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Abstract. We discuss medium corrections of the nucleon-nucleon (NN) cross sections and
their influence on direct reactions at intermediate energies & 50 MeV/nucleon. The results
obtained with free NN cross sections are compared with those obtained with a geometrical
treatment of Pauli-blocking and Dirac-Bruecker methods. We show that medium corrections
may lead to sizable modifications for collisions at intermediate energies and that they are more
pronounced in reactions involving weakly bound nuclei.

1. Introduction
A carefully constructed optical potential is a crucial ingredient for the description of direct
reactions, such as knockout reactions at intermediate and high energies [1] (& 50 MeV/nucleon).
A microscopic method to deduce optical potentials is based on the construction of the potentials
using an effective nucleon-nucleon (NN) interaction, or cross section (e.g. those of Ref. [2]).
This technique is often used to construct the real part of an optical potential and with its
imaginary part assumed rescaled in strength to better reproduce experimental data on elastic
scattering, or total reaction cross sections. The real and imaginary parts of the potential can
also be constructed independently as in Refs. [3, 4], where the procedure starts from a NN
effective interaction with independent real and imaginary parts. It has also been shown that one
can use nucleon-nucleon cross sections as the microscopic input [1], instead of nucleon-nucleon
interactions. In this case, an effective treatment of Pauli-blocking on nucleon-nucleon scattering
is needed, as it manifests through medium density dependence. In fact, it is well known that
a proper numerical modeling of heavy-ion central collision dynamics requires to account for
medium effects on the nucleon-nucleon cross sections [5]. The main goal of studies addressing
these collisions is to learn more about the equation of state (EOS) through global collective
variables.

Medium modifications of NN scattering have smaller effects in direct reactions since generally
low nuclear densities are probed. Although, no comparison with experimental data was supplied,
a first work on this effect in knockout reactions was presented in Ref. [6]. In this contribution,
we report recent progress on studies of medium modifications in knockout reactions. We will
report on medium effects in the NN cross section for the description of knockout reactions by
means of (a) a geometrical treatment of Pauli-blocking and a (b) Dirac-Brueckner treatment.
A comparison of our calculations to a large number of published experimental data is shown,
and full results will be published else where [7]. The aim of this project is to obtain more
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accurate spectroscopic factors that will lead to better understanding nuclear structure and to
check and improve the credibility of the use of knockout reactions as an indirect methods for
nuclear astrophysics.

2. Medium effects
2.1. Nucleon-nucleon cross sections
In the literature, there are different fits to the free (total) nucleon-nucleon cross sections, such
as those in Refs. [6, 8]. In this work, we have used the parametrization from the Ref. [6] which
is obtained using the experimental data from Particle Data Group [9]. For practical reasons,
the free nucleon-nucleon cross sections are separated in three energy intervals, by means of the
expressions

σpp =



19.6 + 4253/E − 375/
√
E + 3.86× 10−2E

(for E < 280 MeV)

32.7− 5.52× 10−2E + 3.53× 10−7E3

−2.97× 10−10E4

(for 280 MeV ≤ E < 840 MeV)

50.9− 3.8× 10−3E + 2.78× 10−7E2

+1.92× 10−15E4

(for 840 MeV ≤ E ≤ 5 GeV)

(1)

for proton-proton collisions, and

σnp =



89.4− 2025/
√
E + 19108/E − 43535/E2

(for E < 300 MeV)

14.2 + 5436/E + 3.72× 10−5E2 − 7.55× 10−9E3

(for 300 MeV ≤ E < 700 MeV)

33.9 + 6.1× 10−3E − 1.55× 10−6E2

+1.3× 10−10E3

(for 700 MeV ≤ E ≤ 5 GeV)

(2)

for proton-neutron collisions. E is the projectile laboratory energy. The coefficients in the
above equations have been obtained by a least square fit to the nucleon-nucleon cross section
experimental data over a variety of energies, ranging from 10 MeV to 5 GeV.

Most practical studies of medium corrections of nucleon-nucleon scattering are done by
considering the effective two-nucleon interaction in infinite nuclear matter, or G-matrix, as
a solution of the Bethe-Goldstone equation [10]

〈k|G(P, ρ1, ρ2)|k0〉 = 〈k|vNN |k0〉 −
∫

d3k′

(2π)3
〈k|vNN |k′〉Q(k′,P, ρ1, ρ2)〈k′|G(P, ρ1, ρ2)|k0〉

E(P,k′)− E0 − iε
(3)

with k0, k, and k′ the initial, final, and intermediate relative momenta of the NN pair,
k = (k1 − k2)/2 and P = (k1 + k2)/2. Due to energy-momentum conservation, the total
momentum, P, remains constant in magnitude and direction, whlile k remains constant in
magnitude. vNN is the nucleon-nucleon potential. E is the energy of the two-nucleon system,
and E0 is the same quantity on-shell. Thus E(P,k) = e(P + k) + e(P − k), with e the single-
particle energy in nuclear matter. It is also implicit in Eq. (3) that the final momenta k of the
NN-pair also lie outside the range of occupied states.
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Figure 1. Parameterizations of proton-neutron cross sections as a function of the laboratory
energy [6]. The solid line is the parametrization of the free σpn cross section given by Eq.
(2). The other curves include medium effects for symmetric nuclear matter for ρ = ρ0/4, where
ρ0 = 0.17 fm−3. The dashed curve includes the geometrical effects of Pauli blocking, as described
by Eq. (6). The dashed-dotted curve is the result of the Dirac-Brueckner approach, Eq. (7),
and the dotted curve is the phenomenological parametrization, Eq. (8).

Eq. (3) is density-dependent due to the presence of the Pauli projection operator Q, defined
by

Q(k,P, ρ1, ρ2) =

{
1, if k1,2 > kF1,F2

0, otherwise.
(4)

with k1,2 the magnitude of the momenta of each nucleon. Q prevents scattering into occupied
intermediate states. The Fermi momenta kF1,F2 are related to the proton and neutron densities

by means of the zero temperature density approximation, kFi = (3π2ρi/2)
1/3. For finite nuclei,

one usually replaces ρi by the local densities to obtain the local Fermi momenta. This is obviously
a rough approximation, but very practical and extensively used in the literature. Only by
means of several approximations, Eq. (3) can be related to nucleon-nucleon cross sections. If
one neglects the medium modifications of the nucleon-mass, and scattering through intermediate
states, the medium modification of the NN cross sections can be accounted for by the geometrical
factor Q only, that is,

σNN (k, ρ1, ρ2) =

∫
dσfreeNN

dΩ
Q(k, P, ρ1, ρ2)dΩ, (5)

where Q is now a simplified geometrical condition on the available scattering angles for the
scattering of the NN-pair to unoccupied final states.

The numerical treatment of Pauli corrections is considerably simplified by the assumption of
isotropic free-space NN cross sections. In this case, a formula which fits the numerical integration
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Figure 2. Same as in Figure (1), but for pp collisions [6].

of the geometrical model reads [6]

σNN (E, ρp, ρt) = σfreeNN (E)
1

1 + 1.892
(
2ρ<
ρ0

)(
|ρp−ρt|
ρ̃ρ0

)2.75

×


1− 37.02ρ̃2/3

E
, if E > 46.27ρ̃2/3

E

231.38ρ̃2/3
, if E ≤ 46.27ρ̃2/3

(6)

where E is the laboratory energy in MeV, ρ̃ = (ρp + ρt)/ρ0, ρ< = min(ρp, ρt), ρi=p,t is the local
density of nucleus i, and ρ0 = 0.17 fm−3.

The Brueckner-Hartree-Fock approach to calculate the in-medium scattering amplitude (from
which the cross sections are obtained) includes, besides Pauli blocking, the so-called “dispersive
effects” which account for the change of the nucleon energy in the presence of the medium.
In addition, medium modifications of the NN potential are applied in the Dirac-Brueckner-
Hartree-Fock method, but not in the Brueckner-Hartree-Fock method. An example is the work
presented in Ref. [11, 12], where a practical parametrization was given, which we will from now
on refer as Dirac-Brueckner approach. It reads1

σnp =
[
31.5 + 0.092

∣∣20.2− E0.53
∣∣2.9] 1 + 0.0034E1.51ρ2

1 + 21.55ρ1.34

σpp =
[
23.5 + 0.00256

(
18.2− E0.5

)4.0] 1 + 0.1667E1.05ρ3

1 + 9.704ρ1.2
. (7)

A modification of the above parametrization was done in Ref. [13], which consisted in combining
the free nucleon nucleon cross sections parametrized in Ref. [14] with the Dirac-Brueckner

1 The misprinted factor 0.0256 in Ref. [12] has been corrected to 0.00256.
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method results of Ref. [11, 12]. Their parametrization, which tends to reproduce better the
nucleus-nucleus reaction cross sections, is

σnp =
[
−70.67− 18.18β−1 + 25.26β−2 + 113.85β

]
× 1 + 20.88E0.04ρ2.02

1 + 35.86ρ1.9

σpp =
[
13.73− 15.04β−1 + 8.76β−2 + 68.67β4

]
× 1 + 7.772E0.06ρ1.48

1 + 18.01ρ1.46
, (8)

where β =
√

1− 1/γ2 and γ = E[MeV]/931.5 + 1. We will denote Eq. (8) as the
phenomenological parametrization.

The differences between the parametrization of the Dirac-Brueckner, Eq. (7), the geometrical
Pauli blocking, Eq. (6), and the phenomenological one, Eq. (8), are visible. Figure 1 is
an example of that, where the varied parameterizations of proton-neutron cross sections are
presented as a function of the laboratory energy. The solid line is the parametrization of the
free σpn cross section given by Eq. (2). The other curves include medium effects for symmetric
nuclear matter for ρ = ρ0/4, where ρ0 = 0.17 fm−3. The dashed curve includes the geometrical
effects of Pauli blocking, as described by Eq. (6). The dashed-dotted curve is the result of
using the Dirac-Brueckner approach, Eq. (7), and the dotted curve is the phenomenological
parametrization, Eq. (8). The large departure of results of the Dirac-Brueckner parametrization
above 300 MeV is not physical since Eq. (7) is valid only under 300 MeV (pion production
threshold) [11, 12]. On the other hand, the differences at lower energies are physical and
Pauli-blocking effectively reduces the in-medium np cross section. This is not so explicit in
the phenomenological parametrization.

The above interpretation cannot be extended to the pp cross sections, which are shown in
Figure (2). Here it is seen that the geometrical Pauli-blocking correction decreases the cross
section much more than in the other cases. Some important differences are also clearly visible
at larger energies, E & 100 MeV/nucleon. We now study the impact of these different methods
on direct reactions at intermediate energies.

2.2. Total reaction cross-sections
As we mentioned before, obtaining a valid optical potential in knockout reactions [1] and various
direct reactions is crucial. One way to test the optical potentials is to reproduce total reaction
cross sections. As elastic scattering data at intermediate energies are scarce, for knockout
reactions a proper test can be done by calculating total reaction cross sections for the core
and the valence particle, separately. The total reaction cross-sections can be obtained in the
framework of the eikonal approximation as follows

σR = 2π

∫
db b

[
1− |S(b)|2

]
, (9)

where S is the eikonal S-matrices. The relation between optical potentials and S-matrices is
given by

Si(b) = exp[iχ(b)] = exp

[
− i

~v

∫ ∞

−∞
UiT (r)dz

]
, (10)

where r =
√
b2 + z2, and UiT is the particle(i)-target(T ) optical potential. A semiclassical

probabilistic approach has been followed to calculate the cross sections and other observables
in direct reactions as described in Refs. [15, 16], and a relation has been established between
the optical potential and the nucleon-nucleon scattering amplitude in Ref. [1]. This relation
is frequently mentioned in the literature as the “t-ρρ approximation”. “Experimentally
deduced” optical potentials are often not available from elastic and inelastic scattering involving
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radioactive nuclei. Therefore, the t-ρρ approximation is one of the most practical techniques to
obtain optical potentials. In this approximation, the eikonal phase becomes

χ(b) =
1

kNN

∫ ∞

0
dq q ρp (q) ρt (q) fNN (q) J0 (qb) , (11)

where ρp,t (q) is the Fourier transform of the nuclear densities of the projectile and target, and
fNN (q) is the high-energy nucleon-nucleon scattering amplitude at forward angles, which can
be parametrized as

fNN (q) =
kNN

4π
σNN (i+ αNN ) exp

(
−βNNq

2
)
. (12)

One often neglects nuclear medium effects in the experimental analysis of knockout reactions,
as pointed out in Ref. [6]. However, their importance has been well known for a long time in
the study of elastic and inelastic scattering, as well as of total reaction cross sections [1, 2]. In
these situations, a systematic analysis of the medium effects has been presented in Ref. [1], and
it has shown that the effects becomes larger at lower energies, where Pauli blocking strongly
reduces the nucleon-nucleon cross sections in the medium.

The p + 12C total reaction cross sections in the energy range of 20-100 MeV/nucleon shown in
Figure 3 presents the justification of these statements, where the experimental data taken from
the Ref. [17]. The cross sections were calculated from the Eqs. (10,11,12) and 12C density from
a Hartree-Fock-Bogoliubov calculation (HFB) [18]. Various different calculations are shown in
Figure 3. The result of Eq. (11) with the free nucleon-nucleon cross sections and the carbon
matter density from a HFB calculation [19] is represented by the solid curve, whereas the
triangle-dotted curve (the triangles are not data, but used for better visibility) uses a different
HFB density [18], consistent with the calculations presented in Ref. [4]. As expected, that the
agreement between the two calculations is very good.

The same calculation procedure, but this time including medium corrections for the nucleon-
nucleon cross section, has been performed to obtain the other curves in Figure 3. It is

20 30 40 50 60 70 80 90 100
E (MeV)

200

400

600

σ
R

 (
m

b
)

Figure 3. The total reaction cross section of the p + 12C taken from Ref. [17]. The curves are
calculated with the free NN cross sections from Ref. [8] (solid), with a geometrical account of
Pauli blocking (dashed), a phenomenological fit from Ref. [13] (dotted), and a correction from
the Dirac Brueckner approach (dashed-dotted). The triangle-dotted curve is calculated with the
same free NN cross sections as in Ref. [8], but with an another HFB calculation [18] for the 12C
ground state density.
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evident that the results are very different than the former. The medium effects with various
different are shown with the dotted, dashed-dotted, and dashed curves, which they correspond
to the calculations with phenomenological, Dirac-Brueckner, and Pauli geometrical methods,
respectively. Obviously, medium effects modify the results, yielding a closer reproduction of
the data. But the large experimental error bars do not allow a fair judgment of which model
reproduces better the data.

2.3. Nucleon knockout reactions
Momentum distributions of the projectile-like residues in one-nucleon knockout are a measure
of the spatial extent of the wavefunction of the struck nucleon, while the cross section for the
nucleon removal scales with the occupation amplitude, or probability (spectroscopic factor),
for the given single-particle configuration in the projectile ground state. The longitudinal
momentum distributions are given by (see, e.g., Refs. [16, 20, 21])

dσstr
dkz

= (C2S)
1

2π

1

2l + 1

∑
m

∫ ∞

0
d2bn

[
1− |Sn (bn)|2

]
×

∫ ∞

0
d2bc |Sc (bc)|2

∣∣∣∣∫ ∞

−∞
dz exp [−ikzz]ψlm (r)

∣∣∣∣2 , (13)

where kz represents the longitudinal component of kc (final momentum of the core of the
projectile nucleus) and (C2S) is the spectroscopic factor, and ψlm (r) is the wavefunction of
the core plus (valence) nucleon system (c+n) in a state with single-particle angular momentum
l,m.

2.3.1. 12C(17C,16B)X at 35 MeV/u
The one-proton removal reaction, 12C(17C,16B)X, from 17C at 35 MeV/nucleon has been

measured with the aim to explore the low-lying structure of the unbound 16B nucleus. In
Ref. [22], the unbound 16B nucleus is assumed to be a d-wave neutron decay from 15B+n
system. Here, we have focused to study the consequences of medium corrections on the transverse
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px (MeV/c)
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20
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C
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nt
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Figure 4. Transverse momentum distributions for the 12C(17C,16B)X system at 35 MeV/u.
Solid lines represent calculations including medium corrections. Dashed lines stem from
calculations that do not include medium corrections. The data are taken from Ref. [22].
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momentum distribution of the 16B fragment following the same assumptions as in Ref. [22]. The
configuration mixing of the proton removed from 17C is assumed to be

|17C〉 = α1|16B(0−)⊗ π1p3/2〉
+ α2|16B(3−1 )⊗ π1p3/2〉+ α3|16B(2−1 )⊗ π1p3/2〉
+ α4|16B(2−2 )⊗ π1p3/2〉+ α5|16B(1−1 )⊗ π1p3/2〉
+ α6|16B(3−2 )⊗ π1p3/2〉, (14)

where αi is the spectroscopic amplitude for a core-single particle configuration i = (c⊗ nlj).
In Ref. [22] a good agreement between data and calculated transverse momentum

distributions was achieved using the spectroscopic factors from a shell-model calculation with
the WBP interaction [23]. However, they have obtained a theoretical result of 24.7 mb for
total cross section which diverges from the measured cross-section, 6.5(1.5) mb. In Ref. [24],
an explanation is proposed to this large discrepancy as due to a reduction of the spectroscopic
factor by 70% for strongly bound nucleon systems. The theoretical estimates for the cross section
with the reduction at the spectroscopic factor becomes 7.5 mb, in reasonable accordance with
the data. We do not challenge the assumptions of Ref. [22], and we use the same configuration
mixing and spectroscopic factors as in [22]. The proton binding potential parameters are given
in Ref. [7], which are adjusted to obtain the effective separation energies. Here, as it is shown
in Figure 4, we find that medium corrections change the cross sections by 5% which is rather
small to explain the observed difference with the total cross sections.

2.3.2. 9Be(11Be,10Be)X at 60 MeV/u
In order to further understand the medium effects on knockout reactions, we consider the

9Be(11Be,10Be)X system at 60 MeV/u which can be modeled by a core plus valence system
with the assumption 10Begs(0

+) + n in 2s1/2 orbital for the ground state of 11Begs(1/2
+)

(Sn = 0.504 MeV). Here we use the same Woods-Saxon potential parameters for the bound state
as published in Ref. [16]: (R0 = 2.70 fm, a0 = 0.52 fm). In Figure 5 and Table 1 we present
our results for the the neutron removal longitudinal momentum distribution of 60 MeV/nucleon
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Figure 5. Longitudinal momentum distributions of for the reaction 9Be(11Be,10Be) at
60 MeV/nucleon. Solid lines represent calculations including medium corrections. Dashed lines
stem from calculations that do not include medium corrections. The data is taken from Ref. [25].
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11Be projectiles incident on 9Be targets. We find that medium corrections for this system change
the cross sections by 50% which is quite big.

It has been show that 17C has a small “effective” size and that 11Be has a large effective
size among the low energy systems studied in Ref. [7]. Therefore, the wavefunctions of
weakly bound systems extend far within the target where the nucleon-nucleon cross sections
are strongly modified by the medium. Momentum distributions and nucleon removal cross
sections in knockout reactions are thus expected to change appreciably with the inclusion of
medium corrections of nucleon-nucleon cross section. Such corrections are also expected to play
a more significant role for loosely-bound systems.

σ−1n
12C(17C,16B) 9Be(11Be,10Be)

= σdif + σstr Full no medium Full no medium
Strip. [mb] 7.56 5.63 122.5 164.1
Diff. [mb] 18.42 19.15 49.6 97.3
Total [mb] 25.98 24.78 172.1 261.4

Table 1. The cross sections calculated for the systems, 12C(17C,16B) at 35 MeV/nucleon and
9Be(11Be,10Be) at 60 MeV/nucleon.

3. Summary
In this small report, we have explored the importance of the medium modifications of the
nucleon-nucleon cross sections on direct reactions, and particularly on knockout reactions. It
has been shown that the effects are noticeable at low energies. Nonetheless, we have noticed that
medium effects do not lead to sizable modifications on the shapes of momentum distributions.
We have shown this explicitly by comparing our results with a large number of available
experimental data in Ref. [7]. As expected on physics grounds, these corrections are larger
for experiments at lower energies, around 50 MeV/nucleon, and for weakly bound nuclei.

Medium effects in knockout reactions have been frequently ignored in the past. We have
shown that they have to be included in order to obtain a better accuracy of the extracted
spectroscopic factors. Although these conclusions might not come as a big surprise, they have
not been properly included in many previous experimental analyses.
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