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Abstract
I investigate the elastic electron scattering off nuclei far from the stability line.
The effects of the neutron and proton skins and halos on the differential cross
sections are explored. Examples are given for the charge distribution in Sn
isotopes and its relation to the neutron skin. The neutron halo in 11Li and
the proton halo in 8B are also investigated. Particular interest is paid to the
inverse scattering problem and its dependence on the experimental precision.
These studies are of particular interest for the upcoming electron ion colliders at
the GSI and RIKEN facilities.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The use of radioactive nuclear beams produced by fragmentation in high-energy heavy-ion
reactions leads to the discovery of halo nuclei, such as 11Li, about 20 years ago [1]. Nowadays a
huge number of β-unstable nuclei far from stability are being studied thanks to further technical
improvements. Unstable nuclei far from stability are known to play an important role in
nucleosynthesis. Detailed studies of the structure and their reactions will have unprecedented
impact on astrophysics [2].

The first experiments with unstable nuclear beams aimed at determining nuclear sizes
by measuring the interaction cross section in high-energy collisions [1]. Successive use of
this technique has yielded nuclear size data over a wide range of isotopes. Other techniques,
e.g. isotope-shift measurements, have allowed to extract the charge size. The growth of a
neutron skin with the neutron number in several isotopes has been deduced from nuclear- and
charge-size data [3].

The charge (nucleon) density distribution can also be determined by electron (hadron)
scattering experiments. Among hadron scattering, proton elastic scattering at intermediate
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energies is a good tool to probe the nucleon density distributions, due to its larger mean-free
path in the nuclear medium. But, undoubtedly, it is the electron scattering off nuclei that
provides the most direct information about charge distribution, which is closely related to the
spatial distribution of protons [4].

A technical proposal for an electron-heavy-ion collider has been incorporated in the
GSI/Germany physics program [5]. A similar program exists for the RIKEN/Japan facility
using self-confining radioactive ion targets (SCRITs) [6]. In both cases, the main purpose is
to study the structure of nuclei far from the stability line. The advantages of using electrons in
the investigation of the nuclear structure are mainly related to the fact that the electron–nucleus
interaction is relatively weak. For this reason, multiple scattering effects are usually small
and the scattering process is described in terms of perturbation theory. Since the reaction
mechanism in perturbation theory is well under control the connection between the cross
section and quantities such as charge distributions, transition densities, response functions, etc
is well understood [7].

Theoretically, the shape of the density distribution includes detailed information on the
internal nuclear structure. In the independent particle shell model, the density distribution
is the squared sum of the single-particle wavefunctions. No measurement of either nucleon
distribution or the charge distribution for short-lived radioactive nuclei has been made so far.

Under the impulse approximation, or plane wave Born approximation, the charge form
factor can be determined from the differential cross section of elastic electron scattering.
Since the charge distribution, ρch(r), is obtained from the charge form factor by a
Fourier transformation, one can experimentally determine ρch(r) by differential cross-section
measurements covering a wide range of momentum transfer q. This leads to information
on the size and diffuseness when the charge form factor is measured at least up to the first
maximum. To accomplish this with a reasonable measuring time of one week, a luminosity
larger than 1026 cm−2 s−1 is required, for example for the 132Sn isotope [5].

On the theoretical side, the difference between the proton and neutron distributions can
be obtained in the framework of Hartree–Fock (HF) method (see for example [8]) or Hartree–
Fock–Bogoliubov (HFB) method (see for example [9, 10]). As a rule of thumb, a theoretical
calculation of the nuclear density is considered good when it reproduces the data on elastic
electron scattering. But some details of the theoretical densities might not be accessible
in the experiments, due to poor resolution or limited experimental reach of the momentum
transfer q. Recent works have also looked at electron scattering from halo nuclei, see e.g.
[11–13].

In this work, I study the general features of elastic electron scattering off unstable nuclei.
Here, I focus on using the general features of what is theoretically known about skins and
halos to look for their respective signatures in the data. Only a few specific and representative
nuclear density cases are used. The paper is organized as follows. After a general introduction
of elastic electron scattering in section 2, I show in section 3 how the telltales of neutron
and proton skins and halos become visible in the differential cross sections for elastic electron
scattering. Section 4 presents a study of the inverse scattering problem, which poses a challenge
for extracting the charge-density profiles from the experimental data. The conclusions are
presented in section 5.

2. Elastic electron scattering

In the plane wave Born approximation (PWBA), the relation between the charge density and
the cross section is given by
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= σM

1 + (2E/MA) sin2(θ/2)
|Fch(q)|2, (1)

where σM = (e4/4E2) cos2(θ/2) sin−4(θ/2) is the Mott cross section, the term in the
denominator is a recoil correction, E is the electron total energy, MA is the mass of the
nucleus and θ is the scattering angle.

The charge form factor Fch(q) for a spherical mass distribution is given by

Fch(q) = 4π

∫ ∞

0
drr2j0(qr)ρch(r), (2)

where q = 2k sin(θ/2) is the momentum transfer, h̄k is the electron momentum and
E =

√
h̄2k2c2 + m2

ec
4. The low momentum expansion of equation (2) yields the leading

terms

Fch(q)/Z = 1 − q2

6

〈
r2

ch

〉
+ · · · . (3)

Thus, a measurement at low momentum transfer yields a direct assessment of the mean square
radius of the charge distribution,

〈
r2

ch

〉1/2
. However, as more details of the charge distribution

are probed more terms of this series are needed and, for a precise description of it, the form
factor dependence for large momenta q is needed.

A theoretical calculation of the charge density entering equation (2) can be obtained in
many ways. Let ρp(r) and ρn(r) denote the point distributions of the protons and the neutrons,
respectively, as calculated, e.g. from single-particle wavefunctions obtained from an average
one-body potential well, the latter in general being different for protons and neutrons. If
fEp(r) and fEn(r) are the spatial charge distributions of the proton and the neutron in the
non-relativistic limit, the charge distribution of the nucleus is given by

ρch(r) =
∫

ρp(r′)fEp(r − r′) d3r ′ +
∫

ρn(r′)fEn(r − r′) d3r ′. (4)

The second term on the right-hand side of equation (4) plays an important role in the
interpretation of the charge distribution of some nuclear isotopes. For example, the half-
density charge radius increases 2% from 40Ca to 48Ca, whereas the surface thickness decreases
by 10% with the result that there is more charge in the surface region of 40Ca than of 48Ca
[14]. This also implies that the rms charge radius of 48Ca is slightly smaller than that of 40Ca.
The reason for this anomaly is that the added f7/2 neutrons contribute negatively to the charge
distribution in the surface and more than compensate for the increase in the rms radius of the
proton distribution.

For the proton, the charge density fEp(r) in equation (4) is taken as an exponential
function, corresponding to a form factor f̃Ep(q) = (1 + q2/�2)−1 (see the appendix). For the
neutron, a good parametrization is f̃En(q) = −µnτ f̃Ep(q)/(1 + pτ), where µn is the neutron
magnetic dipole moment and τ = q2/4mN . We will use �2 = 0.71 fm−2 (corresponding to a
proton rms radius of 0.87 fm) and p = 5.6, which Galster et al [15] have shown to reproduce
electron–nucleon scattering data.

Equations (1)–(4) are based on the first Born approximation. They give good results
for light nuclei (e.g. 12C) and high-energy electrons. For large-Z nuclei the agreement with
experiment is only of a qualitative nature. The effects of distortion of the electron waves
have been studied by many authors (see, e.g., [16–18]). More important than the change in
the normalization of the cross section is the displacement of the minima. It is well known
that a simple modification can be included in the PWBA equation reproducing the shift of the
minima to lower q’s. One replaces the momentum transfer q in the form factor of equation (1)
with the effective momentum transfer qeff = q(1 + 3Ze2/2RchE), where E is the electron
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energy and Rch � 1.2A1/3 fm. This is because a measurement at momentum transfer q probes
in fact |F(q)|2 at q = qeff due to the attraction the electrons feel by the positive charge of
the nucleus. This expression for qeff assumes a homogeneous distribution of charge within a
sphere of radius Rch.

A realistic description of elastic electron scattering cross sections requires full solution
of the Dirac equation. The Dirac equation for elastic scattering from a charge distribution can
be found in standard textbooks, e.g., [19]. Numerous DWBA codes based on Dirac-distorted
waves have been developed and are public. Since the inclusion of Coulomb distortion is
straightforward, we will concentrate on the information which can be extracted from elastic
electron scattering, which is encoded in the form factor of equation (2). Later we will study
the problem of extracting the full nuclear density from the form factor. For simplicity, we will
also neglect the effect of the charge distribution of the neutron itself. This effect is particularly
important for large q-transfers. For heavy nuclei it can change |Fch(q)|2 by 10–20% in the
q-range of 1.5–2 fm−1.

3. Skins and halos

3.1. Neutron skins

Appreciable differences between neutron and proton radii are expected [20] to characterize
nuclei at the border of the stability line. The liquid drop formula expresses the binding energy
of a nucleus with N neutrons and Z protons as a sum of bulk, surface, symmetry and Coulomb
energies E/A = aV A−aSA

2/3 −S(N −Z)2/A−aCZ2/A1/3 ∓apA−1/2, where aV , aS, ap, S

and aC are parameters fitted to experimental data of binding energy of nuclei. This equation
does not distinguish between surface (S) and volume (V ) symmetry energies. As shown in [21],
this can be achieved by partitioning the particle asymmetry as N − Z = NS − ZS + NV − ZV .
The total symmetry energy S then takes the form S = SV (NV −ZV )2/A+SS(NS −ZS)

2/A2/3.
Minimizing under fixed N − Z leads to an improved liquid drop formula [21] with the term
S(N − Z)2/A replaced by

SV

(N − Z)2

A[1 + (SV /SS)A−1/3]
. (5)

The same approach also yields a relation between the neutron skin Rnp = Rn − Rp and
SS, SV , namely [21],

Rn − Rp

R
= A

6NZ
(NS − ZS) = A

6NZ

N − Z − (aC/12SV )ZA2/3

1 + (SS/SV )A1/3
, (6)

where R = (Rn + Rp)/2 and Rn (Rp) is the half-density neutron (proton) distribution radius.
Here, the Coulomb contribution is essential, e.g. for N = Z the neutron skin Rnp is

negative due to the Coulomb repulsion of the protons. A wide variation of values of SV and
SS can be found in the literature. These values have been obtained by comparing the above
predictions for energy and neutron skin to theoretical calculations of nuclear densities and
experimental data on other observables [21, 22]. The values of aC = 0.69 MeV and SV =
28 MeV, which will be used here, are compatible with fits of the binding energy and symmetry
energy of known nuclei [22]. Using these values and R = 1.2A1/3 fm, one gets, for large A

(with A � 1, NZ � A2/4),

Rnp = Rn − Rp � 0.8

(
SV

SS

)
(δ − 2.05 × 10−3ZA−1/3) fm, (7)

where δ = (N − Z)/A is the asymmetry parameter. The ratio SV /SS varies within the range
2 � SS/SV � 3 by adjusting equation (6) to the dependences of skin sizes on asymmetry and
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Figure 1. The charge form factor squared for elastic electron scattering off tin isotopes, as a
function of the momentum transfer. The two curves are for the extreme values of the asymmetry
parameter δ = (N − Z)/A, that is δ = 0 (N = Z = 50) and δ = 4/9 (N = 90). The curves form
an envelope around other curves with intermediary values of δ.

on the neutron–proton separation-energy difference constraints [22]. If one assumes that the
central densities for neutrons and protons are roughly the same and that they are both described
by a uniform distribution with sharp-cutoff radii, Rn and Rp, one finds Rnp � 0.8A1/3δ fm.
This shows that the sharp sphere model is too simple and that in this model the central densities
for proton and neutrons have to differ if equation (6) is to remain valid.

On the experimental front, a study of antiprotonic atoms published in [23] obtained the
following fitted formula for the neutron skin of stable nuclei in terms of the root-mean-square
(rms) radii of protons and neutrons:


rnp = 〈
r2
n

〉1/2 − 〈
r2
p

〉1/2 = (−0.04 ± 0.03) + (1.01 ± 0.15)δ fm. (8)

The relation of the mean square radii with the half-density radii for a Fermi distribution is
roughly given by

〈
r2
n

〉 = 3R2
n

/
5 + 7π2a2

n

/
5, where an is the diffuseness parameter. For heavy

nuclei, assuming an = ap � Rn,Rp, one gets approximately the same linear dependence on
the asymmetry parameter as in equation (7) (neglecting the small contribution of the A−1/3

term).
In this work, we will use equation (8) as the starting point for accessing the dependence

of electron scattering on the neutron skin of heavy nuclei. Applying it to calcium isotopes
as an example, one obtains that the neutron skin varies from −0.15 fm for 35Ca (proton rich
with negative neutron skin) to 0.25 fm for 53Ca. A negative neutron skin obviously means an
excess of protons at the surface. For unstable nuclei no study as the one leading to equation (8)
is experimentally available. Nucleon knockout reactions with secondary unstable nuclear
beams, and other techniques, have been used to determine the interaction radii of neutron-rich
nuclei [1]. These radii are thought to represent the extension of the neutron distribution. But
very little is known about the charge distribution in neutron-rich nuclei.

For heavy nuclei, the charge and neutron distributions can be described by a Fermi
distribution. The diffuseness is usually much smaller than the half-density radius, ap,n � Rp,n.
The neutron skin is then given by Rnp = Rn − Rp � √

5/3
rnp. We assume further that
the nuclear charge radius is represented by Rp = 1.2A1/3 fm − Rnp/2 with 
rnp given by
equation (8). Figure 1 shows the charge form factor squared for elastic electron scattering off
tin isotopes, as a function of the momentum transfer. The two solid curves are for the extreme
values of the asymmetry parameter δ = (N −Z)/A, that is δ = 0 (N = Z = 50) and δ = 4/9
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Figure 2. Position of the first minimum q1 for elastic electron scattering off calcium, tin and
uranium isotopes, as a function of the asymmetry parameter δ.

(N = 90). The curves form an envelope around other curves with intermediary values of δ.
The first and second minima of the form factors occur at q1 = 4.49/Rp and q2 = 7.73/Rp,
respectively, corresponding to the zeros of the transcendental equation tan(qRp) = qRp.

Using the approximations discussed in the above paragraph, i.e. Rp = 1.2A1/3 fm−Rnp/2
with 
rnp, Rnp = 
rnp, and the experimental value given in equation (8), we conclude that
the linear dependence of Rp with the neutron skin (and with the asymmetry parameter δ) also
implies a linear dependence of the position of the minima:

q1 � 3.74

A1/3

[
1 − 0.535

(N − Z)

A4/3

]−1

fm−1 and q2 = 1.72q1. (9)

For 100Sn, the first minimum is expected to occur at q1 = 0.806 fm−1 = 159 MeV/c, while
for 132Sn it occurs at q1 = 0.754 fm−1 = 149 MeV/c.

Figure 2 shows the value of q1 for calcium, tin and uranium isotopes, as a function of the
asymmetry parameter δ. The variation of q1 with the neutron skin of neighbouring isotopes,

q1 � 2/A8/3 fm−1, is too small to be measured accurately. The first minimum, q1, changes
from 220 MeV/c for 35Ca to 204 MeV/c for 53Ca, approximately 7%, which is certainly
within the experimental resolution. Of course, sudden changes of the neutron skin with δ

might happen due to shell closures, pairing and other microscopic effects.
To be more specific, let us assume that a reasonable goal is to obtain accurate results for

the charge radius
〈
r2
p

〉1/2
, so that δ

〈
r2
p

〉1/2
< 0.05 fm. This implies that the measurement of

q1 has to be such that (
q1/q1) < q1 (fm−1)%, with q1 in units of fm−1 and the right-hand
side of the inequality yielding the per cent value. For 53Ca, one has q1 = 1.11 fm−1, meaning
that the experimental resolution on the value of q1 has to be within 1% if δ

〈
r2
p

〉1/2
< 0.05 fm

is a required precision. The situation improves for heavier nuclei, as becomes evident from
figure 2.

The neutron skin dependence is also seen in the height of the second bump, after the
first minimum. This bump occurs at qm � 6/Rp. For a Woods–Saxon density this peak
will be reduced compared to the first maximum by a factor [g(qma)/12]2, where g(qma) is
a function of the diffuseness parameter a. g is closely given by the Fourier transform of
a Yukawa function, its value at qma is of the order of 1/2 and its variation around qm is
weak, g(qa) ∼ 1/(1 + q2a2) (see the appendix). Thus, the dependence of the height of the
second maximum upon the neutron skin is a less appropriate tool than the location of the first
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Figure 3. Form factor, |F(q)|2/A2, for 11Li showing the individual contributions of the core and
of the halo nucleons. The dotted (halo), dashed (core) and solid (total) curves are form factors for
the matter distribution. The dashed-dotted curve is the charge form factor, |Fch(q)|2/Z2.

minimum. Of course, the ultimate test of a given theoretical model will be a good reproduction
of the measured data, below and beyond the first minimum.

3.2. Neutron halos

For light halo nuclei composed of a core nucleus and an extended distribution of halo nucleons,
the nuclear matter form factor can be fitted with the simple expression

F(q)/A = (1 − g) exp
(−q2a2

1

/
4
)

+
g

1 + a2
2q

2
, (10)

where g is the fraction of nucleons in the halo. In this expression, the first term follows from
the assumption that the core is described by a Gaussian and the second term assumes that the
halo nucleons are described by a Yukawa distribution (see the appendix). Taking 11Li as an
example, the following set of parameters can be used g = 0.18, a1 = 2.0 fm and a2 = 6.5 fm.
This means that g = 2/11 nucleons are in the halo, the size of the core is roughly 2 fm and the
size of the halo is 6.5 fm. Although only few nucleons are in the halo they change dramatically
the shape of the form factor, as shown in figure 3. The dashed-dotted curve is the squared
charge form factor. The dotted curve applies for the matter density of the halo neutrons.
When the core (dashed curve) and halo nucleon distributions are combined, the squared form
factor for the total matter distribution (solid curve) clearly displays the halo signature. Thus,
even when the individual contribution of the halo nucleons is small and barely visible in
a linear plot of the matter distribution, it is very important for the form factor of the total
matter distribution. It is responsible for the narrow peak which develops at low momentum
transfers. This signature of the halo was indeed the motivation for the early experiments
with radioactive beams. The narrow peak was observed in momentum distributions following
knockout reactions [1].

Elastic electron scattering will not be sensitive to the narrow peak of |F(q)|2 (matter
distribution form factor) at small momentum q, but to the charge distribution form factor,
|Fch(q)|2, which in the case of 11Li will be similar to the dashed-dotted curve in figure 3. The
determination of this form factor will tell us if the core has been appreciably modified due to
the presence of the halo nucleons. It is worthwhile mentioning that many of what we call core
nuclei are also short lived and very little is known about their charge distribution.
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In order to explain the spin, parities, separation energies and size of exotic nuclei
consistently, a microscopic calculation is needed. One possibility is to resort to a Hartree–
Fock (HF) calculation. Unfortunately, the HF theory cannot provide the predictions for the
separation energies within the required accuracy of 100 keV. Here, we use a simple and
tractable HF method [25] to generate synthetic data for the charge distribution of 11Li. Details
of this method is described in [26]. Assuming spherical symmetry, the equation for the Skyrme
interaction can be written as[

−∇ h̄2

2m∗(r)
∇ + V (r)

]
ψi(r) = εiψi(r) (11)

where m∗(r) is the effective mass. The potential V (r) has a central, a spin–orbit and a
Coulomb term:

V (r) = Vcentral + Vspin−orbit + VCoulomb. (12)

The central potential is multiplied by a constant factor f only for the last neutron configuration:

Vcentral(r) = f VHF(r),

{
f �= 1 for last neutron configuration
f = 1 otherwise.

(13)

Thus, the last neutron configuration (last orbits) is treated differently from the other orbits
in the HF potential in order to reproduce the neutron separation energy of the neutron-rich
nucleus. The factor f in equation (13) is arbitrary (f = 0.82 for the last neutrons in 11Li
[25]). It roughly scales with the inverse of the fraction of nucleons in the halo and simulates a
weaker potential at the halo region. This model was successful to explain most features of the
light-neutron-rich nuclei [25, 27]. It can also explain the magnitude of the nuclear sizes. In
order to obtain the nuclear sizes, the rms radii of the occupied nucleon orbits are multiplied by
the shell model occupation probabilities, which are also obtained in the calculations. The final
radius is obtained by adding the core radius. It is important to note that the physics of 11Li is
not treated very well because of the pairing interaction. This is needed to make 11Li bound
while 10Li is unbound. In this aspect, the model adopted here is only useful as a qualitative
tool.

As the effective interaction, a parameter set of the density-dependent Skyrme force, the
so-called BKN interaction [30], is adopted. The parameter set of BKN interaction has the
effective mass m∗/m = 1 and gives realistic single-particle energies near the Fermi surface in
light nuclei. The original BKN force has no spin–orbit interaction. In the present calculations,
I introduce the spin–orbit term in the interaction so that the single-particle energy of the last
neutron orbit becomes close to the experimental separation energy. In this way, the asymptotic
form of the loosely bound wavefunction becomes realistic in the neutron-rich nucleus. The
large rms radii of the valence neutron orbits are attributed to the small separation energy.
The calculated value is enough to create the halo structure in the HF wavefunctions. In 11Li,
the last occupied orbits are taken to be 1p1/2 and 2s1/2.

We took the cut-off radius of HF calculation to be R = 40 fm which is necessary to include
properly the loosely bound nature of the neutron wavefunction. The separation energy for the
valence nucleons is S2n(theo) = 0.274 MeV, which is to be compared with the experimental
one S2n(exp) = 0.247 ± 0.080 MeV [28]. The column indicated by jhalo in table 1 displays
the most probably occupied orbits. The final radius is obtained by adding the core radius and
is given in the row indicated by SM.

The elastic form factor for the matter distribution obtained in the HF calculations is very
close to the ones calculated by the empirical formula (10). In figure 3, we show the charge
form factor, |Fch(q)|2, by a dashed-dotted line. There is very little difference from the simpler
empirical parametrization of equation (10). The lack of minima, and of secondary peaks
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Figure 4. Form factor squared for 8B showing the contribution of neutron, |F(q)|2/N2 (dashed),
charge, |F(q)|2/Z2 (dotted) and total, |F(q)|2/A2 (solid) matter distribution of nucleons.

Table 1. Single-particle properties of 11Li. The second column gives the spins of the most probable
occupied orbits. The third column is the result of HF calculations for the rms radii associated with
these orbits and the last column gives the rms radii of the matter distribution of these nuclei.

jhalo

√
〈r2〉cal (fm)

√
〈r2〉exp (fm)

9Li (core) 2.45 2.43 ± 0.07a

11Li 1p1/2 5.36
2s1/2 7.61

SM 3.26 3.62 ± 0.19a

a From [29].

(as in equation (10), makes it difficult to extract from |Fch(q)|2 more detailed information on
the charge-density profile. Parametrizations like equation (10) which apparently lack a sound
physical basis are not particular to loosely bound nuclear systems. For example, in the case
of 6Li a good fit to experimental data was obtained with [31]

|Fch(q)|2 ∝ exp(−a2q2) − Cq2 exp(−b2q2),

with a = 0.933 fm, b = 1.3 fm and C = 0.205. However, the data [31] cannot be fitted by
using a model in which the nucleons move in a single-particle potential.

3.3. Proton halos

Here, I will consider 8B as a prototype of proton halo nucleus. This nucleus is perhaps the
most likely candidate for having a proton halo structure, as its last proton has a binding energy
of only 137 keV. The charge density for this nucleus can be calculated in the framework of the
Skyrme HF model. We will use here the results obtained in [32], where axially symmetric HF
equations were used with SLy4 [33] Skyrme interaction which has been constructed by fitting
the experimental data on radii and binding energies of symmetric and neutron-rich nuclei.
Pairing correlations among nucleons have been treated within the BCS pairing method. The
form factor squared for the charge density in 8B is shown in figure 4, normalized to mass
number for matter distribution and to charge number for charge distribution.

The width of the charge form factor squared corresponding to the plot in figure 4 is

ch = 0.505 fm−1 = 99.6 MeV/c. The corresponding values for the form factors for
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Figure 5. A spherical shell with radius r from the centre of the nucleus will have a contribution
from the charge inside a nucleon located at a distance R.

neutron and total matter distributions are, respectively, 
n = 0.512 fm−1 = 101 MeV/c and

tot = 0.545 fm−1 = 108 MeV/c. This amounts to an approximately 10% difference between
matter and charge form factors in 8B.

The proton halo in 8B is mainly due to the unpaired proton in the p3/2 orbit. It is clear that
for such a narrow halo the size of the nucleon also matters. The relevance of the nucleon size
is shown in figure 5 where a slice of the nucleon is included in a thin spherical shell of radius
r and thickness dr from the centre of the nucleus. If the position of the nucleon is given by R,
the part of the proton charge included in the spherical shell is given by

dρch = 2πr2 dr

∫ π

0
dθρp(x) sin θ, (14)

where ρp(x) is the charge distribution inside a proton at a distance x from its centre. The
coordinates are shown in figure 5. They are related by x2 = r2 + R2 − 2rR cos θ . The
contribution to the nuclear charge distribution from a single proton in this spherical shell is
thus given by N p(R, r) = dρch/4πr2 dr .

Assuming that the charge distribution of the proton is described either by a Gaussian or a
Yukawa form, the integral in equation (14) can be performed analytically, yielding

N (G)
p (R, r) = 1

4π1/2arR




1

π

{
exp

[
− (R − r)2

a2

]
− exp

[
− (R + r)2

a2

]}
,

for a Gaussian distribution

1

2

{
exp

[
−|R − r|

a

]
− exp

[
−|R + r|

a

]}
,

for a Yukawa distribution,

(15)

where a is the proton radius parameter.
The charge distribution at the surface of a heavy proton-rich nucleus, δρch(r), may be

described as a pile-up of protons forming a skin. Let ni be the number of protons in the skin
and Ri their distance to the centre of the nucleus. One gets

δρch(r) =
∑

i

niNp(r, Ri). (16)

Assuming Ri to be constant, equal to the nuclear charge radius R, and using equations (15), it
is evident that while the density at the surface increases its size R and width a remain unaltered.
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Figure 6. The charge form factor squared of 8B (solid line), |F total
ch (q)|2/52. Also shown is the

charge form factor squared due only to the valence halo proton, |F halo
ch (q)|2/12.

The form factor associated with this charge distribution is given by

δFch(q) = 4π

q

∑
i

ni

∫ ∞

0
drrNp(r, Ri) sin(qr) = exp(−qa2)

∑
i

ni

sin(qRi)

qRi

, (17)

where the last result is for the Gaussian distribution. An analytical expression can also be
obtained for the Yukawa distribution. For Ri = R, expression (17) shows that the increase of
density in the skin does not change the shape of the form factor, or of the cross section, but
just its normalization. The decrease of the form factor with q is determined by a alone and
not by ni . If the charge of additional protons is distributed homogeneously across the nucleus
including the skin, the form factor will not change appreciably, except for a small change
in R.

For a proton halo nucleus, it is more appropriate to replace
∑

i ni →
4π

∫
dRR2Np(r, R)δρch(R), where δρch(R) is the density change created by the extended

wavefunction of the halo protons. We then recast equation (17) in the form

δFch(q) = 4π

q
exp(−qa2)

∫ ∞

0
dRRδρch(R) sin(qR). (18)

The shape of the form factor is here dependent not only on the proton size but also on the details
of the halo density distribution. For 8B, the halo size is determined by the valence proton in
a p3/2 orbit. The density δρch(R) due to this proton can be calculated with a Woods–Saxon
model. Using the same potential parameters as in [34], we show in figure 6 the form factor
|δFch(q)|2 compared to the charge form factor |Fch(q)|2 of figure 4. It is evident that the halo
contributes to a narrow form factor. However, in contrast to the neutron halo case shown in
figure 3, the charge form factor of 8B does not show a pronounced influence of the halo charge
distribution.

The low-energy expansion of the form factor, equation (3), allows the extraction of the
rms radius of the charge distribution from〈

r2
ch

〉 = −6

[
dFch

d(q2)

]
q2=0

. (19)

Applying this relationship to the charge form factor used in figure 6 we get
〈
r2

ch

〉1/2 =
2.82 fm which is close to the experimental value

〈
r2

ch

〉1/2
exp = 2.82 ± 0.06 fm [35]. The shape of

the charge form factor can also be described by a Gaussian distribution with radius parameter
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a = 2.30 fm. In contrast to the case of 11Li seen in figure 3, the proton halo in 8B does not
seem to build up a two-Gaussian-shaped form factor. This observation also seems to be in
contradiction with the momentum distributions of 7Be fragments in knockout reactions using
8B projectiles in high-energy collisions [24]. Electron scattering experiments will help to
further elucidate this property of proton halos.

3.4. Comparison with inelastic scattering

Loosely bound nuclei easily undergo breakup under any excitation. Such inelastic processes
will always accompany elastic scattering. We follow the equations obtained in [36] to make a
crude estimate of the effects of inelastic electron scattering off loosely bound nuclei.

The inelastic cross section for the electro-excitation of loosely bound nuclei is given by
[36]

dσinel

d� dEx

= 48
√

2

π

e2
[
e
(1)
eff

]2
p2

h̄2µc2

1

q2

√
Sn(Ex − Sn)

3/2

E4
x

, (20)

where Ex is the excitation energy, � denotes the scattering solid angle, e is the electron charge,
e
(1)
eff is the electric effective charge for the nuclear response (I will assume for simplicity that

e
(1)
eff = Ze) and Sn is the nuclear breakup energy. p is the electron momentum, q is the

momentum transfer and µ is the reduced mass, where it is assumed that the nucleus is
composed of two clusters.

We now integrate this equation over the excitation energy Ex and obtain

dσinel

d�
= 3

√
2

4

Z2e4

Snµc2

1

sin2(θ/2)
. (21)

This equation is valid for large electron energies, so that E � mec
2, and for small scattering

angles, for which the approximation h̄q ≈ 2p sin(θ/2) can be used. In fact, the minimum
momentum transfer for an excitation energy Ex is given by qmin = 
k ∼= Ex/h̄c. Thus, the
inelastic cross section tends to a maximum value at very small scattering angles (in contrast,
the elastic scattering cross section increases indefinitely at small angles). Equation (21)
gives the behaviour of the inelastic cross section when it starts to decrease with angle, shortly
after the maximum at zero degrees. A characteristic feature emerging from equation (21) is
that the inelastic cross section is proportional to the inverse of the separation energy Sn.

From equation (1), neglecting nuclear recoil, one gets for the elastic scattering cross
section dσel/d� = Z2e4/4E2 sin4(θ/2). The ratio between elastic and inelastic cross sections
for small scattering angles is thus given by

dσel

dσinel
= 1

3
√

2

Snµc2

E2

1

sin2(θ/2)
. (22)

This shows that the elastic scattering dominates over inelastic scattering for θ � θmax ≈√
Snµc2/E. Adopting typical values, i.e. E = 100 MeV, Sn = 1 MeV and µc2 = 103 MeV,

one gets θmax ≈ 1/3 radians. For E = 1 GeV, this value reduces to θmax ≈ 1/30 radians. These
are kinematical constraints which have to be taken into account in future electron scattering
experiments.

4. Inverse scattering problem

In PWBA the inverse scattering problem can be easily solved. It is possible to extract the form
factor from the cross section and then, with an inversion of the Fourier transform, to get the
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charge-density distribution

ρch(r) = 1

2π2

∫ ∞

0
dqq2j0(qr)Fch(q). (23)

As we discussed in the previous sections, the PWBA approximation can be justified only for
light nuclei (e.g. 12C) in the region far from the diffraction zeros. For higher Z values the
agreement with experiment is only of a qualitative nature.

It is very common in the literature to use a theoretical model for ρch(r), e.g. the
HF calculations discussed in the previous sections and compare the calculated F(q) with
experimental data. When the fit is ‘reasonable’ (usually guided by the eye), the model is
considered a good one. However, whereas the theoretical ρch(r) can contain useful information
about the central part of the density (e.g. bubble-like nuclei, with a depressed central density),
an excellent fit to the available experimental data does not necessarily mean that the data are
sensitive to those details. The obvious reason is that short distances are probed by larger
values of q. Experimental data from electron–ion colliders will suffer from limited accuracy
at large values of q, possibly beyond q = 1 fm−1. Thus, it is useful to identify what are the
conditions for reproducing the nuclear density within a theory-independent fit.

In order to obtain an unbiased ‘experimental’ ρch(r), one usually assumes that the density
is expanded as

ρch(r) =
∞∑

n=1

anfn(r), (24)

where the basis functions fn(r) are drawn from any convenient complete set and the
expansion coefficients an are adjusted to reproduce the differential elastic cross section. The
corresponding Fourier transform then takes the form

ρ̃(q) ≡ Fch(q) =
∞∑

n=1

anf̃n(q), (25)

where

f̃n(q) = 4π

∫ ∞

0
drr2j0(qr)fn(r) (26)

represents basis functions in momentum space.
Evidently, the sum in equation (24) has to be truncated and this produces an error in

the determination of the charge-density distribution. Another problem is that, as shown by
equation (23), the solution of the inverse scattering problem requires an accurate determination
of the cross section up to large momentum transfers. Electron scattering experiments in
electron–ion colliders will be performed within a limited range of q and this will produce an
uncertainty in the determination of the charge-density distribution. As we have discussed in
the previous sections, the measurements have to encompass the first few minima of the cross
section for heavy nuclei in order that the density profile can be mapped.

We consider two bases that have been found useful [37] in the analysis of electron or
proton scattering data. The present discussion is limited to spherical nuclei, but generalizations
to deformed nuclei can be done. The Fourier–Bessel (FB) expansion (i.e. with fn taken as
spherical Bessel functions) is useful because of the orthogonality relation between spherical
Bessel functions:∫ Rmax

0
drr2jl(qnr)jl(qmr) = 1

2
R3

c [jl+1(qnRmax)]
2δnm, (27)

where qn are defined such as

jl(qnRmax) = 0. (28)
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The FB basis implies that the charge density ρch(r) should be zero for values of r larger than
Rmax. For example, the basis can be defined as follows:

fn(r) = j0(qnr)(Rmax − r), f̃n(q) = 4π(−1)nRmax

q2 − q2
n

j0(qRmax), (29)

where  is the step function, Rmax is the expansion radius and qn = nπ/Rmax.
In principle, it is possible to obtain the an coefficients measuring directly the cross section

at the qn momentum transfer. If the form factor (2) is known at qn, the coefficients an can be
obtained inserting (27) and (29) into the definition (2) of the form factor, leading to

an = Fch(qn)

2πR3
max[j1(qnRmax)]2

. (30)

In general, the cross sections are measured at q values different from qn. Using the
expansion (29) of the charge density, one finds for the form factor the relation

Fch(q) = 4π

q

∑
n

an

(−1)n

q2 − q2
n

sin(qRmax). (31)

By fitting the experimental Fch(q) one obtains the an parameters and reconstruct the nuclear
charge density. Not all an’s are needed. Since the integral of the density, or F(q = 0), is
fixed to the charge number there is one less degree of freedom. Also, densities tend to zero at
large r. Thus another condition can be used, e.g. that the derivative of the density is zero at
Rmax. Thus, when we talk about n expansion coefficients one means in fact that only n − 2
coefficients need to be used in equation (31). For experiments performed up to qmax, the
number of expansion coefficients needed for the fit is determined by nmax � qmaxRmax/π .

A disadvantage of the FB expansion is that a relatively large number of terms are often
needed to accurately represent a typical confined density, e.g. for light nuclei. One can
use other expansion functions which invoke less number of expansion parameters, e.g. the
Laguerre–Gauss (LG) expansion,

fn(r) = e−α2
L1/2

n (2α2) and f̃n(q) = 4π3/2β3(−1)ne−γ 2
L1/2

n (2γ 2),

where α = r/β, γ = qβ/2 and L
p
n is the generalized Laguerre polynomial. Another possibility

is to use an expansion on Hermite (H) polynomials. In both cases, the number of terms needed
to provide a reasonable approximation to the density can be minimized by choosing β in
accordance with the natural radial scale. For light nuclei β = 1 − 2 fm can be chosen,
consistent with the parametrization of their densities. Then, the magnitude of an decreases
rapidly with n, but the quality of the fit and the shape of the density are actually independent
of β over a wide range. As shown by application to a few cases, the main information on skin
and halo sizes can be obtained using the FB expansion without problems.

Figure 7 shows the charge form factor squared for a Fermi function distribution with
half-density radius R = 5.2 fm and diffuseness a = 1.2 fm (solid line). The dotted line is
obtained with the FB expansion, equation (31), up to n = 6. The dashed curve uses up to
n = 8. One clearly sees that the latter improves the fit to the form factor up to the third
minimum by increasing n = 6 to n = 8. We use Rmax = 15 fm, so that adding the n = 8
term improves the fit of the distribution including the peak at q � 1.75 fm−1, as seen in the
figure.

For real data, the expansion coefficients an are obtained by minimizing

χ2 =
∑

i

(
yi − y(qi, an)

σi

)2

,
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Figure 7. Form factor squared for a Fermi function charge distribution with half-density radius
R = 5.2 fm and diffuseness a = 1.2 fm (solid line). The dotted line is obtained with the FB
expansion, equation (31), up to n = 6. The dashed curve uses up to n = 8.
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Figure 8. Hartree–Fock charge density of 8B (solid line). The dashed and dotted lines are the
solution of the inverse scattering problem using a Fourier–Bessel expansion with n = 10 and
n = 14 terms, respectively.

where y(qi, an) is the fitted value of the cross section (form factor) with a set of coefficients
an and yi are the experimental data at momentum qi with uncertainty σi .

To check the limitations of this procedure, we generate a set of pseudodata for 8B. The
calculated charge form factor of figures 4 and 6 is used to generate 40 data points equally
spaced by 
q = 0.02 fm−1. These data were given an uncertainty σi linearly increasing with
qi , from 1% for qi = 0.02 fm−1 to 20% for qi = 0.82 fm−1.

The best fit, with Rmax = 10 fm, is obtained with n = 10 expansion coefficients.
Increasing the number of coefficients does not improve the quality of the fit, as shown in
figure 8 for n = 14. It only produces more oscillations of the density. The reason is that
terms with larger n’s are only needed to reproduce the data at larger values of momentum
transfer, as shown in figure 7. The fit to the data for q < qmax is not affected but the presence
of these new terms introduces oscillations in the charge distribution. A possible fix to this
problem is to include pseudodata in addition to experimental data. This method is well known
in the literature [37]. The pseudodata are used to enforce constraints and to estimate the
incompleteness error associated with the limitation of experimental data to a finite range of
momentum transfer.
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5. Conclusions

In this work I have studied the electron scattering off light unstable nuclei. This work is
complementary to previous works in this area (see, e.g., [10–13]). Particular attention was
given to the effect of the neutron (proton) skin on the scattering form factors. It was shown
that the position of the first minimum is arguably the best signature to look for noticeable
changes in the charge radius size.

The evidence of a proton halo is not so clear as in the case of other probes. For example, it
is well known that 7Be fragments arising from the proton knockout of 8B projectiles display a
distinctively narrow momentum distribution characteristic of a long tail of the valence proton
in 8B [24]. This feature is a consequence of the peripheral character of the knockout process,
which is ideal to probe the tail of the bound states. Nonetheless, due to the Coulomb barrier
the bulk of the charge in the nucleus is confined close to its centre. Electron scattering is
sensitive to this bulk charge and therefore does not display such a strong halo signature.

The minimum information obtained with electron scattering in electron–ion colliders will
be the rms charge radius,

〈
r2

ch

〉1/2
. This information ‘per se’ is very valuable. It is sensitive to

the skin size in a heavy nucleus. But it also depends on the accuracy with which this quantity
can be measured. As we have shown in the previous sections, it will be necessary to go beyond
the first minimum to extract information about the central value of the charge density.

Accurate measurements at large momentum transfers are crucial if one wants to describe
the matter distribution with confidence and have a good comparison with predictions of
different theoretical models. I have shown with a few basic examples using the Fourier–
Bessel expansion method that, whereas the matter distribution within the halo is well probed
by measurements at small momentum transfers, the details of the central distribution requires
measurements at large q’s where inelastic processes may play an important role. This again
imposes constraints on the information that can be extracted from elastic electron scattering
off halo nuclei.
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Appendix. Analytical form factors

Here, I summarize the analytical expressions for the charge form factors which are used in
this work. For the nuclear charge density given by a hard sphere (uniform distribution with
sharp cutoff at R)

ρ(r) =
{
ρ0 for r � R

0, otherwise,
(A.1)

the form factor is

F(q) = 4πρ0

q3
[sin(qR) − qR cos(qR)]. (A.2)

For a Yukawa distribution, ρ(r) = ρ0 e−r/a(a/r), one gets

F(q) = 4πρ0a
3

1 + a2q2
.
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Figure 9. Comparison between form factors of a convoluted Fermi–Yukawa distribution calculated
numerically using equation (A.4) (solid lines) or with the analytical equation (A.5) (dashed lines).

The symmetrized Fermi distribution [39]

ρ(r) = ρ0
cosh(R/a)

cosh(R/a) + cosh(r/a)

leads to the form factor [40]

F(q) = −4π2ρ0a

q

cosh(R/a)

sinh(R/a)

[
R cos(qR)

sinh(πqa)
− πd sin(qR) cosh(πqa)

sinh2(πqa)

]
.

The above expression is composed of oscillating terms damped by exponentials. This is better
seen taking the limit for qa � 1:

F(q) � −4π2ρ0a

q
[R cos(qR) − πa sin(qR)] e−πqa. (A.3)

The Fermi distribution

ρ(r) = ρ0/[1 + exp{(r − R)/a}] (A.4)

with central density ρ0, radius R and diffusiveness a gives a good description of the densities of
heavy nuclei. This distribution can be fitted by the convolution ρ(r) = ∫

d3r ′ρp(r)ρA(r − r′)
of a hard sphere for ρA(r − r′) and a Yukawa function [38] for ρp(r). The advantage is that
the form factor factorizes, F(q) = Fp(q)FA(q), and can be calculated analytically as

F(q) = 4πρ0

q3
[sin(qR) − qR cos(qR)]

[
1

1 + q2a2
Y

]
. (A.5)

The term inside the first parentheses comes from the hard sphere (uniform distribution
with sharp cutoff at R) and the second parentheses is the damping term due to a Yukawa
diffuseness surface with width aY . Figure 9 compares F(q) of equation (A.5) with that
obtained with the numerical integration of a two-point Fermi density distribution, equation
(A.4). R = 3.07 fm, a = 0.519 fm are the parameters for Al; R = 4.163 fm,
a = 0.606 fm for Cu; R = 5.412 fm, a = 0.560 fm for Sn; R = 6.43 fm, a = 0.541 fm
for Au and R = 6.62 fm, a = 0.546 fm for Pb (to simplify the figure, I did not plot the curves
for Au and Cu). In all cases I used for the Yukawa function parameter in equation (A.5)
aY = 0.7 fm. We see that the agreement is very good.
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For light nuclei, it is more appropriate to use Gaussian densities, with the Gaussian
parameter a =

√
2
3 〈r2〉ch, where

√
〈r2〉ch is the root-mean-square radius of the matter

density. For example, for carbon, a = 2.018 fm. For a Gaussian density parametrized
as ρ(r) = ρ0 exp(−r2/a2), one gets

F(q) = (πa2)3/2ρ0 exp(−q2a2/4). (A.6)

To simulate nodes in the wavefunctions of light nuclei, a sum of Gaussian distributions can
be used, including terms proportional to rn exp(−r2/a2). The form factors arising from these
terms can be obtained from nth-order derivatives of equation (A.6) with respect to 1/a2.

For halo nuclei the following parametrization can be adopted:

ρ(r) = ρ1 exp
(−r2

/
a2

1

)
+ ρ2

(a2

r

)
exp(−r/a2), (A.7)

where the first term describes the density of the core and the second term describes the extended
halo density. The second term blows up as r → 0 and has only a meaning in the description
of the long tail characterizing the halo wavefunction. If the core contains A1 nucleons and the
halo contains A2 nucleons, the form factor for the above distribution becomes

F(q) = A1 exp
(−q2a2

1

/
4
)

+
A2

1 + a2
2q

2
. (A.8)
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