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Abstract
In light of a new experiment which claims a positive identification, we discuss
the possible existence of the tetraneutron. We explore a model based on a
dineutron–dineutron molecule. We show that this model is not able to explain
the tetraneutron as a bound state, in agreement with other theoretical models
already discussed in the literature.

In a recent experiment [1], the existence of bound neutron clusters was studied by fragmentation
of intermediate energy (30–50 MeV/nucleon) 14Be nuclei. In particular, the fragmentation
channel 10Be +4n was observed and the 4n system was tentatively described as a bound
tetraneutron system.

The possible existence of the tetraneutron has been discussed theoretically by numerous
authors already in the 1960s (e.g. [2–9]). The experimental search at that time [10–13],
including the experiments on double pion charge exchange reactions with 4He [14, 15],
gave negative results. The general conclusion, based on experiment and theory, was that
the tetraneutron cannot be bound. More recent experiments [16–18, 22] and theoretical
calculations [19–21, 23, 24] give support to this assertion, except perhaps [25] where a
hyperspherical function method was used and led the authors to the conclusion that the
tetraneutron may exist as a resonance in the four-body continuum at energy of about 1–3 MeV.
These theoretical models have recently been reconsidered in [26] where it was concluded that
a too strong four-nucleon force is needed to bind the tetraneutron and that this force would
unreasonably bind 4He by about 100 MeV.

It thus seems very unlikely that the tetraneutron can be explained within any standard
theoretical model. In this brief report we consider the possibility that the tetraneutron can
be described as a composite dineutron–dineutron molecular system. To our knowledge this
is a hitherto unexplored model for the possible binding of neutron matter. In this model, the
dineutron is considered to be slightly bound due to a polarization mechanism induced by the
presence of the other dineutron. Although the dineutron system is not bound (it has a virtual
singlet state at E = 66 keV), there is some theoretical [27–29] and experimental [30] evidence
that it might become bound in the presence of another nuclear system.
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Figure 1. Tetraneutron as a dineutron–dineutron molecule.

Another reason to believe that neutrons clusterize, or form correlated bound pairs inside a
nucleus, is the existence of the Borromean nuclear systems, e.g. 6He and 11Li, or nultineutron
configuration systems in light nuclei, e.g. 8He. The Borromean systems [31] are three-body
systems in which the particles are not bound in pairs, but the three-body system is bound. For
example, although 10Li and the two-neutron systems are not bound, 11Li is bound. It is the
presence of 10Li which induces the neutron–neutron binding correlation, as first suggested by
Migdal [27]. The authors of [32] also suggest that two of the three most likely ground-state
configurations in 8He are compatible with an α + 4n cluster system.

The model for the tetraneutron is based on two clusters of dineutron molecules as
displayed in figure 1. A similar model was used in the framework of the generator coordinate
method for the scattering problem in [33]. The molecular models, similar to those used in
quantum chemistry, were successfully applied to the chain of Be isotopes [34]. The dineutron
wavefunction can be written as
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√
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where ξa = 2|r1 + R/2| is the (relative) intrinsic coordinate and r1 is the position of the
neutron 1 with respect to the centre of mass of the tetraneutron. The relative motion spatial
wavefunction is taken as a Gaussian with N0 = (b3π3/2)−1/2, and b is the oscillator parameter.
The dineutron is assumed to be in a spin-0 state, described by the spinors χ

(+)
1 (spin-up)

and χ
(−)
2 (spin-down), respectively. The wavefunction is antisymmetrized by the operator

A12 = 1
2 (1 − P12), where P12 exchanges neutrons 1 and 2. An analogous wavefunction, ϕ34,

is written for the second dineutron molecule. Since the spatial part of the dineutron internal
wavefunctions is even under inversion, the operator A12 only acts over the spin variables and
we can write equation (1) as
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Accordingly, the wavefunction for the second dineutron is

ϕ34 = N0 exp

[
− ξ 2

a

2b2

]
χ

(0)
34 . (3)

The total wavefunction of the tetraneutron is

� =
√

6A12,34[ϕ12ϕ34]�(R), (4)
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where the operator A12,34 = 1
6 (1 − P13 − P14 − P23 − P24 + P13P24 + P14P23) implements

the antisymmetrization between the dineutrons. The factors
√

2 in equation (1) and
√

6 in
equation (4) account for the proper normalization. The function �(R) is the dineutron–
dineutron molecular wavefunction.

Using equations (1)–(4), we obtain (here we drop the upper index (0) in the singlet spinors)

� =
√

6N2
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where
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The total Hamiltonian for the tetraneutron system is

H = − h̄2

2mN

4∑
i=1

�i + V. (9)

The neutron–neutron potential was taken as a two-body Volkov potential [36],

V =
4∑

i�j

(
1 − M + MP x

ij

)
Vij , Vij (r) = Vα exp(−r2/α2) + Vβ exp(−r2/β2), (10)

where P x
ij is the Majorana exchange operator and the parameters Vα, Vβ, α and β are chosen to

reproduce the scattering length and effective range in low-energy nucleon–nucleon collisions,
as well as the binding energy of 4He [36].

The total Hamiltonian H can be presented as

H = Ta + Tb + TR + V, (11)

with

Ta,b = − h̄2

4mN

�ξa,b
, TR = − h̄2

2mN

�R. (12)

Since in our model the mean positions of the clusters are taken to be at R/2 and −R/2,
respectively, and since the position of each nucleon is symmetric with respect to the origin of
each cluster, there is no admixture of spurious motion of the centre of mass.

We use equation (5) as a starting point of a variational procedure. To obtain an
effective Schrödinger equation for �(R), we multiply the full four-body Schrödinger equation
H� = E� by �†/�(R) and integrate over ξ1 and ξ2. We will assume the variational function
�(R) to be independent of angles (i.e., an s-wave state),

�(R) = 1√
4π

u(R)

R
, (13)

so that the operator TR in equation (12) becomes

TR = − h̄2

2mN

d2

dR2
. (14)
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The integrals over ξ1 and ξ2 can be performed analytically. One obtains an effective
Schrödinger equation for u(R) in the form

− h̄2

2mN
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where
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Since we are interested only in the relative energy between the clusters, we extract from
the total Hamiltonian the internal kinetic energy of each cluster: T int = 3h̄2/(4mb2) and
V int = Vα(1 + b2/α2)−3/2 + Vβ(1 + b2/β2)−3/2 that do not depend on R.

Equation (15) can be put in a conventional form of a Schrödinger equation:
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The effective potentials in equation (20) are given by

U2(R) = V2(R), (22)

and
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We use for the oscillator parameter b = 1.5 fm. A set of eight parameters of the Volkov
potential were taken from [36]. In figure 2 we show the results for the Volkov V1 force. We
note that the potential U2(R) is repulsive and the potential U1(R) is attractive. Their sum is
dominated by the repulsive part.

In figure 3(a) we show the total potential U1(R) + U2(R) for the eight sets of parameters
in the Volkov potential, as taken from [36]. One sees that none of the parameter sets leads to
a potential with an attractive pocket, which could be a sign for the existence of a bound state.
But even in that case the pocket would have to be deep enough to allow for the appearance of
the bound state.

Finally, we have varied the oscillator parameter from 1.2 fm to 2 fm for each set
of parameters of the Volkov interaction. No pocket appeared in the effective potential
U1(R) + U2(R) within this range of variation. Figure 3(b) shows this for the specific case of
the Volkov-1 interaction.
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Figure 2. The effective potentials U1(R) and U2(R) entering equation (20). The solid curve is the
sum of the two potentials.
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Figure 3. (a) The total potential U1(R) + U2(R) entering equation (20) for eight different
parametrizations of the Volkov potential. The oscillator parameter b = 1.5 fm was used.
(b) The same as in (a), but using the Volkov-1 interaction and varying b from 1.2 fm to 2.0 fm.

In summary, we have explored a model of the tetraneutron as a dineutron–dineutron
molecule. Using a variational calculation we have found an effective Schrödinger equation for
the relative motion of the dineutrons, after a proper account for the Pauli exclusion principle.
An effective potential for the relative motion of the dineutron molecules was obtained. We
showed that this potential does not have a pocket and thus the tetraneutron is very unlikely to
be bound as a dineutron–dineutron molecule, although more complex variational approaches
still can be explored. For example, one might consider a different spatial wavefunction for the
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dineutron system. We have used Gaussian for convenience. But the asymptotic form of the
wavefunction might not be correct. An Yukawa form might be more appropriate to achieve
a lower energy for the system. Another improvement might be the use of more realistic
interactions, other than the Volkov interaction. Interactions including tensor parts might lead
to some modifications of our results. Finally, although less probable as an improvement,
one might relax the assumption of singlet states for the dineutron allowing for the triplet
configurations in the calculation.

Our study is complementary to other approaches and reinforces the commonly accepted
idea that a tetraneutron is not a possible outcome of a theoretical calculation starting with
underlying two-body nucleon–nucleon interactions. If the tetraneutron is bound, most
probably it will be due to a special four-body attraction in T = 2 states or an exceptional fine
tuning of the nucleon–nucleon interaction which does not seem to fit within present nuclear
models. It might however be useful to recall an old phenomenological argument [5] against the
stability of the tetraneutron. Adding a pair of neutrons to a nucleus one usually increases the
separation energy of the proton. If this rule holds, a simple comparison of the particle-stable
tritium and unstable 5H immediately leads to the conclusion that M(4n) > 4Mn.

After this paper was completed, a detailed variational Monte Carlo calculation for the
tetraneutron was done in [37]. It was shown that it does not seem possible to change
modern nuclear Hamiltonians to bind a tetraneutron without destroying many other successful
predictions of those Hamiltonians. Otherwise, our understanding of nuclear forces would have
to be significantly changed.

More elaborate QCD calculations based on lattice gauge theories cannot presently assess
this problem. There are some lattice calculations for the H-dibarion state with not very reliable
results (see [38, 39]). However, lattice calculations still cannot determine if, e.g., the deuteron
is bound. State of the art lattice numerical calculations are aiming at O(10) MeV accuracy
in binding energy, not O(1) MeV or less that is relevant for nuclear physics. Also, how the
calculations depend on quark masses is an interesting but very difficult question.
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