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TOPICAL REVIEW

Multiphonon giant resonances
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Abstract. A new class of giant resonances in nuclei is discussed, i.e. giant resonances built
on other giant resonances. These resonances are observed with very large cross sections in
relativistic heavy ion collisions. A great experimental and theoretical effort is underway to
understand the reaction mechanism which leads to the excitation of these states in nuclei, as
well as the better microscopic understanding of their properties, for example, strength, energy
centroids, widths and anharmonicities.

1. Giant Resonances

1.1. Single giant resonances

Giant resonances in nuclei were first observed in 1937 by Bothe and Gentner [1] who
observed an unexpectedly large absorption of 17.6 MeV photons (from the7Li(p, γ )
reaction) in some targets. These observations were later confirmed by Baldwin and Klaiber
(1947) with photons from a betatron. In 1948 Goldhaber and Teller [2] interpreted these
resonances (called isovector giant dipole resonances (IVGDR)) with a hydrodynamical
model in which rigid proton and neutron fluids vibrate against each other, the restoring
force resulting from the surface energy. Steinwendel and Jensen [3] later developed the
model, considering compressible neutron and proton fluids vibrating in opposite phase in
a common fixed sphere, the restoring force resulting from the volume symmetry energy.
The standard microscopic basis for the description of giant resonances is the random phase
approximation (RPA) in which giant resonances appear as coherent superpositions of one-
particle one-hole (1p1h) excitations in closed shell nuclei or two quasiparticle excitations
in open shell nuclei (for a review of these techniques, see, for example, [4]).

The isoscalar quadrupole resonances were discovered in inelastic electron scattering
by Pitthan and Walcher (1971) and in proton scattering by Lewis and Bertrand (1972).
Giant monopole resonances were found later and their properties are closely related to
the compression modulus of nuclear matter. Following these, other resonances of higher
multipolarities and giant magnetic resonances were investigated. Typical probes for giant
resonance studies are (a)γ ’s and electrons for the excitation of IVGDR, (b)α-particles
and electrons for the excitation of isoscalar giant monopole resonance (ISGMR) and giant
quadrupole resonance (ISGQR), and (c) (p, n), or (3He, t), for Gamow–Teller resonances,
respectively.
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Figure 1. Experimental cross sections in arbitrary units for the excitation of208Pb targets by
17O (22A MeV and 84A MeV) and by36Ar (95A MeV), as a function of the excitation energy.

1.2. Multiphonon resonances

Inelastic scattering studies with heavy ion beams have opened new possibilities in the field
(for a review of the experimental developments, see [5]). A striking feature was observed
when either the beam energy was increased, or heavier projectiles were used, or both [6].
This is displayed in figure 1, where the excitation of the GDR in208Pb was observed in the
inelastic scattering of17O at 22 MeV/nucleon and 84 MeV/nucleon, respectively, and36Ar
at 95 MeV/nucleon [7, 8]. What one clearly sees is that the ‘bump’ corresponding to the
GDR at 13.5 MeV is appreciably enhanced. This feature is solely due to one agent: the
electromagnetic interaction between the nuclei. This interaction is more effective at higher
energies, and for increasing charge of the projectile.

In [9] it was noted that the excitation probabilities of the GDR in heavy ion collisions
approach unity at grazing impact parameters. It was further shown that, if DGDR (double
GDR) (i.e. a GDR excited on a GDR state) exists then the cross sections for their excitation
in heavy ion collisions at relativistic energies are of the order of hundreds of millibarns. This
calculation was based on the semiclassical approach, appropriate for heavy ion scattering
at high incident energies, and the harmonic oscillator model for the giant resonances. The
semiclassical model treats the relative motion between the nuclei classically while quantum
mechanics is used for the internal degrees of freedom.

In the harmonic picture for the internal degrees of freedom the GDR is the first excited
state in a harmonic well, the GDR2, or DGDR, is the second state, and so on. In [10] it
was shown that the excitation probabilities and cross sections are directly proportional to
the photonuclear cross sections for a given electric(E) and magnetic(M) multipolarity.
For an impact parameterb, excitation energyE, and a multipolarityπλ (π = E or M) the
excitation probabilities are given by

Pπλ(E, b) = 1

E
Nπλ(E, b)σ

πλ
γ (E) (1)

whereσπλγ (E) is the photonuclear cross sections for the photonE and multipolarityπλ. The
total photonuclear cross section isσγ (E) =

∑
πλ σ

πλ
γ (E). In the semiclassical approach,
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the ‘equivalent photon numbers’Nπλ(E, b) are given analytically [10]. A quantum
mechanical derivation of the excitation amplitudes in relativistic Coulomb excitation shows
that equation (1) can also be obtained by using the saddle-point approximation in the
distorted wave Born approximation (DWBA) integrals [11]. The total Coulomb excitation
cross sections can be obtained by an integration of equation (1) over the impact parameter
b, including a factor,T (b), which accounts for the strong absorption at small impact
parameters:σπλ(E) = 2π

∫
db bT (b)Pπλ(E, b). The impact parameter integral can also be

performed analytically and the equivalent photon numbersnπλ(E) = 2π
∫

db bNπλ(E, b)
are given in [10, 11].

The cross section for the excitation of a giant resonance is obtained from these
expressions, by using the experimental photonuclear absorption cross section forσπλγ (E)

in equation (1). One problem with this procedure is that the experimental photonuclear
cross section includes all multipolarities with the same weight:σ

exp
γ (E) = ∑

πλ σ
πλ
γ (E),

while the calculation based on equation (1) needs the isolation ofσπλγ (E). This can only
be done marginally, except in some exclusive measurements. Generally, one finds in the
literature the(γ, n), (γ, 2n), and (γ, 3n) cross sections, which include the contribution
of all multipolarities in the giant resonance energy region. A separation of the different
multipolarities can be obtained roughly by use of sum rules, or some theoretical model for
the nuclear response to a photoexcitation.

Assuming that one hasσπλγ (E) somehow (either from experiments, or from theory), a
simple harmonic model based on the Axel–Brink hypotheses can be formulated to obtain
the probability to access a multiphonon state of ordern. In the harmonic oscillator model
the inclusion of the coupling between all multiphonon states can be performed analytically
[9]. One of the basic changes is that the excitation probabilities are calculated to first-order,
P 1st
πλ (E, b), are modified to include the flux of probability to the other states. That is,

Pπλ(E, b) = P 1st
πλ (E, b)exp{−P 1st

πλ (b)} (2)

whereP 1st
πλ (b) is the integral over the excitation energyE. In general, the probability to

reach a multiphonon state with the energyE(n) from the ground state, with energyE(0), is
obtained by an integral over all intermediate energies

P
(n)
π∗λ∗(E

(n), b) = 1

n!
exp{−P 1st

πλ (b)}
∫

dE(n−1) dE(n−2) . . .dE(1)

×P 1st
πλ (E

(n) − E(n−1), b)P 1st
πλ (E

(n−1) − E(n−2), b) . . . P 1st
πλ (E

(1) − E(0), b). (3)

The character and spin assignment of the multipolarityλ∗ depends on how the
intermediate states couple with the electromagnetic transition operators. For example, in the
case of the DGDR (GDR2), assuming a 0+ ground state and excluding isospin impurities,
the final state has either spin and parity 0+ or 2+, respectively.

A simpler reaction model than the one above can be obtained when assuming that all
states can be approximated by a single isolated state. For example, we can assume that the
photoabsorption cross sections in the range of the GDR is due to a single state with energy
equal to the centroid energy of the GDR exhausting the whole excitation strength. Then the
multiphonon states are equidistant, and equation (3) becomes

P
(n)
π∗λ∗(b) =

1

n!
[P 1st
πλ (b)]

n exp{−P 1st
πλ (b)}. (4)

The above relation was used to calculate the cross sections for the excitation of the GDR,
GDR2, GDR3, ISGQR and IVGQR in136Xe, respectively, for collisions with Pb nuclei as
a function of the bombarding energy, as shown in figure 2. Each resonance is considered
to be a single state exhausting 100% of the respective sum rule. Also shown in the figure
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Figure 2. Theoretical cross sections for the excitation of the GDR, ISGQR, IVGQR, GDR2 and
the GDR3, in the reaction208Pb+ 208Pb, as a function of the bombarding energy.

is the geometrical cross section (GC),σ ∼ π(A1/3
P +A1/3

T )2 fm2. The cross sections for the
excitation of the GDR2 is large, of the order of hundreds of mb.

Much of the interest in looking for multiphonon resonances relies on the possibility for
looking at exotic particle decay of these states. For example, in [15] a hydrodynamical
model was used to predict the proton and neutron dynamical densities in a multiphonon
state of a nucleus. Large proton and neutron excesses at the surface are developed in a
multiphonon state. Thus, the emission of exotic clusters from the decay of these states
are a natural possibility. A more classical point of view is that the Lorentz contracted
Coulomb field in a peripheral relativistic heavy ion collision acts as a hammer on the
protons of the nuclei [10]. This (collective) motion of the protons seems only to be probed
in relativistic Coulomb excitation. It is not well known how this classical view can be
related to microscopic properties of the nuclei in a multiphonon state.

Although the perspectives for experimental evidence of the DGDR via relativistic
Coulomb excitation were good, on the basis of the large theoretical cross sections, it was
first found in pion scattering at the Los Alamos Pion Facility [12]. In pion scattering off
nuclei the DGDR can be described as a two-step mechanism induced by the pion–nucleus
interaction. Using the Axel–Brink hypotheses, the cross sections for the excitation of the
DGDR with pions were shown to be well within the experimental possibilities [12]. Only
about five years later, the first Coulomb excitation experiments for the excitation of the
DGDR were performed at the GSI facility in Darmstadt/Germany [13, 14]. In figure 3 we
show the result of one of these experiments, which looked for the neutron decay channels
of giant resonances excited in relativistic projectiles. The excitation spectrum of relativistic
136Xe projectiles incident on Pb are compared with the spectrum obtained in C targets. A
comparison of the two spectra immediately proves that nuclear contribution to the excitation
is very small. Another experiment [14] dealt with the photon decay of the double giant
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Figure 3. Experimental cross sections for the excitation of136Xe (700A MeV) projectiles
incident on lead and carbon targets, respectively.

resonance. A clear bump in the spectra of coincident photon pairs was observed around an
energy twice as large as the GDR centroid energy in208Pb targets excited with relativistic
209Bi projectiles.

The advantages of relativistic Coulomb excitation of heavy ions over other probes (pions,
nuclear excitation, etc) was clearly demonstrated in several GSI experiments [13, 14, 16, 17].
We now discuss many features of the DGDR that were obtained.

2. Energy, width and strength of the DGDR

A collection of the experimental data on the energy and width of the DGDR is shown in
figure 4. The data points are from a compilation from pion (open symbols), and Coulomb
excitation and nuclear excitation (full symbols) experiments [18].

The broken curves are a guide for the eyes. We see from figure 4(a) that the energy of
the DGDR agrees reasonably with the expected harmonic prediction that the energy should
be about twice the energy of the GDR, although small departures from this prediction are
seen, especially in pion and nuclear excitation experiments. The width of the DGDR seems
to agree with an average value of

√
2 times that of the GDR, although a factor of 2 seems

also to be possible, as we see from figure 4(b). Figure 4(c) shows the ratio between the
experimentally determined cross sections and the calculated ones. The data appear to be
more dispersed here. The largest values ofσexp/σth come from pion experiments, yielding
up to a value of 5 for this quantity.

2.1. Width of the DGDR

In a microscopic approach, the GDR is described by a coherent superposition of one-particle
one-hole states. One of the many such states is pushed up by the residual interaction to the
experimentally observed position of the GDR. This state carries practically all of theE1
strength. This situation is simply realized in a model with a separable residual interaction.
We write the GDR state as (one phonon with angular momentum 1M)|1, 1M〉 = A†1M |0〉
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Figure 4. Compilation of experimental findings with heavy ion (full symbols) and pion induced
(open symbols) reactions for the energy, width, and cross sections of the double giant resonance.
The data are compared with the energies and widths of the GDR, respectively, and to the
theoretical excitation cross sections.

whereA†1M is a proper superposition of particle–hole creation operators. Applying the
quasiboson approximation we can use the boson commutation relations and construct the
multiphonon states (N -phonon states). AnN -phonon state will be a coherent superposition
of N -particleN -hole states. The width of the GDR is essentially due to the spreading width,
i.e. to the coupling to more complicated quasibound configurations. The escape width only
plays a minor role. We are not interested in a detailed microscopic description of these
states here. We use a simple model for the strength function [19]. We couple a state|a〉
(i.e. a GDR state) by some mechanism to more complicated states|α〉, for simplicity we
assume a constant coupling matrix elementVaα = 〈a|V |α〉 = 〈α|V |a〉 = v. With an equal
spacing ofD of the levels|α〉 one obtains a width

0 = 2π
v2

D
(5)

for the state|α〉. We assume the same mechanism to be responsible for the width of the
N -phonon state: one of theN -independent phonons decays into the more complicated states
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|α〉 while the other (N − 1)-phonons remain spectators. We write the coupling interaction
in terms of creation (destruction) operatorsc†a(cα) of the complicated states|α〉 as

V = v(A†1Mcα + A1Mc
†
α). (6)

For the coupling matrix elementsvN , which connects anN -phonon state|N〉 to the state
|N − 1, α〉 (N − 1 spectator phonons) one obtains

vN = 〈N − 1, α|V |N〉 = v〈N − 1|A1M |N〉 = v ·
√
N (7)

i.e. one obtains for the width0N of theN -phonon state

0 = 2πN
v2

D
= N0 (8)

where0 is given by equation (5).
Thus, the factorN in (8) arises naturally from the bosonic character of the collective

states. For the DGDR this would mean02 = 201. The data points shown in figure 4(b)
seem to favour a lower multiplicative factor.

We can also give a qualitative explanation for a smaller02/01 value. First we note
that the value02/01 = N can also be obtained from a folding procedure, as given in
equation (3). If the sequential excitations are described by Breit–Wigner (BW) functions
Pπλ(E) with the centroidE and the width0, the convolution (3) yields a BW shape with
the centroid at 2E for the DGDR and the total width of 201. However, if one uses Gaussian
functions (instead of BW ones) for the shape of one-phonon states, it is easy to show that one
also obtains a Gaussian for theN -phonon shape, but with the width given by

√
N01. The

latter assumption seems inconsistent since the experimentalists use BW fits for the shape of
giant resonances, which are in good agreement with the experimental data. However, one
can easily understand that the result

√
N01 is not restricted to a Gaussian fit. For an arbitrary

sequence of two excitation processes we have〈E〉 = 〈E1+ E2〉 and 〈E2〉 = 〈(E1+ E2)
2〉;

for uncorrelated steps it results in the addition in quadrature(1E)2 = (1E1)
2 + (1E2)

2.
Identifying these fluctuations with the widths up to a common factor, we obtain for identical
phonons02 =

√
201. The same conclusion will be valid for any distribution function which,

as the Gaussian one has a finite second moment, in contrast to the BW or Lorentzian ones
with second moment diverging. We may conclude that, in physical terms, the difference
between02/01 = 2 and02/01 =

√
2 is due to the different treatment of the wings of the

distribution functions which reflect small admixtures of remote states.

2.2. Strength of the DGDR

Microscopically, the harmonic picture is accomplished within the RPA approximation. The
excited states of the nucleus are described as superpositions of particle–hole configurations
with respect to the ground state. The multiphonon resonances are built using products of
the 1− resonance states, yielding 0+ and 2+ double phonon states. The interaction with the
projectile is described in terms of a linear combination of particle–hole operators weighted
by the time-dependent field for a given multipolarity of the interaction. Since the time-
dependent Coulomb field of a nucleus does not carry monopole multipolarity, the DGDR
states can be reached via two-stepE1 transitions and directE2 transitions (for a 0+ ground
state). As we see from figure 4(c), early calculations failed to explain the experimental data.
Owing to the simpler excitation mechanism we restrict ourselves to the Coulomb excitation
cross sections. Then, there seems to be two possible reasons forσexp/σth 6= 1; (a) either the
Coulomb excitation mechanism is not well described, or (b) the response of the nucleus to
two-phonon excitations is not well known.
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Many authors studied the effects of the excitation mechanism for the excitation of the
DGDR. In [20] the cross sections were calculated using second-order perturbation theory.
It was found that the theoretical values were smaller than the experimental ones by a factor
of about 1.3–2. However, it was suggested [21] that second-order perturbation theory is
not adequate for relativistic Coulomb excitation of giant resonances with heavy ions and
that it is necessary to perform a coupled channels calculation. We can see this more clearly
from figure 5, taken from [22], where a coupled-channels study of multiphonon excitation
by the nuclear and Coulomb excitations in relativistic heavy ion collisions was performed.
The figure shows the probability amplitude to excite the GDR in208Pb, |a1|2, and the
occupation probability of the ground state,|a0|2, for a grazing collision of208Pb+ 208Pb at
640 MeV/nucleon. The broken curves are the predictions of the first-order perturbation
theory. We see that the asymptotic excitation probability of the GDR is quite large
(∼40%). In first-order perturbation the occupation probability of the ground state is kept
constant, equal to unity. Obviously, one greatly violates the unitarity condition in this
case. A more appropriate coupled-channels calculation (full curves) shows that the ground-
state occupation probability has to decrease to meet the unitarity requirements, while the
excitation probability of the GDR is also reduced slightly for the same reason.

In [22] it was shown that a good coupled-channels calculation does not need to account
for the exact coupling equations in all channels. The strongest coupling, responsible for the
effect observed in figure 5 is the coupling between the ground state and the GDR states.
This has to be treated exactly within a coupled-channels calculation. The coupling between
the GDR and the other states (including the DGDR, IVGQR, ISGQR, etc) can be treated

Figure 5. Occupation probability of the ground state,|a0|2, and of the GDR,|a1|2, for the
reaction208Pb+208 Pb at 640A MeV, as a function of the reaction time. The reaction time is
given in terms of the adimensional quantityγ vt/b, with b equal to the impact parameter in the
collision. The broken curves are the predictions of perturbation theory, while the full curves are
the predictions from coupled-channels calculations.
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Figure 6. Schematic diagram showing the excitation of the GDR, ISGQR, IVGQR, and the
DGDR. The arrow with two heads between the ground state GS and the GDR means that this
coupling is to be treated exactly, i.e. with a coupled-channels calculation.

perturbatively, as shown schematically in figure 6. This amounts to a great simplification of
the calculation. In fact, it allows us to include the width of the GDR in the coupled-channels
calculation straightforwardly using a BW strength function for the GDR. In terms of the
auxiliary amplitudesAµ(t), given by the relationa0(t) = 1+∑µ Aµ(t), with µ = −1, 0, 1,
the coupled-channels equations are given by

Äµ(t)−
[
V̇ (01)
µ (t)

V
(01)
µ (t)

− i

h̄

(
E1− i

01

2

)]
Ȧµ(t)+ S1

|V (01)
µ (t)|2
h̄2

[
1+

∑
µ′
Aµ′(t)

]
= 0 (9)

where the factorS1 is S1 = 1 for the BW-shape andS1 = 1− i01/2E1 for Lorentzian-shape,
and V(01)

µ (t) is the time-dependent Coulomb interaction between the ground state and the
magnetic componentµ of the GDR. With initial conditionsAµ(t = −∞) = 0, the solution
of the above coupled-channels equation can be used to calculate the excitation probability
of the GDR state with energyE1+ ε, given by

ih̄ȧ(1)ε,1µ(t) = [α(1)(ε)V (01)
µ (t)]∗ exp{i(E1+ ε)t/h̄}a0(t). (10)

where α(1)(ε) is a BW or Lorentzian shape function, with centroid atE1. After the
calculation of the occupation probability of the ground state,|a0(∞)|2, and the excitation
probability of the GDR,

∑
µ

∫ |aε,1µ(∞)|2 dε, it is straightforward to calculate the excitation
probabilities of the DGDR and of other giant resonances using perturbation theory, as shown
schematically in figure 6. Excitation cross sections are obtained by integration over impact
parameters.

The results of [22] showed appreciable dependence of the excitation cross sections of
the GDR2 on the width of both the GDR and the DGDR as can be seen in figure 7 for
208Pb+ 208Pb at 640 MeV/nucleon. The full curve shows the GDR cross section as a
function of the width of the DGDR, keeping the ratio0DGDR/0GDR =

√
2. The broken

curve is obtained by fixing the value of0GDR = 4 MeV and varying the value of0DGDR.
The cross sections decrease with energy since an increase of the width enhances the doorway
amplitude to higher energies where Coulomb excitation is weaker. Based on this figure, we
may conclude that the data seem to favour a value of0DGDR/0GDR '

√
2. Figure 8 shows

the ratioσDGDR/σGDR as a function of the bombarding energy. We observe that the most
favourable energies for the measurement of the DGDR corresponds to the SIS energies at
the GSI-Darmstadt facility.
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Figure 7. Cross section for the excitation of the GDR and the DGDR, as a function of the width
of the GDR. The width of the DGDR is assumed to be

√
2 times the width of the GDR.

Figure 8. Ratio between the excitation cross sections of the DGDR and of the GDR for the
reaction208Pb+ 208Pb, as a function of the bombarding energy. The arrows indicate the energy
region of the GSI experiments.

2.3. Anharmonicities

Another possible effect arises from a shift of the energy centroid of the DGDR due
to anharmonic effects [23]. In [22] one obtainedσDGDR = 620, 299 and 199 mb for
the centroid energies ofEDGDR = 20, 24 and 27 MeV, respectively. This shows that
anharmonic effects can play a big role in the Coulomb excitation cross sections of the
DGDR, depending on the size of the shift ofEDGDR. However, in [20] the source for
anharmonic effects were discussed and it was suggested that it should be very small, i.e.
1(2)E = EDGDR− 2EGDR ' 0.

The anharmonic behaviour of the giant resonances as a possibility to explain the increase
of the Coulomb excitation cross sections has been studied by several authors [23, 24] (see
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also [25], and references therein). It was found that the effect is indeed negligible and it
could be estimated [25] as1(2)E < EGDR/(50 A) ∼ A−4/3 MeV.

2.4. Other routes to the DGDR

From the above discussion we see that the magnitude of the Coulomb excitation cross
sections of the DGDR can be affected owing to uncertainties in: (a) strength, (b) width,
(c) energies, or (d) reaction mechanism. Cases (a) and (c) are the basis of the Axel–Brink
hypothesis and we have seen that a modification of their values would only be considered
seriously if anharmonic effects were large, which appears not to be the case. Case (b) is
an open question. Microscopic calculations [24] have shown that, taking into account the
Landau damping, the collective state splits into a set of different 1−

i states distributed over
an energy interval, wherei is the order number of each state. A further fragmentation of
the 1−i states into thousands of closed packed states, is obtained by the coupling of one-
and two-phonon states. This leads to a good estimate of the spreading width of the GDR.
However, the DGDR states were obtained by a folding procedure:

|[1−i ⊗ 1−i ′ ]Jπ=0+,1+,2+〉M =
∑
m,m′

(1m1m′|JM)|1−i 〉m|1−i ′ 〉m′ . (11)

The width of the DGDR is thus fixed from the width of the GDR. Critics should be reminded
that even the spreading width of the GDR is not very well described theoretically. It is
therefore impossible to make any quantitative prediction for the width of the DGDR, other
than saying that

√
26 0DGDR/0GDR 6 2.

We return to the discussion of the reaction mechanism, and how it could affect the
magnitude of the cross sections. It looks obvious from figure 3 that the nuclear excitation of
giant resonances is very small in magnitude compared with Coulomb excitation in collisions
with heavy ions at relativistic energies. However, the nuclear–Coulomb interference could
also be relevant and would not be in complete disagreement with the experimental findings.
However, in [22] it was shown that this is a small effect indeed.

We have seen that coupled-channels effects are very important and should always be
considered in the analysis of the experimental results. In [26] the contribution of non-
natural parity 1+ two-phonon states were investigated in a coupled-channels calculation.
The diagonal components [1−i ⊗1−i ]1+ are forbidden by symmetry properties but nondiagonal
ones [1−i ⊗ 1−i ′ ]1+ , a priori, may be excited in the two-step process bringing some ‘extra
strength’ in the DGDR region. Consequently, the role of these nondiagonal components
depends on how strong the Landau damping is.

The coupled-channels calculation found that the contribution of the 1+ states to the total
cross section is small. The reason for this is better explained in second-order perturbation
theory. For any route to a final magnetic substateM, the second-order amplitude will
be proportional to(001µ|1µ)VE1µ,0→1− × (1µ1µ′|1M)VE1µ′,1−→1+ + (µ ←→ µ′), where
VE1µ,i→f is theµ-component of the interaction potential (for a spin-zero ground state,µ

is also the angular momentum projection of the intermediate state). Assuming that the
phases and the products of the reduced matrix elements for the two sequential excitations
are equal, we obtainVE1µ,0→1−×VE1µ′,1−→1+ = VE1µ′,0→1−×VE1µ,1−→1+ . Thus, under these
circumstances, and since(001µ|1µ) ≡ 1, we get an identically zero result for the excitation
amplitude of the 1+ DGDR state as a consequence of(1µ1µ′|1M) = −(1µ′1µ|1M). A
coupled-channels calculation cannot change this result appreciably.

We note that multiphonon states can be obtained by coupling all kinds of phonons.
Each configuration [λπ1

1 ⊗ λπ2
2 ] can be obtained theoretically from a sum over several two-



1176 C A Bertulani

Figure 9. Photoneutron cross section for208Pb. Experimental data (dots with experimental
errors) are from [28]. The long-broken curve is the high-energy tail of the GDR, the short-
broken curve is the IVGQR and the curve with squares is their sum. The contribution of
two-phonon states is plotted by a curve with triangles. The full curve is the total calculated
cross section.

Figure 10. The contribution for the excitation of two-phonon 1− states (long-broken curve) in
first-order perturbation theory, and for two-phonon 0+ and 2+ DGDR states in second-order
(short-broken curve). The total cross section (for208Pb(640A MeV)+ 208Pb) is shown by the
full curve.

phonon states made of phonons with a given spin and parityλ
π1
1 , λπ2

2 , and different RPA
root numbersi1, i2 of its constituents. The cross sections can be obtained accordingly:

σ([λπ1
1 ⊗ λπ2

2 ]) =
∑
i1,i2

σ([λπ1
1 (i1)⊗ λπ2

2 (i2)]). (12)

As an example, in [27] the total number of two-phonon 1− states generated in this way
was about 105. The absolute value of the photoexcitation of any two-phonon state under
consideration is negligibly small but altogether they produce a sizeable cross section. The
1− two-phonon states obtained in [27] were used to calculate their contribution to the (γ, n)
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Figure 11. (a) Cross sections for the excitation of the GDR and of the DGDR in208Pb
(640A MeV) incident on several targets. The ratio between the measured cross section and the
prediction of the harmonic oscillator is also shown. (b) Deviation of the experimental results
from the harmonic oscillator prediction for the energy, width, cross section, ratio between the
decay by emission of two gammas, and of the one-neutron decay width, respectively.

cross section in208Pb, via directE1 excitations. This is shown in figure 9. Experimental
data (dots with experimental errors) are from [28]. The long-broken curve is the high-energy
tail of the GDR, the short-broken curve is the IVGQR and the curve with squares is their
sum. The contribution of two-phonon 1− states is plotted by a curve with triangles. The
full curve is the total calculated cross section. Thus, already at the level of photonuclear
data the contribution of two-phonon 1− states is of relevance. Here they are not reached via
two-step processes, but in direct excitations. Since the energy region of these states overlap
with that of the DGDR, in Coulomb excitation experiments they should also contribute
appreciably. In fact, it was shown recently [27] that their contribution to the total cross
section for208Pb+ 208Pb (640A MeV) in the DGDR region is of the order of 15%. In
figure 10 the contribution for the excitation of two-phonon 1− states (long-dashed curve) in
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first order perturbation theory, and for two-phonon 0+ and 2+ DGDR states in second-order
(short-dashed curve). The total cross section (for208Pb(640A MeV)+ 208Pb) is shown by
the solid curve.

2.5. Present situation and perspectives

The experimental situation on the excitation of double phonon states has improved
considerably, mainly due to advances on the data acquisition with the Coulomb excitation
technique. Figure 11(a) shows the comparison between the experimental cross section and
the simple harmonic model (equations (2) and (3)) for the excitation of the GDR and the
DGDR in 208Pb (640A MeV) and several targets [17]. One sees that the harmonic model
reproduces the cross section for the GDR quite well, but it misses the magnitude of the cross
section by 30%, as can be better seen in the lower part of the figure where the ratio between
the experimental data and the calculation is shown. In figure 11(b) the present situation
on the knowledge of the energy, width, excitation cross section, branching ratio for gamma
to neutron emission, and the neutron emission width, respectively, is shown in comparison
with calculations based on the simple harmonic picture. We see that the theory–experiment
agreement is much better than that presented in figure 4.

As we have seen in this short review there are several effects which compete in the
excitation of double giant resonances in relativistic Coulomb excitation. These effects were
discovered in part by the motivation to explain discrepancies between the harmonic picture
of the giant resonances and the recent experimental data. We cannot say at the moment by
how much we have progressed towards a better understanding of these nuclear structures.
However, we can surely say that the field is just at its infancy and important experimental
and theoretical progress will be underway in the near future.
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