coordinates, then
the overlap function is given by IBAa(r) = 〈φA(ζA)φa(ζa)|φB(ζa, ζA; r)〉 . In the asymptotic limit
(when the nuclear forces are vanishingly small), the radial part IBAa(r) of the overlap function
can be expressed in terms of Whittaker function (Wa,b),

IBAa(r) = CB
Aa�BjB

W−η,�B+1/2(2kr)

r
; r > RN , (1)

where RN is the nuclear interaction radius of A and a, C is the ANC. It defines the amplitude
of the tail of the radial overlap integral and it depends upon the structure of nucleus B. k and
η are the wave number and the Coulomb parameter for the bound state (Aa), respectively. �B
and jB are the orbital and total angular momentum of B.

The above formalism of ANC is based on the overlap integral and is also called Schrödinger
formalism as it involves wave functions and potentials. However, there is another way to
incorporate ANC in the theory of direct reactions. This formalism is based on general scattering
theory and it is valid both in non-relativistic quantum mechanics as well as in field theory. Here,
the ANC can be used to find the residues at the poles (for bound or resonance states) of the
S-matrix for elastic scattering of the a+A system. For more details about this method, see Ref.
[2]. The cross section for the direct radiative capture reaction A+ a → B + γ can be written as

σ(Ea) = KF
∣∣∣
〈
IBAa(r)

∣∣∣Ô(EL)
∣∣∣χ(+)

i (r)
〉∣∣∣2 , (2)

where KF is a kinematic factor, χ
(+)
i is the scattering wave function in the initial channel and

Ô(EL) is the electromagnetic transition operator connecting the initial and final channel and it
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does not involve the structure of the core A. In the asymptotic limits the capture cross section
[Eq. (2)] can be written as

σ(Ea) = KF
∣∣∣
〈
CB
Aa�BjB

W−η,�B+1/2(2kr)/r
∣∣∣Ô(EL)

∣∣∣χ(+)(r)
〉∣∣∣2 = (CB

Aa�BjB
)2w(Ea), (3)

where w(Ea) is a function independent over the bound state structure of B. Thus, the direct
capture cross section completely depends upon the ANC. By determining the ANC from some
other direct reaction experiment (e.g., from elastic scattering), one can calculate the capture
cross section at stellar energies. However, one should keep in mind the necessary conditions that
the reaction chosen for extracting the ANC should have the same vertex and also that it should
be peripheral in nature. The common choices are (i) a transfer reaction between the heavy ions,
having one of the vertices kept the same as the vertex for the desired direct capture reaction
and (ii) a breakup reaction of loosely bound nuclei.

Figure 1. (a) The reaction vertex in the radiative capture reaction A(a, γ)B and (b) the
reaction vertices in the transfer reaction A(x, y)B.

ANC from transfer reactions. Consider the transfer reaction A(x, y)B, with x = y + a and
B = A + a. Figure 1 shows the vertex (vertices) for the direct radiative capture (transfer)
reaction. The distorted-wave Born approximation (DWBA) is used to analyze such type of
peripheral transfer reactions. The DWBA cross section (σDW ) for the transfer reaction can be
related with the measured angular distribution of the nuclei by means of the relation

dσ

dΩ
= (SB

Aa�BjB
)(Sx

ya�xjx)σ
DW
�BjB�xjx , (4)

where Si, �i and ji (i = B and x) are the SF, and the orbital and total angular momentum of
the respective nuclei. These SF’s are related to the corresponding ANC’s of the overlap function
by

(CB
Aa�BjB

)2 = (SB
Aa�BjB

)(bBAa�BjB
)2; (Cx

ya�xjx)
2 = (Sx

ya�xjx)(b
x
ya�xjx)

2,

where b’s are the single particle ANC’s of the particle a in the nuclei x and B whereas, Cx and
CB are the ANC’s of the initial and final nuclei. Therefore, Eq. (4) can be written in terms of
ANC’s as

dσ

dΩ
= (CB

Aa�BjB
)2(Cx

ya�xjx)
2

σDW
�BjB�xjx

b2AajB�B
b2ya�xjx

. (5)

When more than one orbital participate, a summation over all the orbitals is required. For
peripheral reactions, the ratio in Eq. (5) is independent of the single particle ANC’s (b’s in the
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denominator), which also gives a criterion for peripheral reactions. Therefore, by comparing
the DWBA cross section with the experimental result one can extract the spectroscopic factor
and hence the ANC (CB

Aa�BjB
) for the vertex of interest (A + a → B), provided that the

information about the other vertex (x → y + a) (i.e. Cx
ya�xjx

) is already known from other
independent measurements. This method has been tested in several direct capture reactions to
obtain astrophysical S-factors [6].
ANC from the single nucleon removal reactions. It is a well known fact that loosely
bound nuclei have one or two nucleon(s) well detached from core nucleons and that they can
be easily removed in the nuclear field of a target. Such reactions are usually peripheral even
at energies of few hundred MeV/nucleon and they are dominated by the asymptotic tail of the
removed nucleon wave function. From the measurement of momentum distributions of the core,
one can extract the spectroscopic information about the relative orbital angular momentum of
the fragments and contribution of the different single particle states [7]. From the measured one-
nucleon removal cross section one can also extract the ANC for the capture process of interest
[8]. The one-nucleon removal cross section (σ) for the reaction B → A + a can be written as
σ = (CB

Aa�j)
2σsp/(b

B
Aa�j)

2, where σsp is the calculated single particle removal cross section. One
has to take the sum over all the orbitals contributing to the total cross section. The advantage
of this technique is that the one-nucleon removal cross sections are usually large even at high
energies and therefore a beam of lesser quality can be used.

2.2. Trojan Horse method
This is an another indirect method, where the cross section of a suitable two-body to three-body
reaction (A+x → c+B+y) is used to extract the cross section for a relevant two-body reaction
(A + a → c + B) at stellar energies. This specific type of reaction (two-body to three-body) is
called Trojan Horse (TH) reaction and hence the method is known as the Trojan Horse Method
(THM) [10]. A TH reaction is chosen in such a way that nucleus x contains a in its cluster
structure (x = y+ a) and this cluster a interacts with A, whereas the other cluster y remains as
a spectator. For this to happen, one has to keep Quasi-Free (QF) kinematical conditions for the
clusters y and a, which is based on the consideration that the relative momentum between these
clusters in the three-body phase space should be zero or small compared to the wave number
of bound state (ay) [9]. In that case the interaction between y and a would be small and hence
they will stay at maximal distance from each other. In the above reaction if c stands for γ then
it represents a radiative capture reaction. In fact, this method is very flexible and can be used
to study many other type of reactions and is not only limited to the radiative processes, such as
the Coulomb dissociation and the ANC method. While performing an experiment with a TH
reaction, one has to pay attention to all the other possible reactions which can be triggered and
that can act as background with respect to the desired reaction event.

As mentioned earlier, the direct measurement of a capture cross section for the binary process
A+a → c+B at stellar energies is difficult because one has to take into consideration the electron
screening effect and the extrapolation to low energies is not reliable because of unexpected
resonances [3]. However, one can use the THM to obtain cross sections down to the relevant
ultra-low stellar energies. This is because the TH reaction between x and A takes place at
energies above the Coulomb barrier so that A can dig into x and there is no possibility of
additional an Coulomb barrier between A and a. Here, a acts as a virtual particle and hence
does not obey the energy-momentum relations for a free particle. Therefore, the cross sections
of the binary sub-process extracted from the TH processes do not contain the related Coulomb
barrier and are free from electron screening. Consequently, with this method one can determine
the astrophysical S-factor S(E) of the binary process A(a, c)B at low relative kinetic energies of
the particles a and A without being affected by electron screening. In addition, comparing the
direct capture cross section with those obtained from the THM, one can determine the screening
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Figure 2. Trojan horse reaction, with three particles in the final state

potential.
As explained in Ref. [12], in spite of the high energy (EA) of a projectile A (above the

Coulomb barrier of A + x), the binary reaction A + a still takes place at low relative energies
EAa because of the QF condition. Figure 2 describes the mechanism for the THM. If εay is the
binding energy of intercluster a− y in nucleus x then the relative energy of A− a is given by

EAa =
p2Aa

2μAa
−

p2ay
2μay

− εay, (6)

where p’s and μ’s are the relative momenta and reduced masses of the respective pair. With the
QF kinematics, pay = 0, and also considering target x at rest (i.e. momentum Px = 0) in the
lab system, the relative energy EAa from Eq (6) is

EAa =
ma

ma +mA
EA − εay, (7)

with m’s being the masses of respective nuclei. Thus, it is clear that due to the presence of
the factor ma/(ma +mA) and the binding energy −εay, the relative energy EAa for the binary
reaction remains very small and even negative in spite of high EA.

As mentioned earlier, in the QF kinematics, there is negligible interaction of the spectator y
with B and c and hence in the final three-body state only the scattering of two fragments c and
B is important. Therefore, the plane-wave-impulse approximation (PWIA) is used to analyze
the experimental results in the THM. In this approximation, the three-body triple differential
cross section for the TH reaction is factorized as [12, 13]

d3σ

dEcdΩcdΩB
= KF |φx(kay)|

2
(dσHOES

dΩc.m.

)
, (8)

where

(i) KF is the kinematical factor which contains the final state phase space factor in terms of
masses, angles and momenta of outgoing particles (see Ref. [12]).

(ii) φx(kay) is the Fourier transform of the bound state wave function of x which describes the
momentum distribution of x at the final momentum of a − y intercluster. For a nucleus
x having ground state angular momentum � = 0, the application of this method is much
simpler as the Fourier transform of the ground state wave function peaks at zero momentum
and is well known. This helps in determining the QF scattering angles. On the other hand,
for high-� nuclei, the momentum distribution becomes much broader and hence the internal
separation of the fragments a− y will be small and y can no longer be treated as spectator.
Therefore, high-� (> 0) nuclei are less suitable for THM (see Ref. [9]).
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(iii) dσHOES/dΩ is the half-off-energy-shell (HOES) differential cross section for the two body
reaction A + a → B + c at relative kinetic energy EQF of the A − a system, such that
EQF = EcB −Q. Here, EcB is the kinetic energy of the relative motion of c and B and Q
is the Q-value of the binary reaction.

It is clear from Eq. (8) that after calculating the factors KF and |φx(kay)|
2, the HOES binary

cross section can be obtained from the measured triple differential cross section of the TH
reaction as

dσHOES

dΩc.m.
∝

d3σ

dEcdΩcdΩB

1

KF |φx(kay)|2
. (9)

This binary HOES cross section is then used to extract the quantity of interest, namely, the
on-energy-shell cross section by normalization to the direct data available at higher energies.
The THM has been used in many theoretical and experimental studies of capture reactions with
success. Although, initially it has been used for charged particle capture reactions, now it has
also been extended to study direct neutron and resonant capture reactions.

2.3. Coulomb dissociation method
The Coulomb dissociation/breakup method (CD) is an another indirect method proposed by
Baur et al [14]. As Coulomb induced dissociation is an inverse to the radiative capture process,
one can relate the measured Coulomb dissociation cross section (which can be measured at high
beam energies and are larger in magnitude) to the relevant radiative capture cross section of
astrophysical interest. In this method the composite projectile a consisting of two sub-structures
b and c, is broken up in the Coulomb field (or electromagnetic field) of a heavy target nucleus
T (see Fig. 3), a+ T → b+ c+ T, where b is the core nucleus and c is a valence nucleon which
can be charged or uncharged. The advantage of the CD method is that the measurements are
performed at even higher beam energies and the cross sections are considerably larger as the
energy increases. Also at sufficiently high incident velocities the fragments b and c emerge with
high energies which in turn facilitates their detection. With adequate kinematical conditions in
coincidence measurements the study of low relative energies of the final state fragments is still
possible [14]. However, for the viability of the method one has to be ensure that the nuclear
breakup effect should be negligible or should be known accurately. For a pure Coulomb breakup,
a large impact parameter or small scattering angle is often required. Furthermore, the breakup
process is considered to be elastic, so that there will be no excitations in the target, although
this condition can be relaxed if the energy transferred to the excitation is small compared to
the bombarding energy, what is usually the experimental choice.

Figure 3. Coulomb breakup of nucleus a in the electromagnetic field of heavy target T .
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The Coulomb breakup process [Eq. (2.3)], is then related to the photodisintegration reaction
a+ γ → b+ c, where one calculate the photodisintegration cross sections (σπλ

γ,n) as

dσ

dErel
=

1

Eγ

∑
πλ

σπλ
γ,n nπλ, (10)

where dσ/dErel is the relative energy spectra in the Coulomb breakup at relative energy Erel of
b−c system, π stands for either electric or magnetic transition of multipolarity λ, Eγ = Erel+Q
is the photon energy with Q as the Q-value of the reaction and nπλ is the equivalent photon
number (also called virtual photon number) and depends on the a − t system (see Ref. [15]).
Similar to Eq. (10) the angular differential cross section of the Coulomb breakup can also be
related to photo disintegration cross section as

dσ

dΩ
=

1

Eγ

∑
πλ

σπλ
γ,n

dnπλ
dΩ

, (11)

Ω being the scattering solid angle.
It has been found that relativistic effects, higher order and higher multipole’s contribution

can influence the reaction process [16, 17] and hence make it difficult to use Eqs. (10)-(11). One
has to take these effects into account while using the CD method. When a single multipolarity
of either type (electric or magnetic) dominates, the above equations can be easily used to find
the photodisintegration cross section for the dominating multipolarity (λ). Using the ‘principle
of detailed balance’ the capture cross section (σn,γ) for the desired capture process b+c → a+γ,
can be obtained from σπλ

γ,n as

σn,γ =
2(2ja + 1)

(2jb + 1)(2jc + 1)

k2γ
k2bc

σπλ
γ,n, (12)

where ja, jb and jc are the spins of particles a, b and c, respectively. kγ and kbc are the wave
numbers of the photon and that of relative motion between b and c, respectively. As a word of
caution, the principle of detailed balance cannot be used for the situations where capture leads
to the bound excited states having unknown branching ratios of γ-ray emission [18].

The CD method has been used to determine the capture cross sections for numerous radiative
capture stellar processes using both experimental and advanced theoretical studies (see Ref. [2]).
In fact, there are different theoretical models used to study the Coulomb dissociation. In Refs.
[19, 20, 21], a pure quantum mechanical model [23] using the post-form DWBA is used to
calculate the radiative neutron capture cross section on 8Li, 14C and 15N from the Coulomb
breakup of 9Li, 15C and 16N, respectively. For 15N(n, γ)16N, there are large contributions
from the capture to the low-lying bound excited states of 16N. It is pointed out in Ref. [22]
that although theoretically such a study is possible, experimentally it is difficult as it requires
additional information on the γ-ray branching ratios for the excited states, similar to what was
done in Ref. [24]. Recently, in Refs. [25, 26], the theory of Coulomb dissociation [23] (for
neutron exotic nuclei) has been extended to include the projectile deformation. This further
opens the door to study the affect of deformation on the neutron capture cross sections and
subsequent rates for medium mass nuclei.

3. (d,p) and charge-exchange reactions
In surrogate reactions such as (d,p) reactions, the neutron is brought to react with a nucleus
inside a Trojan, or surrogate nucleus (here, the deuteron). Such reactions are thought to give
information on neutron-induced reactions, often not available in direct measurements. The
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neutron inside the deuteron has angular momentum and other quantum numbers that are not
equal to those of free neutrons at the same energy. If angular momentum is not relevant in the
reaction of interest (a rare situation), the desired neutron-induced reaction can be extracted
from the surrogate equivalent. (d,p) reactions are not as simple as one might initially think
because they involve at least three particles in the incoming and outgoing channels. Assuming
it can be treated as a three-body reaction, one may use the Alt-Grassberger-Sandhas (AGS) [27]
formalism to describe the reaction. The AGS equations are a branch of the Faddeev formalism
to treat the (a + b) + A system, and its rearrangements a + (b + A) and b + (a + A). The
three-particle scattering in each channel is obtained from the transition operators Tβα, where
α(β) corresponds to channel permutation combinations. They are the set of coupled integral
equations

Tβα(z) = δ̃αβG
−1
0 (z) +

3∑
ν=1

δ̃βνtν(z)G0(z)Tνα(z) , (13)

where δ̃βν = 1−δβν is the anti-delta-Kronecker symbol, and G0 = (E+iε+−H0)
−1 for the three-

free particle c.m. energy E and Hamiltonian H0. The two-body transition operator tν for each
interacting pair with inter-potential vν is determined from the Lippmann-Schwinger equation
tν = vν + vνG0tν . Additional approximations are often necessary and the correct treatment of
the Coulomb interaction poses a major difficulty to solve the AGS set of equations [28]. One can
treat the Coulomb interaction with help of screened Coulomb potentials, but this method works
only for light nuclei since wild oscillations in the asymptotic region jeopardizes the accuracy of
the solutions [29].

In charge-exchange reactions, such as (p,n) reactions, one seeks information on Gamow-
Teller matrix elements which cannot be studied in β-decay experiments. The method is useful
to obtain cross sections for inelastic neutrino scattering and electron capture reaction rates in
stars. Not only (p,n), but (3He,t) and other charge exchange reactions at energies around 100
MeV/nucleon have been used [30]. Experimentally, one often uses simplified theories in the
experimental analysis, e.g., the cross section σ(p, n) at small momentum transfer q is assumed
to be [31],

dσ

dq
(q = 0) = KF.ND|Jστ |

2B(α), (14)

where KF (N) is a kinematical (distortion) factor, approximately describing initial and
final state interactions, Jστ is the Fourier transform of the charge-exchange interaction,
and B(α = F,GT ) is the reduced transition probability for non-spin-flip, B(F ) = (2Ji +

1)−1|〈f ||
∑

k τ
(±)
k ||i〉|2, and spin-flip, B(GT ) = (2Ji + 1)−1|〈f ||

∑
k σkτ

(±)
k ||i〉|2, transitions. The

simplified approach based on Eq. (14) has been criticized in other theoretical treatments [32]
and is currently under further theoretical study [33].

Acknowledgments
C.A.B. and A.M.M. acknowledge funding support by the NSF, PHY-1415656, and by DOE, DE-

FG02-08ER41533, DE-FG02-93ER40773 and DE-SC0004958. A.S.K. acknowledges the support by the

Australian Research Council. A.K. acknowledges funding support from Hungarian Scientific Research

Fund OTKA K112962 and D.Y.P. acknowledges support of the National Natural Science Foundation of

China (Grants 11275018 and 11035001) and the Chinese Scholarship Council (Grant 201303070253).

References
[1] Aliotta M, Junker M, Prati P, and Strieder F 2016 Helium burning and neutron sources in the stars European

Physical Journal - Topical Issue - to be published.
[2] Tribble R E, Bertulani C A, La Cognata M, Mukhamedzhanov A M and Spitaleri C 2014 Indirect techniques

in nuclear astrophysics: a review Rep. Prog. Phys. 77 106901-1-49.

8th European Summer School on Experimental Nuclear Astrophysics (Santa Tecla School) IOP Publishing
Journal of Physics: Conference Series 703 (2016) 012007 doi:10.1088/1742-6596/703/1/012007

8



[3] Bertulani C A and Gade A 2010 Nuclear astrophysics with radioactive beams Physics Reports 485 195.
[4] Xu H M, Gagliardi C A, Tribble R E, Mukhamedzhanov A M and Timofeyuk N K 1994 Overall Normalization

of the Astrophysical S Factor and the Nuclear Vertex Constant for 7Be(p, γ)8B Reactions Phys. Rev. Lett.
73, 2027-2030.

[5] Mukhamedzhanov A M, Nunes F M and Mohr P 2008 Benchmark on neutron capture extracted from (d,p)
reactions, Phys. Rev. C 77 051601- 1-5 (R).

[6] Mukhamedzhanov A M and Pang D Y 2015 Asymptotic normalization coefficients and radiative widths Phys.
Rev. C 92 014625.

[7] Bertulani C A and Hansen P G 2004 Momentum distributions in stripping reactions of radioactive projectiles
at intermediate energies Phys. Rev. C 70 034609.

[8] Trache L, Carstoiu , Mukhamedzhanov A M and Tribble R E 2002 Determination of the S18 astrophysical
factor for 8B(p, γ)9C from the breakup of 9C at intermediate energies Phys. Rev. C 66 035801-1-10.

[9] Spitaleri C et al. 2000 The α−12C scattering studied via the Trojan-Horse method Eur. Phys. J. A 7 181-187.
[10] Baur G 1986 Breakup reactions as an indirect method to investigate low-energy charged-particle reactions

relevant for nuclear astrophysics Phys. Lett. B 178 135-138.
[11] Typel S and Baur G 2003 Theory of the Trojan-Horse method Ann. Phys. 305 228-265.
[12] Tumino A et al. 2013 New advances in the Trojan Horse Method as an indirect approach to nuclear

astrophysics, Few-Body Syst. 54 745-753.
[13] Pizzone R G et al. 2014 Trojan horse particle invariance: An extensive study Few-Body Syst. 55 1001-1004.
[14] Baur G, Bertulani C A and Rebel H 1986 Coulomb dissociation as a source of information on radiative

capture processes of astrophysical interest Nucl. Phys. A 458 188-204.
[15] Bertulani C A, Baur G 1988 Electromagnetic processes in relativistic heavy ion collisions Phys. Rep. 163,

299-408.
[16] Bertulani C A 2005 Relativistic continuum-continuum coupling in the dissociation of Halo Nuclei Phys. Rev.

Lett. 94 072701-1-4.
[17] Bertulani C A 1996 7Be(p, γ)8B cross section from indirect breakup experiments Z. Phys. A 356 293-297.
[18] Motobayashi T 1998 Coulomb dissociation of unstable nuclei - simulation for radiative captures of

astrophysical interest Nucl. Phys. A 630 328-339.
[19] Banerjee P, Chatterjee R, Shyam R 2008 Coulomb dissociation of 9Li and the rate of the 8Li(n, γ)9Li reaction

Phys. Rev. C 78 035804-1-6.
[20] Shubhchintak, Neelam and Chatterjee R 2014 Capture cross section and rate of the 14C(n, γ)15C reaction

from the Coulomb dissociation of 15C Pramana J. Phys. 83 533-543.
[21] Neelam, Shubhchintak and Chatterjee R 2015 Structure effects in the 15N(n, γ)16N radiative capture reaction

from the Coulomb dissociation of 16N Phys. Rev. C 92 044615-1-7.
[22] P. Mohr 2015 Comment on “Structure effects in the 15N(n, γ)16N radiative capture reaction from the Coulomb

dissociation of 16N” Phys. Rev. C (under review).
[23] Chatterjee R, Banerjee P, Shyam R 2000 Projectile structure effects in the Coulomb breakup of one-neutron

halo nuclei Nucl. Phys. A 675 477-502.
[24] Izsák R et al. 2013 Determining the 7Li(n, γ) cross section via Coulomb dissociation of 8Li Phys. Rev. C 88

065808-1-8.
[25] Shubhchintak and Chatterjee R 2014 Deformation effects in the Coulomb breakup of 31Ne Nucl. Phys. A

922 99-111.
[26] Shubhchintak, Neelam, Chatterjee R, Shyam R and Tsushima K 2015 Coulomb breakup of 37Mg and its

ground state structure Nucl. Phys. A 939 101-120.
[27] Grassberger P and Sandhas W 1967 Systematical treatment of the non-relativistic n-particle scattering

problem Nucl. Phys. B 2 181; Alt E O, Grassberger P, and Sandhas W 1970 Phys. Rev. C 1 85.
[28] Mukhamedzhanov A M, Pang D Y, Bertulani C A, and Kadyrov A S 2014 Surface-integral formalism of

deuteron stripping Phys. Rev. C 90 034604.
[29] Deltuva A and Fonseca A C 2009 Three-body Faddeev-Alt-Grassberger-Sandhas approach to direct nuclear

reactions Phys. Rev. C 79 014606.
[30] Sasano M et. al. 2012 Extraction of Gamow-Teller strength distributions from 56Ni and 55Co via the (p,n)

reaction in inverse kinematics Phys. Rev. C 86 015809.
[31] Taddeucci T N, et al. 1987 Energy dependence of the ratio of isovector effective interaction strengths from

0◦ (p,n) cross sections Nucl. Phys. A 469 125.
[32] Bertulani C A 1993 Charge-exchange reactions in righ-energy heavy ion collisions, Nucl. Phys. A 554 493;

Bertulani C A and Lotti P 1997 Phys. Lett. B 402 237; Bertulani C A and Dolci D 2000 Nucl. Phys. A

674 527.
[33] Bertulani C A, Pang D Y, and Tanihata I 2016 work in progress.

8th European Summer School on Experimental Nuclear Astrophysics (Santa Tecla School) IOP Publishing
Journal of Physics: Conference Series 703 (2016) 012007 doi:10.1088/1742-6596/703/1/012007

9




