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Abstract
We study the presence of entangled states of nucleon pairs from nuclear decays
and in reactions with exotic nuclei, e.g., 11Li, or 6He. It is shown that the
fingerprints of entangled states in these subsystems are visible in correlation
measurements and can be accessed with present experimental techniques. This
shows that not only atomic and optical systems, but also nuclear systems serve
as important tools to obtain dichotomic outcomes for tests of the Einstein–
Podolsky–Rosen paradox.

1. Introduction

In recent years, there has been much interest in the physics of unstable nuclei. Nuclei far
from the valley of nuclear stability, with lifetime of a few milliseconds, play an important role
in cosmology and astrophysics, as well as in the traditional applications of nuclear physics.
Some of these nuclei possess rather unexpected properties, as for example, the two-proton
radioactivity [1], nuclear halos, large deformations, etc. Many theoretical models for these
nuclei invoke subtle aspects of basic quantum mechanics. A nuclear halo, for example, is
thought to be a simple manifestation of quantum tunnelling of loosely bound states. To
gain insight into these features, typical experiments involve the measurement of momentum
distributions of the fragments, knock-out and stripping reactions, Coulomb excitation, etc.

Rare nuclear isotopes can also be used to study counterintuitive aspects of quantum
mechanics. For example, two-proton decay in s-wave states could be used for a test of
quantum mechanics versus local realism by means of Bell’s inequalities [2]. Since the final
state of the two protons can be found in a singlet state, their wavefunction is spin entangled.
The identification of the spins of the proton in two detectors separated far away would be
useful to test the Einstein–Podolski–Rosen (EPR) paradox [3]. In fact, these tests should
be performed in different and complementary branches of physics to avoid the loopholes
encountered in photon experiments. Correlation experiments with low-energy proton–proton
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scattering have already been used for studies on the EPR paradox. Two-proton radioactivity
would also qualify for this purpose.

Simple quantum entanglements are also visible in peripheral reactions with rare
isotopes [4]. We will consider some examples here. To start with, we observe that in
Coulomb dissociation experiments of nuclear collisions at intermediate energies (�50 MeV
per nucleon), the exchanged photon is almost real, thus the momentum and energy transferred
obey the relation p � E/c. A single nucleon cannot absorb this photon (the photon momentum
is too small, p � 0 for E � 1 MeV). In order to preserve the energy–momentum condition
the photon has to be absorbed by more than one nucleon. The energy can be shared by two
nucleons which fly apart in opposite directions. The same happens in nuclear interactions in
peripheral collisions, when little energy is transferred to the nucleus. At forward scattering
angles the momentum transferred is |p − p′| � p − p′ cos θ � p − p′ � E/v, where p (p′)
is the initial (final) centre of mass energy, θ is the scattering angle and v is the projectile
velocity. For collisions at intermediate energies, v � c, and the same argument as for the
Coulomb dissociation applies. Experiments which explore this feature have been performed.
For example, Coulomb dissociation of 11Li projectiles (a rare isotope) into a 9Li nucleus and
two neutrons has been done [5]. Since neither 10Li, nor the di-neutron system is bound, the
neutron–neutron correlation in the bound state of 11Li is the key factor to allow the mere
existence of this nucleus. The experiments have concentrated their efforts in understanding
this particular aspect of the 9Li + n + n system.

The singlet and triplet configurations of the neutron–neutron system in 11Li have different
contributions to the total nuclear wavefunctions and a recent experiment [6] has been able to
access their relative weights. However, some assumptions on the reaction mechanism were
necessary to interpret the results. It is also not clear if different spin configurations in the final
state could change the momentum distributions of the fragments. In fact, very little is known
about final state configurations in reactions involving unstable nuclei.

In this paper, we show that one can disentangle the contributions of singlet and triplet spin
final states of a two-nucleon system in reactions with rare isotopes by measuring momentum
correlations. This is a useful result as a direct measurement of the spin orientations of each
nucleon is by far more complicated in such conditions. The application of the method is very
general as it only relies on measured quantities, independent of the models for the reaction
mechanism. These are the widths and differential cross sections of momentum distributions,
which have been obtained experimentally for several reactions involving unstable nuclei.

The correlated (C) and uncorrelated (U ) measurements of nucleons 1 and 2, with relative
momentum �p = |p1 − p2| are defined by

C(�p) =
∫

P(p1; p1 + �p) dp1 d�p, U(�p) = 1

N

∫
P(p1)P (p1 + �p) dp1 d�p,

(1)

where P(p1; p2) is the probability of measuring a nucleon having momentum p1 in coincidence
with the measurement of the other nucleon having momentum p2. The integration in �p is over
all orientations of �p. P(p) = ∫

P(p; p′) dp′ is the probability of measuring the momentum
p for one of the nucleons, irrespective of the momentum of the other nucleon. N is the total
number of particles measured, i.e., N = ∫

P(p) dp.
The correlation function is defined as

R(�p) = C(�p)

U(�p)
− 1. (2)
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One can describe each nucleon in the final state by Gaussian wavepackets:

ψi = (
2πσ 2

n

)− 3
4 exp

{
− (pi − (Pc ± pn)/2)2

4σ 2
n

}
, (3)

where the average recoil momentum of the core is Pc, and the average momentum of the
pair at their centre of mass is pn. The momentum spread of the nucleon wavefunctions in
the final state, σn, depends on the reaction mechanism for the specific reaction studied. For
example, for the breakup of 11Li projectiles at Elab � 300 MeV/nucleon, the neutrons acquire
a momentum spread of the order of σn � 20 MeV/c.

The spins of low-energy nucleons imply that they can be arranged into singlet (S = 0)

and triplet (S = 1) states. The spatial part of their wavefunction is symmetrized accordingly:

�(±)(p1, p2; Pc, pn) = A±{ψ1(p1; Pc, pn)ψ2(p2; Pc, pn) ± ψ1(p2; Pc, pn)ψ2(p1; Pc, pn)}.
(4)

This wavefunction is entangled and cannot be factorized into individual particle wavefunctions.
It will lead unavoidably to interferences which are visible if one observes the complete final
state. This non-local entanglement is an example of the EPR paradox. The plus (minus) sign
refers to S = 0 (S = 1) states, A± = [2(1 ± O2)]−1/2, where the overlap integral is given by
O = ∫

ψ∗
1 (p; Pc, pn)ψ2(p; Pc, pn) dp = exp

(−p2
n

/
8σ 2

n

)
. It does not depend on Pc. Thus, if

pn = 0 the final wavefunction, � , of the pair is 100% an S = 0 state, i.e., � = �(+). For
pn �= 0, the singlet and triplet states can both contribute to � .

The probabilities in equation (1) can be written as

P(p1; p2) =
∫

dσ

dpn dPc

{|�(+)(p1, p2; Pc, pn)|2 + M|�(−)(p1, p2, ; Pc, pn)|2 dPc dpn}, (5)

where M is the mixing parameter, determining the relative contribution of the triplet state,
and dσ/dPc dpn is the differential cross section for the process. The experiments in peripheral
collisions with unstable nuclei show that the momentum distributions are only slightly shifted
from Pc = 0 and that the shift is much smaller than the width of the recoil momentum
distribution. Thus, the correlation function is rather independent of the details of dσ/dPc dpn.
However, it is important to study the dependence of the correlation function on pn. We thus
replace Pc = 0 in the above formulae and perform the integration to obtain the correlation
function R(�p; pn). The result can be obtained analytically. For pure singlet (+), or pure
triplet (−), states one gets

R(±) = 2[g(x) ± 1][1 ± O2]

1 + 2O4 + g(x)O2 ± 8h(x)O5/2
− 1, (6)

where g = sinh(x)/x, h = sinh(x/2)/x and x = pn�p/2σ 2.
The results for R(+) (top figure) and R(−) (bottom figure) are shown in figure 1, as a

function of the variables �p/σn and pn/σn. One sees that the properties of the correlation
functions in the singlet and triplet states are completely different. When the differences of
the average momenta of the nucleons are small �p � σn, the correlation function is negative
only for the triplet state. It is −1 at �p = 0 for the triplet state, whereas it is close to zero for
the singlet state. While for the former case the correlation function crosses zero at two points,
it does not have a null point for the singlet case.

In figure 2 we show the case for which the final state is an admixture of triplet and singlet
states, as a function of the mixing parameterM, which appears in equation (5). The calculation
also leads to closed analytical expressions. The dotted, dashed and solid curves are obtained
for M = 0.1, 0.5 and 0.9, respectively. As one increases M the fingerprint of triplet states
in the final wavefunction becomes more and more visible. This means that measurements of
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Figure 1. Correlation functions for different values of the average momentum, pn. The top
(bottom) figure is for the singlet (triplet) state. The dotted, dashed and solid lines correspond to
pn/σn = 0.01, 0.1 and 0.5, respectively.
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Figure 2. Correlation functions for pn/σn = 0.5 and for different admixtures of singlet and triplet
states. The dotted, dashed and solid lines correspond to M = 0.1, 0.5 and 0.9, respectively. M is
the absolute contribution of the triplet state.

pair correlation functions should be able to discriminate the triplet and singlet configurations
in the final wavefunction.

The traditional idea of diproton radioactivity is due to the pairing effect. Two protons form
a quasiparticle (diproton) under the Coulomb barrier and this facilitates penetration. In a more
formal description, one has a system with two valence protons in the same shell and coupled to
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Figure 3. Relative energy distribution of two protons from the reaction p(6He, ppt). Calculations
are for triplet (T) and singlet (S) states. The dotted curve assumes no correlation in the pair
wavefunction.

J π = 0+. The method described above is directly applicable for determining the spin mixing
of final states in low-energy two-proton nuclear decay for 0+ −→ 0+ transitions. In this case
the final spin wavefunction of the pair equals that of the initial wavefunction. In particular,
when singlet states are identified, spin–spin coincidence experiments will generate dichotomic
outcomes for each single measurement. These can be tested using Bell’s inequalities for spin–
spin correlations along different spin-axes. Since not all the particles can be measured, one
would have to use a softer version of the Bell’s inequalities, as developed by Clauser and Horne
[7]. In the case of peripheral nuclear reactions this is not so simple. But, the entanglement of
the final wavefunction will also have notable consequences, as we show next.

Let us assume for simplicity the emission of a nucleon pair in a reaction involving halo
nuclei. For weakly bound nucleons one can assume that the reaction suddenly detaches the
pair from the core and that their intrinsic wavefunction is likely to be an entangled state. Their
wavefunction can be written in the form exp(ip1 · r1) exp(ip2 · r2) ± exp(ip2 · r1) exp(ip1 · r2).
This wavefunction leads to destructive, or constructive interferences. The cross section for the
reaction process will be given by

σ(P, q) = f (P, q, R)[1 ± cos(qR)], (7)

where q = p1 − p2, P is the recoil momentum of the centre of mass of the pair and R is
a parameter which describes the initial spatial localization of the nucleon pair. All other
features of the reaction mechanism are included in the function f (P, q, R). Thus, for qR � 1
one should be able to see a destructive interference for triplet final states and constructive
interference for singlet final states. In fact, this was clearly seen in an experiment dedicated
for studying the existence of the 5H nucleus [8]. The transfer reaction 1H(6He,2He)5H was
studied by detecting two protons emitted from the decay of 2He. The energy correlation of
the two protons was measured, as shown in figure 3. If we apply equation (7) to describe the
relative energy distribution of the two protons, we get

σ(Epp) ∝




√
Epp

[
1 + cos

(√
mNEpp/h̄2R

)]
, singlet√

Epp

[
1 − cos

(√
mNEpp/h̄2R

)]
, triplet√

Epp, uncorrelated.

(8)

In figure 3 we show the result of equations (8) together with the experimental data of
[8]. The solid, dashed and dotted curves correspond to singlet, triplet and uncorrelated states
of the proton pair, respectively. We used R = 4.6 fm as the size of the source region where
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the protons originate. The agreement with the experiment is quite poor, especially for large
relative energy of the pair. This is expected since we have neglected final state interactions
(e.g., Coulomb interaction). In [8] this spectrum was described theoretically by using the
Landau–Smorodinskii’s effective range approximation [9] for the protons with a scattering
length of app = −7.806 fm. However, it is important to note that the most important ingredient
is the assumption of a singlet or of a triplet state for the protons. As one easily sees from
figure 3 the spectrum is completely different in each situation. When no entanglement exists,
there is no interference and the spectrum also changes dramatically.

The examples discussed above involve nucleon pairs interacting with one or more particles.
Entanglement measures for general multiparticle systems are still under dispute [10]. However,
if the state of the whole system is a pure state, and the full system is being regarded as divided
into two subsystems, a convenient measure of entanglement is

Pn = Tr
{
ρ2

n(t)
} = Trn{[Trc(|�〉〈�|)]2}, (9)

where ρn is the reduced density operator of the nucleon pair subsystem, N, and |�〉 is the
wavefunction of the total system. Under these conditions, it can be shown [11] that this
quantity yields the same value regardless of the subsystem for which it is calculated, i.e.,
Pc = Pn ≡ P (the traces in equation (9) can be permuted). P is called the ‘purity’ since it
takes on its maximum value 1 if the subsystem is in a pure state. The more P deviates from 1
the larger is the error that would occur in treating the system as an entangled state. To illustrate
this point, let us consider the fragmentation of 11Li projectiles, as obtained in the experiment
[6].

The analysis of the experiment [6] was based on Hansen’s wounded wavefunction model
[12]. This method assumes that the collision is so fast that a piece of the initial wavefunction
is scraped off in the collision. This allows us to calculate the frozen momentum configuration
of the initial state by a Fourier transform of this wavefunction. One therefore assumes a 100%
entanglement of the remaining constituents of the nucleus. In the experiment [6] this was used
in the case of a knock-out reaction, where a neutron was removed from 11Li. The measurement
of the momentum distributions of the neutron and the 9Li fragment was used to deduce the
properties of 10Li. The nucleus 11Li is usually called a Borromean nucleus, meaning that both
the n–n, as well as the 10Li, subsystems are not bound. We now show that it is exactly this
property which is responsible for the successful interpretation of the experiment [6]. We use
equation (9) for the subsystems 10Li (c) and n–n (N).

We use the results of [13], where it was shown that the bound state properties of 11Li can
be obtained with a three-body model by using phenomenological potentials of the form

Vnn = Sn e−ρ2/b2
n , Vn9 = S1 e−λ2/c2

1 + S2 e−λ2/c2
2 , (10)

where

ρ = rn − rn′, λ = 1
2 (rn + rn′) − r9, (11)

are the Jacobian variables. The following potential parameters were used: (a) Sn = −31 MeV,
bn = 1.8 fm, to reproduce the low-energy scattering length and effective range of the n–n
system. (b) The set of values S1 = −7.0 MeV, c1 = 2.4 fm, S2 = −1.0 MeV, c2 = 3.0 fm,
reproduces the size and the binding of 11Li (∼0.3 MeV) quite reasonably.

In equation (9) one should insert all bound states of the subsystems to obtain the probability
that a measurement of the Hansen’s wavefunction would give an entangled 10Li nucleus.
However, there are no bound states in these systems. In fact, we note that the potentials
presented above barely bind the n–n and the 9Li subsystems. They yield the (negative)
scattering lengths, ann = −17.4 fm and an9 = −10.66 fm, respectively. These are large
values, reflecting almost bound states, with E � 0. Thus, one can estimate the value of the
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purity in equation (9) by replacing their respective wavefunction by a constant value within
11Li. This yields the particularly simple expression

P �
(

1

4π〈λ〉3/3

)1/2 (
1

4π〈ρ〉3/3

)1/2 ∫
dρ

{∫
dλ�11Li(ρ,λ)

}2

, (12)

where �11Li is the 11Li wavefunction in terms of the Jacobian variables and 〈ρ〉 = 3.3 fm and
〈λ〉 = 3.1 fm are the most probable values of the Jacobian coordinates. The 11Li wavefunction
in equation (12) is obtained from a variational calculation, as in [13]. We get P � 0.8 which
is very close to unity, thus proving our assertion.

In conclusion, we have shown that entangled states in nuclear decay and in reactions with
exotic nuclei is another route to study important problems of basic quantum mechanics interest,
such as the Einstein–Podolski–Rosen paradox. These studies would be complementary to
others performed in atomic physics. We have also shown that, due to the entanglement of
final states, simple correlation functions yield compelling evidence of the spin and momentum
states of the nuclear subsystems. The forthcoming RIA (Rare Isotope Accelerator) facility
will be an ideal laboratory to perform these studies [14].
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