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Abstract
The lowest-order correction of the density dependence of in-medium nucleon–
nucleon cross sections is obtained from geometrical considerations of Pauli-
blocking effects. As a by-product, it is shown that the medium corrections
imply an 1/E energy dependence of the density-dependent term.

The nucleon–nucleon cross section is a fundamental input in theoretical calculations of
nucleus–nucleus collisions at intermediate and high energies (E/A ! 100 MeV). One expects
to obtain information about the nuclear equation of state by studying global collective variables
in such collisions (see, e.g., [1]). Transport equations, such as the BUU equation, are often
used as tools for the analysis of experimental data and as a bridge to the information concerning
the equation of state (see, e.g., [2]). The nucleon–nucleon cross sections are building blocks
in these transport equations.

In previous theoretical studies of heavy-ion collisions at intermediate energies (E/A !
100 MeV) the nucleon–nucleon cross section was multiplied with a constant scaling factor
to account for in-medium corrections [3, 4]. As pointed out in [2], this approach fails in
low-density nuclear matter where the in-medium cross section should approach its free-space
value. A more realistic approach uses a Taylor expansion of the in-medium cross section in
the density variable. One obtains [5]

σNN = σ
free
NN (1 + αρ̄) (1)

where ρ̄ = ρ/ρ0, ρ0 is the normal nuclear density and α is the logarithmic derivative of the
in-medium cross section with respect to the density, taken at ρ = 0,

α = ρ0
∂

∂ρ
(ln σNN) |ρ=0. (2)

This parametrization is motivated by Brückner G-matrix theory and is basically due to Pauli-
blocking of the cross section for collisions at intermediate energies [6]. Values of α between
−0.4 and −0.2 yield the best agreement with involved G-matrix calculations using realistic
nucleon–nucleon interactions [6].
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Figure 1. The geometric description of Pauli blocking, in momentum space, for binary collisions
of target and projectile nucleons.

In this paper we give a simple and transparent derivation of the lowest-order expansion
of the in-medium nucleon–nucleon cross section in terms of the nucleon density. In our
approach the leading term of the expansion turns out to be α′ρ2/3 with α′ proportional to
1/E. This energy dependence agrees with experimental results on total nucleus–nucleus cross
sections.

We adopt the idea that the main effect of medium corrections is due to the Pauli-blocking
of nucleon–nucleon scattering. Pauli-blocking prevents the nucleons from scattering into final
occupied states in binary collisions between the projectile and target nucleons. This is best seen
in momentum space, as shown in figure 1. We see that energy and momentum conservation,
together with the Pauli principle, restrict the collision phase space to a complex geometry
involving the Fermi-spheres and the scattering sphere. In this scenario, the in-medium cross
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section corrected by Pauli-blocking can be defined as

σNN(k, KF1, KF2) =
∫

d3k1 d3k2

(4πK3
F1/3)(4πK3

F2/3)

2q

k
σ

free
NN(q)

&Pauli

4π
(3)

where k is the relative momentum per nucleon of the nucleus–nucleus collision (see figure 1),
and σ

free
NN(q) is the free nucleon–nucleon cross section for the relative momentum 2q =

k1 − k2 − k, of a given pair of colliding nucleons. Clearly, Pauli-blocking enters through
the restriction that |k′

1| and |k′
2| lie outside the Fermi spheres. From energy and momentum

conservation in the collision, q′ is a vector which can only rotate around a circle with centre
at p = (k1 − k2 − k)/2. These conditions yield an allowed scattering solid angle given by [7]

&Pauli = 4π − 2(&a + &b − &̄) (4)

where &a and &b specify the excluded solid angles for each nucleon, and &̄ represents the
intersection angle of &a and &b (see figure 1).

The solid angles &a and &b are easily determined. They are given by

&a = 2π(1 − cos θa) &b = 2π(1 − cos θb) (5)

where q and p were defined above, b = k − p, and

cos θa = (p2 + q2 − K2
F1)/2pq cos θb = (p2 + q2 − K2

F2)/2bq. (6)

The evaluation of &̄ is tedious but can be done analytically. The full calculation was done
in [7] and the results have been reproduced in the appendix of [8]. To summarize, there are
two possibilities:

(1) &̄ = &i (θ, θa, θb) + &i (π − θ, θa, θb) for θ + θa + θb > π (7)

(2) &̄ = &i (θ, θa, θb) for θ + θa + θb " π (8)

where θ is given by

cos θ = (k2 − p2 − b2)/2pb. (9)

The solid angle &i has the following values:

(a) &i = 0 for θ # θa + θb (10)

(b) &i = 2
[

cos−1
(

cos θb − cos θ cos θa

sin θa(cos2 θa + cos2 θb − 2 cos θ cos θa cos θb)1/2

)

+ cos−1
(

cos θa − cos θ cos θb

sin θb(cos2 θa + cos2 θb − 2 cos θ cos θa cos θb)1/2

)

− cos θa cos−1
(

cos θb − cos θ cos θa

sin θ sin θa

)

− cos θb cos−1
(

cos θa − cos θ cos θb

sin θ sin θb

)]

(11)

for

|θb − θa| " θ " θa + θb (12)

(c) &i = &b for θb " θa θ " |θb − θa| (13)

(d) &i = &a for θa " θb θ " |θb − θa|. (14)
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The integrals over k1 and k2 in (3) reduce to a fivefold integral due to cylindrical symmetry.
Two approximations can be done which greatly simplify the problem: (a) on average, the
symmetric situation in which KF1 = KF2 ≡ KF , q = k/2, p = k/2 and b = k/2, is
favoured; (b) the free nucleon–nucleon cross section can be taken outside of the integral in
equation (3). Both approximations are supported by the studies of [8] and can be verified
numerically [7]. The assumption (a) implies that &a = &b = &̄, which can be checked using
equation (14). One obtains from (4) the simple expression

&Pauli = 4π − 2&a = 4π

(

1 − 2
K2

F

k2

)

. (15)

Furthermore, assumption (b) implies that

σNN(k, KF ) = σ
free
NN(k)

&Pauli

4π
= σ

free
NN(k)

(

1 − 2
K2

F

k2

)

. (16)

The above equation shows that the in-medium nucleon–nucleon cross section is about 1
2

of its free value for k = 2KF , i.e. for E/A ! 150 MeV, in agreement with the numerical
results of [8].

The connection with the nuclear densities is accomplished through the local density
approximation, which relates the Fermi momenta to the local densities as

K2
F =

[

3π2

4
ρ(r)

]2/3

+ 5
2ξ (∇ρ/ρ)2 (17)

where ρ(r) is the sum of the nucleon densities of each colliding nucleus at the position r . The
second term is small and amounts to a surface correction, with ξ of the order of 0.1 [8].

Inserting (17) into (16), and using E = h̄2k2/2mN , we obtain (with ρ̄ = ρ/ρ0)

σNN(E, ρ) = σ
free
NN(E)

(

1 + α′ρ̄2/3) where α′ = − 48.4
E (MeV)

(18)

where the second term of (17) has been neglected. This equation shows that the local density
approximation leads to a density dependence proportional to ρ̄2/3. The Pauli principle yields
a 1/E dependence on the bombarding energy. This behaviour arises from a larger phase space
available for nucleon–nucleon scattering with increasing energy.

The nucleon–nucleon cross section at E/A $ 200 MeV decreases with E approximately
as 1/E. Thus we expect that, in nucleus–nucleus collisions, this energy dependence is flattened
by the Pauli correction, i.e. the in-medium nucleon–nucleon cross section is flatter as a function
of E, for E $ 200, than the free cross section. For higher values of E the Pauli blocking is
less important and the free and in-medium nucleon–nucleon cross sections are approximately
equal. These conclusions are in agreement with the experimental data for nucleus–nucleus
reaction cross sections [9]. This was, in fact, well explained in [8].

Note that, for E/A = 100–200 MeV, and ρ ! ρ0, equation (18) yields a coefficient α′

between −0.2 and −0.5. This is in excellent agreement with the findings based on the BUU
calculations, primarily intended to reproduce the experimental data on collective variables in
intermediate energy nucleus–nucleus collisions.

In conclusion, we have presented a microscopic derivation of the lowest-order density
correction for the in-medium nucleon–nucleon cross section. Despite its simplicity, the
calculation shows that Pauli-blocking is able to explain almost entirely the magnitude of the
correction term, although the power of the density-dependent term is slightly different from
that commonly mentioned in the literature [2–6]. We also predict an energy dependence of the
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in-medium cross sections which was not accounted for previously. This calls for a further study
of the consequence of this energy dependence in the transport equation analysis of collective
variables in nucleus–nucleus collisions at intermediate energies.
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