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Abstract. We study the breakup of9Li projectiles in high-energy (28.5 MeV/u) collisions with
heavy nuclear targets (208Pb). The wavefunctions are calculated using a simple potential model for
9Li. A good agreement with the measured data is obtained with insignificant E2 contribution.

The reaction8Li (n, γ )9Li competes with the8Li (α, n)11B reaction in the inhomogeneous Big
Bang model, which assumes the existence of proton-rich and neutron-rich regions of space
during the early Big Bang. This reaction also competes with the8Li β-decay in ther-process.
Depending on the rate, this reaction may affect the primordial abundance and reduce the stellar
production ofA > 12 nuclei by as much as 50% [1]. The Coulomb dissociation method [2,3]
has proven to be a useful tool for extracting radiative capture reaction cross sections of relevance
in nuclear astrophysics. In particular, it appears that the Coulomb dissociation of9Li is
very useful [4] for elucidating the role of the inhomogeneous nucleosynthesis in the Big
Bang model—the formation of9Li via the 8Li (n, γ )9Li reaction. However, a few lingering
questions still need to be addressed, including the importance of E2 excitations for the MSU
experiment [4], performed at approximately 28.5 MeV/u. We attempt to resolve this issue by
using a relatively simple but still realistic nuclear model that, however, yields agreement with
data and suggests that E2 excitations are negligible for the kinematical conditions of the MSU
experiment.

For 9Li we adopt a single-particle model in which theJ0 = 3/2− ground state can be
described as aj0 = p3/2 neutron interacting with the8Li core. The core is assumed to be
inert with an intrinsic spinIc = 2+. A realistic value for the spectroscopic factor for this
configuration is about 0.94 [5]. Since we are only interested in a rough estimate of the E2
contribution in the Coulomb breakup of9Li, we takeS = 1.

The single particle states,RExlj (r), for the excitation energyEx = En + |E0|, where
En is the neutron–8Li relative energy, are found by solving the Schrödinger equation with a
nuclear + spin–orbit potential, given by

V (r) = V0

[
1− Fs.o.(l · s) r0

r

d

dr

]
f (r), f (r) =

[
1 + exp

(
r − R
a

)]−1

, (1)

with parametersa = 0.52 fm andr0 = 1.25 fm. The radius of the8Li core,R = 2.499 fm,
was chosen so that the radiative capture cross section would fall in the range of the experiment
of [4]. The spin–orbit strength is set toFs.o. = 0.351 fm. This is consistent with the choice
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for the8B model used in [6] but is slightly smaller than the value 0.38 fm which works well
for the low-lying spectra of17O, 13C, and11Be [7]. The well depth for the ground state
l0(j0Ic)J0 = (p3/2, 2+)3/2−, was adjusted to reproduce the one-neutron separation energy,
E0 = −4.05 MeV, and it isV0((p3/2, 2+)3/2−) = −45.301 MeV. A neutron-unbound state
exists in9Li at 4.31 MeV [8, 9] above the neutron decay threshold. Its predicted spin parity
is 5/2−. These are described as p3/2 waves coupled to the ground state of the core, and the
well depth for this channel,V0 = −33.814 MeV has been adjusted to reproduce the resonance
energy and its predicted [9] width,0 = 0.118 MeV. For all other partial waves (s1/2, p1/2, d3/2,
etc) we choose identical well depths and set them equal to the value−45.301 MeV, as for the
ground state.

To compute theS-factors for the capture processb + x → a we have used the first-order
perturbation theory. The matrix elements for electric multipole states (we couple angular
momentum asl + s = j, andj + Ic = J) are given by

〈JM|M(Eλµ)|J0M0〉 = eλ√
4π
(−1)j0+Ic+J0+l0+l+λ λ̂ĵ0Ĵ0

ĵ

×(J0M0λµ|JM)
(
j0λ

1

2
0|j 1

2

){
j J Ic
J0 j0 λ

}
O(1→ 2; λ) (2)

whereO(1 → 2; λ) = ∫
φJlj (r)φ

J0
E0l0j0

(r)rλ dr is the overlap integral,̂m ≡ √2m + 1, and
eλ = Zbe(−Ax/Aa)λ + Zxe(Ab/Aa)λ is the effective electric charge (b ≡ 8Li, x ≡ n).
HereRExlj (r) is the radial wavefunction for the relative motion of the neutron and the core,

normalized to
√

2mbx/πh̄2k sin(kr + δlj ) at larger, wherek is the relative momentum.
The response functions (multipole strengths) for the excitation of9Li are obtained by

summing over all partial waves

dB(Eλ)

dEx
=
∑
lj

dB(Eλ; l0j0→ Exlj)

dEx
, (3)

where

dB(Eλ; l0j0→ Exlj)

dEx
= mbx

h̄2k

∑
J

(2J + 1)

{
j J Ic
J0 j0 λ

}
|〈j‖M(Eλ)‖j0〉|2J . (4)

The sum overJ in the last equality reduces to|〈j‖M(Eλ)‖j0〉|2/(2j0+1) if the single-particle
matrix elements are independent of the channel spinJ .

The multipole strengths are presented in figure 1 for E1 and E2 excitations, as functions
of the neutron energy,En = h̄2k2/2mbx . They are dominated by s-wave components: the
higher angular momentum waves become relevant for higher energies, as expected. This
result has also been obtained in previous calculations [8,10]. The quadrupole strength shows
a resonance peak located at the excitation energy,Ex = 0.247 MeV. It is divided by ten in
order to be displayed in the same figure.

The cross sections for direct capture are given by

σ
(λ)
DC(Ex) =

(2Ic + 1)

(2J0 + 1)

(2π)3(λ + 1)

λ[(2λ + 1)!!] 2

1

k2

(
Ex

h̄c

)2λ+1 dB(Eλ)

dEx
. (5)

Figure 2 displays the direct capture cross section for the E1 transitions. The experimental
data are from [4]. Due to the factor(Ex/h̄c)2λ+1 appearing in equation (5) (and since the peak
of dB(E2)

dE fm−4 is one order of magnitude greater thandB(E1)
dE fm−2, as seen from figure 1), the

E2 contribution to the radiative capture cross section is about 3–4 orders of magnitude smaller
than the E1 contribution.
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Figure 1. Response function (equation (3)) in units
of e2 fm2 MeV−1 (e2 fm4 MeV−1) for E1(E2)
transitions in the reaction9Li (γ, n)8Li, as a function
of the neutron energy relative to the8Li core. The
lower curves are the f (solid) and p + f (dashed)
waves contribution, while the upper curves display
the contribution of s (solid) and s+d (dashed) waves.

Figure 2. Radiative capture cross sections, inµb, for
the reaction8Li (n, γ )9Li in the direct capture model.
The solid curve is obtained with s-waves, while the
dashed curve includes d-wave transitions.

Since there are no data for the elastic scattering of9Li on Pb targets at this bombarding
energy, we construct an optical potential using an effective interaction of the M3Y type [12,13]
modified so as to reproduce the energy dependence of total reaction cross sections, i.e. [13],

t (E, s) = −i
h̄v

2t0
σNN(E)[1− iα(E)]t (s), (6)

where t0 = 421 MeV fm3 is the volume integral of the M3Y interactiont (s), s is the
nucleon–nucleon separation distance,v is the projectile velocity,σNN is the nucleon–nucleon
cross section, andα is the real-to-imaginary ratio of the forward nucleon–nucleon scattering
amplitude. At 28.5 MeV/nucleon, we useσNN = 20 fm2 andα = 0.87.

The optical potential is given by

U(E,R) =
∫

d3r1 d3r2 ρP (r1)ρT (r2)t (E, s), (7)

wheres = R + r2 − r1, andρT (ρP ) is the ground state density of the target (projectile).
Following [14], the Coulomb amplitude is given by

fC =
∑
λµ

f
(JM)
λµ , (8)



1962 C A Bertulani

where

f
(JM)
λµ = i1+µZT emPT

h̄2

(
Ex

h̄c

)λ√
2λ + 1 exp{−iµφ}�µ(q)

×GEλµ

( c
v

)
〈JM|MEλ,−µ|J0M0〉, (9)

�µ(q) =
∫ ∞

0
db bJµ(qb)Kµ

(
Exb

γ h̄v

)
exp(iχ(b)), (10)

q = 2k sin(θ/2), θ (φ) is the (azimuthal) scattering angle, andmPT is the reduced mass
of the target + projectile.Jµ(Kµ) is the cylindrical (modified) Bessel function of orderµ,
and the functionsGπλµ(c/v) are tabulated in [15]. The angular momentum algebra connects
〈JM|MEλ,−µ|J0M0〉 with the reduced matrix elements of equation (2).

The eikonal phase,χ(b), is given by

χ(b) = 2η ln(kb)− 1

h̄v

∫ ∞
−∞

dz Uopt (R), (11)

whereη = ZPZT e
2/h̄v, h̄k is the projectile momentum, andR = √b2 + z2. The optical

potential,Uopt , in the above equation is given by equation (7).
The cross section for Coulomb excitation of a state with angular momentumJ and

excitation energyEx is obtained by an average (and a sum) over the initial (final) angular
momentum projections:

d2σEλ

d� dEx
= 1

2J0 + 1

∑
M0,M

|f (JM)λµ |2. (12)

As explained in detail in [2, 3, 14], the above cross section can be factorized in terms of
a product of virtual photon numbers and breakup cross sections by real photons, which by
detailed balance is directly related to the radiative capture cross sections. Thus a measurement
of dσEλ/d� dEx can be used to obtain radiative capture cross sections of astrophysical interest.
Experimentally, the nuclear contribution to the breakup cross section can be separated by
repeating the measurement on light targets (see, e.g., [4]).

At the bombarding energies of tens of MeV/nucleon, the E2 virtual photon number is
much larger than that of E1. As a consequence, even when the E2 contribution to the radiative
capture cross section is small, it may be amplified in Coulomb breakup experiments [3]. A
known example is the Coulomb breakup of8B [16] at 50 MeV/nucleon, which has been used
to extract theS-factor for the radiative capture cross section7Be(p, γ )8B at low energies. It
has been claimed [17] that the E2 contribution accounts for as much as 20% of the differential
cross sections for the experimental conditions. This poses an additional experimental problem,
since one needs to separate the wanted E1 transition matrix elements from the unwanted E2
transition matrix elements. Nonetheless, it was shown in [18] that the E2 contribution in the
Coulomb breakup of8B is much less than that predicted in [17].

In order to infer the relevance of E2 for the breakup of9Li (28.5 MeV) on lead targets,
we plot in figure 3 the angle integrated cross section dσλ/dEx , as a function of the neutron
energy relative to9Li. The quadrupole contribution has been multiplied by ten in order to
be more visible. We see that the E2 contribution to the breakup cross section is at least one
order of magnitude smaller than the E1 contribution, even at the resonance region. We thus
conclude that E2 transitions are not relevant in the experiment of [4]. Although we obtained
this result by means of a single-particle model for the8Li (n, γ )9Li reaction, we do not expect
that it would change appreciably with more sophisticated models.
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Figure 3. Coulomb breakup cross section
dσEλ/dE (in mb MeV−1) for the reaction 9Li
(28.5 MeV/nucleon) + Pb−→ 8Li + n + Pb, as a
function of the neutron–9Li relative energy, in MeV.
The E2 breakup contribution multiplied by ten is also
shown.
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