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ABSTRACT

CLUSTERING EFFECTS IN THE EQUATION OF STATE
ON NUCLEAR MATTER

Jared Lalmansingh, MS
Texas A&M University-Commerce, 2015

In Nuclear AstroPhysics, clustering refers to the process by which atomic elements,

known as nuclei, are formed from pre-existing nucleons such as protons and neutrons. This

process called nucleosynthesis, is thought to occur under the following scenarios: Big Bang

nucleosynthesis, Stellar nucleosynthesis, explosive nucleosynthesis and nucleosynthesis de-

rived from fragmentation processes in nuclear reactions. In the case of all except the latter,

which deals with radioactive decay and fission (the dissociation of larger nuclei into smaller

ones), nucleosynthesis is predominantly the result of fusion, which is the creation of larger

nuclei from smaller ones.

To date, our current understanding of nuclei formation has crucial limitations, which

is due to the complexity of stellar-nucleosynthesis and related processes. To overcome this

gap in our understanding, of particular note and interest is explosive nucleosynthesis which

involves the r-process, rp-process, s-process and p-process which are theorized to be the

means by which elements more massive than iron are formed.

Furthermore, the processes governing the different types of nucleosynthesis are addi-

tionally delineated by the relative rate at which nuclei formation occurs - which ranges from

very rapidly in the order of seconds, to extremely long in the order of centuries, depending

on the element and process in question. In attempting to reach an understanding of these
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processes, an additional caveat appears in that most of these processes are theorized to occur

near the end of life of star - i.e. in a supernova event which is thought to supply both the

high energy, temperatures and pressure with which to form these heavy nuclei. Consequently,

neutron stars, which are highly dense stellar remnants of core-collapse supernova events, are

potential candidates whose environments and existence are theorized to provide the ideal

physical characteristics for the aforementioned processes hence explaining the formation of

nuclei heavier than iron in neutron star mergers events.

Although similar has work done on clustering in determining the physics, structure

and evolution of neutron stars and their associated equations of state, it is not well known

how such considerations derived from statistical physics affects heavy nuclei formation.

Subsequently, one means of understanding these processes is to approach everything

from a rigorous thermodynamical treatment. However, as nuclear species can vary up in

relative occupied volumes, we must account for the thermodynamic potential variance due

to the occupied nuclear volume for interacting species in our treatment. And, as that variance

could be potentially large, this fact violates the core tenet of the ideal gas law as we can

no longer treat the particles as point particles but rather as particles with definite and non-

infinitesimal volumes - which means that we can assert that the particles affect the occupied

volume of the space in which they interact and occupy. Consequently, any treatment and

inclusion of the ideal gas law and any derived thermodynamical potentials cannot be used or

applied as the physics of those treatments are inapplicable in this situation. What this means

is that for us to perform any useful calculation, we must account for the occupied particle

species volumes in any thermodynamical potential - something that has to be derived and

verified from scratch with many possible alternative methods.

This idea of volume isolation or more accurately, exclusion, is called excluded-volume

mechanism (excluded-volume can be thought to be the occupied volume minus the total

volume occupied by all the particles), an approach that is fairly common in BioPhysics, but
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one that is not so common in nuclear astrophysics, with particular attention to how such an

approach affects the formation of nuclei and the associated equations of state.

To determine the effects, if any, that excluded volume may have on the equation of

state, we begin by applying excluded-volume mechanism on classical thermodynamics and as-

sociated thermodynamical potentials by modifying the standard methodology of considering

the non-relativistic energetics of non-interacting particles from a purely statistical mechani-

cal approach, known as a Maxwell-Boltzmann statistics. Having considered excluded-volume

statistically, we can derive thermodynamical potentials of interest such the reduced Gibb’s

Free Energy, which can be used to formulate a rudimentary equation of state.

But, as this approach doesn’t consider readily apparent physics that dominate neu-

tron stars such as quantum mechanics, we have to extend this treatment even further by such

an inclusion (via energy degeneracy and the inclusion of bound and occupied states of the

particles), in addition to angular momentum and relativistic effects to create a more realistic

physical model which can be applied and used in determining the associated equations of

state and how nuclei formation is affected as a result.

Summarily, as the thermodynamics determines the inter-particle distance due to

arguments based on particle energy, degeneracy, chemical potential, etc., it is our hope

that such a treatment will not only prove to be definitive, but useful in constraining our

understanding of these processes having utilized the relatively unexplored mechanism of

excluded-volume, in its determination of the equation of state and how that affects nuclei

formation in neutron stars.

This work has been done in collaboration with the nuclear astrophysics group of

Catania, Sicily, under the leadership of Prof. Spitaleri and with Dr. Stefan Typel from GSI,

Darmstadt, Germany.
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Chapter 1

STATISTICS AND THERMODYNAMICS OF PARTICLES

WITH FINITE SIZE

Introduction

If we consider a system composed of different particle species i with

particle numbers Ni in a volume V at some temperature T , we can denote the

particle densities as

ni =
Ni

V
, (1.1)

where we assume that every particle species i has a degeneracy factor gi and a

chemical potential µi for particles with rest mass mi. The energy of a particle

is denoted by Ei and includes the rest mass. We will use canonical and grand

canonical statistical ensembles and different particle statistics in the following.

More specifically, according to Greiner et al. (1999), the canonical ensem-

ble is suited for systems in a heat bath with a given T, V and N. On the other

hand, the grand canonical - also called the macrocanonical ensemble - describes

open systems where heat and particles are exchanged with the surroundings.
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Classical Excluded Volume Mechanism

If we also assume Maxwell-Boltzmann statistics for noninteracting par-

ticles with nonrelativistic energy (in units of h̄ = c = kB = 1); we have

Ei(k) =
k2

2mi
+mi, (1.2)

that depends on the particle momentum k.

According to (Greiner et al., 1999, p. 187 - 189), Maxwell-Boltzmann

statistics assumes that for a given temperature, particles are distinguishable

and that quantum mechanics plays a negligible role. These two assumptions

while seemingly valid at first, create a number of problems depending on the

particles and system.

This indistinguishability is “corrected” by the inclusion of the Gibbs

factor 1/N ! - as noted in (Greiner et al., 1999, p. 133), which removes contra-

dictions arising from the assumption that particles are distinguishable. And,

depending on the particles and system in question, we will show that quantum

statistics will have to be included where we will introduce Planck’s constant, h

and other physical considerations.

Given this information, it is more appropriate to consider the free en-

ergy of the system - which is energy that can be used to perform work (that

includes the contributions of rest mass), in contrast to the total energy, E. More



3

specifically, if we begin with an ideal gas approximation with constant temper-

ature and volume, the free energy in question is actually the Helmholtz energy.

(Huang, 2001, p. 38)

To begin our derivations, we use the definitions for the Helmholtz free

energy

F (T, V,N) = U − TS, (1.3)

dF = −pdV − SdT +
∑

i

µidNi, (1.4)

and the Gibbs free energy

G(T, p,N) = U − TS + pV, (1.5)

dG = V dp− SdT +
∑

i

µidNi. (1.6)

Physically, the meaning of the Helmholtz free energy is that of work done

on the system plus heat loss from it, under constant pressure and entropy. The

Gibbs free energy is the same, but for constant volume. In both cases, one adds

the energy required to change the particle number. µ, the chemical potential,

is the energy change by adding one particle to the system.

And, to consider more realistic physical systems, if we apply the Gibbs

correction factor (to “correct” contradictions arising from the initial assumption

that for Maxwell-Boltzmann statistics all particles are distinguishable), on an
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ideal gas and consider phase space volume elements of size h3N to determine the

mean number of states per energy interval, we can use the “absolute entropy”

of an ideal gas, also known as the Sackur-Tetrode equation, from which in

(Greiner et al., 1999, p. 137 - 139), we can develop a more specialized form of

the Helmholtz free energy to determine thermodynamic variables and potentials

of interest

S(U, V,N) = NkB

[
5

2
+ ln

{
V

N

(
4πmU

3N

)3/2
}]

. (1.7)

Notably, we observe that h, Planck’s constant appears in the Sackur-

Tetrode equation - which comes from a “pseudo-quantum mechanical” counting

of the number of micro-states where “the total energy is determined by the 3N

quantum numbers of the occupied states” (Greiner et al., 1999, p. 135)

U = E =
h2

8mL2

3N∑

i=1

n2
i (1.8)

Then, solving for the internal energy, U

U(S, V,N) =
3h2N 5/3

4πmV 2/3
exp

{
2S

3NkB
− 5

3

}
, (1.9)
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the variation of the internal energy under constant pressure and temperature

is given by (Greiner et al., 1999, p. 140)

dU = TdS − pdV + µdN. (1.10)

Hence,

T =
∂U

∂S

∣∣∣∣
N,V

=
2

3NkB
U → U =

3

2
NkBT, (1.11)

−p =
∂U

∂V

∣∣∣∣
S,N

= − 2

3V
U → U = pV = NkBT, (1.12)

µ =
∂U

∂N

∣∣∣∣
S,V

= U

(
5

3N
− 2S

3N 2kB

)
= kBT ln

{
N

V

(
h2

2πmkBT

)3/2
}
.

(1.13)

Now, we can define a specific form the Helmholtz free energy using eqs. (1.7)

and (1.11)

F = U − TS = NkBT

[
ln

{
N

V

(
h2

2πmkBT

)3/2
}
− 1

]
. (1.14)



6

The thermal wavelength - or the de Broglie wavelength for a gas in

equilibrium at temperature, T as shown (Huang, 2010, p. 195) - is defined as

(here we restore h̄ and kB to explicitly show their dependence)

λi =

√
2πh̄2

mikBT
. (1.15)

Then, setting h̄ = kB = 1 (as done previously), we obtain

λi =

√
2π

miT
. (1.16)

Using eqs. (1.16) and (1.14) the free energy becomes

F = U − TS = NkBT

[
ln
(
N

V
λi

3

)
− 1

]
. (1.17)

The degeneracy increases the number of possible states in the system

(similar to increasing the volume). Hence, we can write (note that the i sub-

script here means the particle in question - e.g. i = n)

F (T, V,Ni) =
∑

i

Ni

[
T ln

(
Niλi

3

giV

)
− T +mi

]
, (1.18)

Noting the presence of h̄ in the thermal wavelength suggests that quan-

tum mechanics is important to the calculation of the Helmholtz free energy.

However, with this consideration we immediately violate one of the require-
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ments for Maxwell-Boltzmann statistics (that quantum mechanical effects are

considered to be minuscule such that they can be neglected altogether).

This means that with the introduction of h we make the assertion that

while Maxwell-Boltzmann statistics are a good starting point to describe the

physical constraints, we assume that quantum mechanical effects will have a

part to play in the overall behavior and description of the system because of

the nature of the particles in question; and, the scale of the overall interaction

distances - as the average inter-particle distance has to be compared to the

deBroglie wavelength of the particles. Notably, when the thermal wavelength is

much smaller than the inter particle distance, we recover the classical behavior.

However, it should be noted that as this treatment is not entirely quantum

mechanical derived, it is actually semi-classical.

Additionally, we use λ - the deBroglie wavelength - in eq. (1.18),

λ =
h√

2mEK

, (1.19)

where EK is the average kinetic energy of the thermal particles. Indeed, using

EK ≈ kBT , we recover eq. (1.15).
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Furthermore, we note that the natural variables here are the temperature

T , the volume V and the particle numbers Ni. Hence, we can then define the

chemical potentials of the particles as

µi =
∂F

∂Ni

∣∣∣∣
T,V,Nj 6=i

. (1.20)

Similarly, the entropy is given by eq. 3.37 of (Huang, 2001, p. 37)

S = − ∂F

∂T

∣∣∣∣
V,Ni

. (1.21)

And, in like fashion the pressure is obtained from

P = − ∂F

∂V

∣∣∣∣
T,Ni

. (1.22)

We begin determining the values of these potentials by using the rela-

tionship

d

dx

[
αx ln

(
x

β

)]
= α + α ln

[
x

β

]
, (1.23)

hence, we can then find

µi =
∂F

∂Ni

∣∣∣∣
T,V,Nj 6=i

= T + T ln
(
Niλi

3

giV

)
− T +mi

= T ln
(
Niλi

3

giV

)
+mi. (1.24)
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Similarly, for the entropy,

S = − ∂F

∂T

∣∣∣∣
V,Ni

= −
∑

i

Ni

[
ln
(
Niλi

3

giV

)
− 5

2

]
,

=
∑

i

Ni

[
5

2
− ln

(
Niλi

3

giV

)]
, (1.25)

where we have used the relationship

d

dT

(
αT

[
ln
[
T−3/2

β

]
− T

])
= −5α

2
+ α ln

[
T−3/2

β

]
. (1.26)

Finally, for the pressure, we get

P = − ∂F

∂V

∣∣∣∣
T,Ni

=
∑

i

Ni
T

V
. (1.27)

Using these solutions, we can then obtain the total internal energy (eq.

4.52) in Greiner et al. (1999). Using the relation between the internal energy

and the free energy

F = U − TS −
∑

i

µiNi, (1.28)
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we get

U(S, V,Ni) = F (T, V,Ni) + TS = TS − pV +G (1.29)

= T
∑

i

Ni

[
5

2
− ln

(
Niλi

3

giV

)]
− V

(∑

i

Ni
T

V

)

+T
∑

i

Ni ln
(
Niλi

3

giV

)
+
∑

i

Nimi,

= T
∑

i

Ni

[
5

2
− ln

(
Niλi

3

giV

)]
− T

∑

i

Ni

+T
∑

i

Ni ln
(
Niλi

3

giV

)
+
∑

i

Nimi,

=
∑

i

Ni

(
5

2
T − T + T ln

(
Niλi

3

giV

)
− T ln

(
Niλi

3

giV

)
+mi

)
,

=
∑

i

Ni

(
3

2
T +mi

)
, (1.30)

where we used

mi= µi − T ln
(
Niλi

3

giV

)
.

µi = T ln
(
Niλi

3

giV

)
+mi. (1.31)

Therefore, we can write the energy in natural variables as

U(S, V,Ni) =
∑

i

Ni

[
3

2
T + µi − T ln

(
Niλi

3

giV

)]
. (1.32)
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And, using the grand canonical potential (a thermodynamic potential is

a scalar function used to measure the state of a system), which describes the

properties of an open system, i.e. a system with varying particle number, is

defined as

Ω(T, V, µi) = F (T, V,Ni)−
∑

i

µiNi = −PV ,

= −V
(∑

i

Ni
T

V

)
,

= −
∑

i

NiT = −NT, (1.33)

where the natural variables of the different thermodynamic potentials are given

as arguments in parentheses. Sometimes it is also useful to introduce the free

energy density f = F/V , the internal energy density u = U/V , the entropy

density s = S/V and the grand canonical potential density ω = Ω/V .

Thermodynamic Potentials in Reduced Volume

A finite volume Vi can be introduced for every particle species such that

the available volume for the motion is not V any more but the reduced volume.
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We will use the raised symbol ∼ to indicate quantities in the description with

excluded volume mechanism and generalizations.

Ṽ = V −
∑

i

NiVi. (1.34)

Replacing V in eq. (1.18) by Ṽ one obtains the classical excluded volume

mechanism in the free energy

F̃ (T, V,Ni) =
∑

i

Ni

[
T ln

(
Niλi

3

giṼ

)
− T +mi

]
,

=
∑

i

Ni


T ln


 Niλi

3

giV − gi
∑
j

NjVj


− T +mi


 . (1.35)

This approach is thermodynamically consistent since the natural variable

of F is used in the formulation. Thus, using the developments in the section,

we can then derive explicit expressions for the quantities µi, S, P , E and Ω in

case of a gas with excluded volume.
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The volume excluded chemical potential, µ̃ for each particle species i is

µ̃i =
∂F

∂Ni

∣∣∣∣
T,V,Nj 6=i

,

= T + T ln
(
Niλi

3

giṼ

)
− T +mi +

∑

k

NkT
gk
∑

j δijVj

gkV − gk
∑
j

NjVj
, (1.36)

= T ln
(
Niλi

3

giṼ

)
+mi + TVi

∑

k

Nk

V −∑
j

NjVj
. (1.37)

Comparing this with the equation obtained for the chemical potential, µi =

T ln
(
Niλi

3/giV
)

+mi, we see that the chemical potential for a reduced volume

is larger.

Similarly, for the entropy

S̃ = − ∂F

∂T

∣∣∣∣
V,Ni

,

= −
∑

i

Ni

[
ln
(
Ni(2π/miT )3/2

giṼ

)
− 5

2

]
,

=
∑

i

Ni

[
5

2
− ln

(
Niλi

3

giṼ

)]
. (1.38)

Comparing this with the original value obtained for the entropy

S =
∑

i

Ni

[
5/2− ln

(
Niλi

3/giV
)]
,

we see that the entropy is smaller for a reduced potential.
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Finally, for the pressure,

P̃ = − ∂F

∂V

∣∣∣∣
T,Ni

= T

∑
iNi

V −∑j NjVj
. (1.39)

Comparing this against the value obtained previously for the pressure

P =
∑

i

Ni
T

V
,

we see that the pressure for reduced volume is higher. While seemingly unusual

at first glance, this result is expected as we’re working in a smaller volume with

the same particle numbers, and system constraints. More specifically, since

the Temperature has remained the same and we have a smaller volume, the

pressure has to increase.



15

Combining all of these solutions, we can hence derive the total internal

energy for a reduced volume

Ũ(S̃, V,N) = F̃ (T, V,Ni) + T S̃,

= T S̃ − p̃V +
∑

i

µ̃iNi,

= T
∑

i

Ni

[
5

2
− ln

(
Niλi

3

giṼ

)]
− V T

∑
iNi

V −∑j NjVj

+T
∑

i

Ni ln
(
Niλi

3

giṼ

)
+
∑

i

Nimi

+T
∑

i

NiVi
∑

i

Ni

V −∑
j

NjVj
,

=
5

2
T
∑

i

Ni − V T
∑

iNi

V −∑j NjVj
+

T
∑

j

NjVj
∑

i

Ni

V −∑
j

NjVj
+
∑

i

Nimi,

=
5

2
T
∑

i

Ni − T
∑

i

Ni


 V

V −∑j NjVj
−

∑
j NjVj

V −∑
j

NjVj




+
∑

i

Nimi,

=
∑

i

Ni

[
3

2
T +mi

]
. (1.40)
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Noting that

µ̃i = T ln
(
Niλi

3

giṼ

)
+mi + TVi

∑

k

Nk

V −∑
j

NjVj
. (1.41)

= T


ln

(
Niλi

3

giṼ

)
+
mi

T
+ Vi

∑

k

Nk

V −∑
j

NjVj


 ,

we get

mi = µ̃i − T


ln

(
Niλi

3

giṼ

)
+ Vi

∑

k

Nk

V −∑
j

NjVj


 .

Hence, we can write the reduced volume energy as

Ũ(S̃, V,N) =
∑

i

Ni


3

2
T + µ̃i − T


ln

(
Niλi

3

giṼ

)
+ Vi

∑

k

Nk

V −∑
j

NjVj





 .

(1.42)

Given this value, and comparing it against the value obtained previously

for the internal energy, E =
∑

iNi (3T/2 +mi), we observe that the total

internal energy is identical to the internal energy in the regularly case, the

ideal gas.
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Similarly, for the grand canonical potential for a reduced volume

Ω̃(T, V, µ) = F̃ (T, V,Ni)−
∑

i

µ̃iN,

= −P̃ V,

= −TV
∑

iNi

V −∑j NjVj
,

= −T
∑

iNi

1−∑j njVj
. (1.43)

Since

µ̃i = T ln
(
Niλi

3

giṼ

)
+mi + TVi

∑

k

Nk

V −∑
j

NjVj
,

we get

T

∑
iNi

1−∑j njVj
= µ̃i − T ln

(
Niλi

3

giṼ

)
−mi,

or

−T
∑

iNi

1−∑j njVj
= T ln

(
Niλi

3

giṼ

)
+mi − µ̃i. (1.44)
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Then we can write Ω̃ as a function of natural variables

Ω̃(T, V, µ̃) = F̃ (T, V,Ni)−
∑

i

µ̃iN

= −T
∑

iNi

1−∑j njVj

= T ln
(
Niλi

3

giṼ

)
+mi − µ̃i. (1.45)

We can conclude that this potential is larger (in magnitude) for a given particle

species within a reduced volume.

Density Dependent Degeneracy Factors

Using the definition for the reduced volume and degeneracy, we can

define the effective degeneracy as a function of the volume, V as

giṼ = gi

(
V −

∑

i

NiVi

)
= gi

(
1−

∑

i

niVi

)
V = g̃iV, (1.46)

with effective degeneracy factors

g̃i = gi

(
1−

∑

i

niVi

)
, (1.47)

that depend on the particle densities ni.
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We define the grand canonical potential as

Ω̃(T, V, µ̃) =
∑

i

Ω̃i +W = T ln
(
Niλi

3

giṼ

)
+mi − µ̃i, (1.48)

where the individual particle contributions can be written as

Ω̃i = −T g̃iV
σi

∫
d3k

(2π)3
ln

[
1 + σiexp

(
−Ũi − µ̃i

T

)]
, (1.49)

with an additional contribution W . Here we introduce σi as we wish to gen-

eralize the particle contributions with consideration of different statistics - i.e.

Fermi-Dirac and Bose-Einstein statistics in which σi = 1 for fermions and

σi = −1 for bosons as discussed in (Carroll, 2007, p. 43), a boson is an integer-

spin force-carrying particle, as opposed to a matter particle (fermion); and,

unlike fermions, bosons can be accommodated to the same state without limit

- e.g. photons, gluons, gravitons, weak bosons, and the Higgs boson. Also we

define the single-particle energies as

Ũi(k) =
k2

2mi
+mi + Ui. (1.50)
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Combining this with µ̃i, we obtain

Ũi(k)− µ̃i =
k2

2mi
+mi + Ui −


T ln

(
Niλi

3

giṼ

)
+mi + TVi

∑

k

Nk

V −∑
j

NjVj


 ,

=
k2

2mi
+ Ui −


T ln

(
Niλi

3

giṼ

)
+ TVi

∑

k

Nk

V −∑
j

NjVj


 .

Since giṼ = gi (V −
∑

iNiVi) = gi (1−
∑

i niVi)V = g̃iV , we obtain

Ũi(k)− µ̃i =
k2

2mi
+ Ui − T ln

(
Niλi

3

giṼ

)
− TVi

∑

i

Ni

gjṼ
,

=
k2

2mi
+ Ui − T

[
ln
(
Niλi

3

giṼ

)
− Vi

∑

i

Ni

gjṼ

]
.

That is

Ũi(k)− µ̃i
T

=
k2

2miT
+
Ui
T
− ln

(
Niλi

3

giṼ

)
+ Vi

∑

i

Ni

gjṼ
,

=
k2

2miT
+
Ui
T

+ ln

(
giṼ

Niλi3

)
+ Vi

∑

i

Ni

gjṼ
.
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Hence, we can calculate the particle number, Ni using

∂

∂x
ln
[
a exp

(
x+ y

b

)
+ 1

]
=

a exp
(
x+y
b

)

(a exp
(
x+y
b

)
+ 1) b

=
a

b

exp
(
x+y
b

)

a exp
(
x+y
b

)
+ 1

,

=
a

b

1

a+ exp
(
−(x+y)

b

) . (1.51)

Since

Ω̃(T, V, µ̃) = T ln
(
Niλi

3

giṼ

)
+mi − µ̃i,

then

− ∂Ω̃

∂µ̃i

∣∣∣∣∣
T,V,µ̃j!=i

= 1.
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Hence

Ni
!

= − ∂Ω̃

∂µ̃i

∣∣∣∣∣
T,V,µ̃j!=i

,

!
= +

T g̃iV

σi

∫
d3k

(2π)3

σi
T

1

σi + exp
(
−−(Ũi−µ̃i)

T

) − ∂W

∂µ̃i
,

=
T g̃iV

σi

σi
T

∫
d3k

(2π)3

1

σi + exp
(
Ũi−µ̃i

T

) − ∂W

∂µ̃i
,

= g̃iV

∫
d3k

(2π)3

1

σi + exp
(
Ũi−µ̃i

T

) − ∂W

∂µ̃i
,

= g̃iV

∫
d3k

(2π)3

[
σi + exp

(
Ũi − µ̃i
T

)]−1

− ∂W

∂µ̃i
,

= g̃iV

∫
d3k

(2π)3

[
σi + exp

(
k2

2miT
+
Ui
T

+ ln

(
giṼ

Niλi3

)
+ Vi

∑

i

Ni

gjṼ

)]−1

−∂W
∂µ̃i

. (1.52)

Thus

Ni
!

= − ∂Ω̃

∂µ̃i

∣∣∣∣∣
T,V,µ̃j!=i

,

!
= g̃iV

∫
d3k

(2π)3


σi + exp


 k2

2miT
+
Ui
T

+ Vi
∑

i

Ni

gjṼ
+


 1

ln
(

giṼ
Niλi3

)



−1






−1

−∂W
∂µ̃i

,
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which contains the "rearrangement" potentials Ui, defined by the relation be-

tween Ui and W as shown in the above relationship, in addition to the following

Ui =
∑

j

∂g̃j
∂Ni

Ω̃i

g̃i
. (1.53)

Also noting that we can calculate ∂W/∂µ̃i,

∂W

∂µ̃i
= g̃iV

∫
d3k

(2π)3

[
σi + exp

(
Ũi − µ̃i
T

)]−1

− 1.

Now,

giV = gi

(
V −

∑

i

NiVi

)
= gi

(
1−

∑

i

niVi

)
V = g̃iV, (1.54)

g̃i =
gi
V

(
V −

∑

i

NiVi

)
= gi

(
1−

∑

i

niVi

)
, (1.55)

Since Ni = niV

∂g̃j
∂Ni

=
1

V

∂g̃j
∂ni

= −gj
∑

i Vi
V

. (1.56)
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Using this in Ui

Ui =
∑

j

∂g̃j
∂Ni

Ω̃i

g̃i
=

1

V

∂g̃j
∂ni

Ω̃i

g̃i
,

=

(
−gj

∑
i Vi

V

)(
−TV
σi

∫
d3k

(2π)3
ln

[
1 + σiexp

(
−Ũi − µ̃i

T

)])
,

=
∑

i

TgjVi
σi

∫
d3k

(2π)3
ln

[
1 + σiexp

(
−Ũi − µ̃i

T

)]
. (1.57)

and using Ni = niV , we can now calculate the work,

W = −
∑

i

NiUi,

= −
∑

i

TgiNiVi
σi

∫
d3k

(2π)3
ln

[
1 + σiexp

(
−Ũi − µ̃i

T

)]
,

= −
∑

i

TginiViV

σi

∫
d3k

(2π)3
ln

[
1 + σiexp

(
−Ũi − µ̃i

T

)]
. (1.58)

Combining these results, we get

∂g̃j
∂Ni

=
1

V

∂g̃j
∂ni

= −gj
∑

i Vi
V

, (1.59)

and

Ni

gj
×
(
−gj

∑
i Vi

V

)
= −

∑
iNiVi
V

. (1.60)
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Since, Ni = niV , one has

−
∑

iNiVi
V

= −
∑

i niViV

V
= −

∑

i

niVi. (1.61)

Therefore,

W = −
∑

i

NiUi =
∑

i

TgjniV Vi
σi

∫
d3k

(2π)3
ln

[
1 + σiexp

(
−Ũi − µ̃i

T

)]
.

(1.62)

We can combine all of these into a general equation

W = −
∑

i

∑

j

(
niV

g̃j

∂g̃j
∂Ni

Ω̃j

)
= −

∑

ij

(
δij
niV

g̃j

∂g̃j
∂Ni

Ω̃j

)
. (1.63)

Thus, we have developed a prescription to include the density dependence of

the degeneracy factors on the excluded volumes of the clusters.
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Chapter 2

EQUATION OF STATE WITH EXCLUDED VOLUME

Introduction

The effects of the finite size of particles on the equation of state of a gas

can be described with the help of the excluded-volume mechanism. It can also

be used in order to simulate the suppression of a particular particle species, e.g.

nuclei (clusters) in a mixture with nucleons, at high densities.

The excluded-volume mechanism can be formulated most simply by

starting with the free energy F (T, V, {Ni}) of a classical ideal gas of parti-

cles i with single-particle numbers Ni in a volume V at temperature T . Instead

of the total volume V of the system it is assumed that for a particle i only a

reduced volume

Vi = V Φi < V, (2.1)

is available since part of the whole volume is occupied already by other particles.

The functions Φ(ni) depend on the single-particle densities ni = Ni/V .

Applying a Legendre transformation

Ω(T, V, {µi}) = F −
∑

i

µiNi = −pV, (2.2)
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with the chemical potentials (including rest masses mi of the particles)

µi =
∂F

∂Ni

∣∣∣∣
T,V,µj 6=i

, (2.3)

where the grandcanonical potential Ω depends on the natural variables T , V ,

and the set {µi}. It is better suited for generalizations of the model than the

free energy F .

In the following, we use the usual system of units in nuclear physics with

h̄ = c = kB = 1. Thus these factors do not appear in the formulas explicitly

but have to be considered in the conversion of quantities. Additionally, to more

easily distinguish and compare the potentials derived from different physical

constraints and arguments, we use labels of the form (id), (eff), (vi) , and (ex)

as opposed to the use and absence of X̃, (where X is the potential of interest),

as in the previous chapter.

Classical Particles

Let us consider first classical particles with Maxwell-Boltzmann statistics

and nonrelativistic kinematics without explicit interactions. In this case the

grandcanonical potential is given by

Ω =
∑

i

(Ωi −NiUi) , (2.4)
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with single-particle contributions

Ωi = −Tg(eff)
i V

∫
d3k

(2π)3
exp

[
−Ei(k)− µi

T

]
, (2.5)

and rearrangement potentials

Ui =
∑

j

∂g
(eff)
j

∂Ni

Ωj

g
(eff)
j

, (2.6)

that contain the density-dependent effective degeneracy factors

g
(eff)
i = giΦi, (2.7)

and the energies (including rest masses mi)

Ei(k) =
k2

2mi
+mi + Ui. (2.8)

of the particles. The usual degeneracy factors are denoted by gi. They are

constants. The rearrangement potentials Ui are essential in order to obtain a

thermodynamically consistent model.
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Ideal Gas

For the case of an ideal gas with pointlike particles, the functions Φi

are just constants and equal to one such that the effective degeneracy factors

g
(eff)
i are identical to the usual degeneracy factors gi of the particles and the

rearrangement potentials Ui vanish. Then one finds explicitly as shown in

(Typel, Röpkec, et al., 2010, p. 3)

Ω(id)(T, V, {µ(id)
i }) = −TV

∑

i

gi
λ3
i

exp

(
µ

(id)
i −mi

T

)
= −p(id)V, (2.9)

and

Ni = − ∂Ω(id)

∂µ
(id)
i

∣∣∣∣∣
T,V,µj 6=i

= V
gi
λ3
i

exp

(
µ

(id)
i −mi

T

)
, (2.10)

with the thermal wavelengths

λi =

√
2π

miT
, (2.11)

such that the pressure of an ideal gas is given by

p(id) =
T

V

∑

i

Ni , (2.12)

i.e. the well-known relation for a mixture of classical ideal gases.
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Classical Gas with Excluded Volume

Now we treat the case with explicit excluded-volume effects and assume

that

Φi({nj}) = 1−
∑

j

vijnj, (2.13)

with constant volumes vij. Sometimes these functions are defined as

Φi({nj}) = 1−
∑

j

njvj, (2.14)

with volumes vj of particles j such that the functions Φi are identical for all

i. However, this leads to problems when the comparison to the virial equation

of state is made, see below. Their relation to the volumes of the individual

particles will be specified later.

One finds the single-particle contributions

Ω
(ex)
i = −TV g

(eff)
i

λ3
i

exp

(
µ

(ex)
i −mi − Ui

T

)
, (2.15)

and the rearrangement potentials

Ui =
∑

j

∂Φj

∂ni

Ω
(ex)
j

V Φj
= −

∑

j

vij
Ω

(ex)
j

V Φj
. (2.16)
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All of these combined lead to the total excluded grandcanonical potential

(2.17)

Ω(ex)(T, V, {µi}) =
∑

i

(
Ω

(ex)
i + ni

∑

j

vij
Ω

(ex)
j

Φj

)
,

=
∑

i

(∑

j

δijΦj

Φj
Ω

(ex)
i + ni

∑

j

vij
Ω

(ex)
j

Φj

)
,

=
∑

j

Φj

Φj
Ω

(ex)
j +

∑

i

ni
∑

j

vij
Ω

(ex)
j

Φj

=
∑

j

Ω
(ex)
j

Φj
,

= −T
∑

i

gi
λ3
i

V exp

(
µ

(ex)
i −mi − Ui

T

)
,

= −p(ex)V,

and the single-particle densities

ni = − 1

V

∂Ω(ex)

∂µ
(ex)
i

=
g

(eff)
i

λ3
i

exp

(
µ

(ex)
i −mi − Ui

T

)
. (2.18)

Thus we find the relation

p(ex) = T
∑

i

ni
Φi

. (2.19)

Since Φi < 1, the pressure p(ex) with excluded-volume effects is larger than that

of an ideal gas p(id) with the same particle number densities ni.
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Series Expansion

The grandcanonical potential Ω(ex) can be expanded in powers of fugac-

ities as in (Typel, Röpkec, et al., 2010, p. 3)

zi = exp

(
µ

(ex)
i −mi

T

)
, (2.20)

by using the results for the rearrangement potentials Ui, and using a similar

approach as in eq. (2.17). We find

(2.21)

Ω(ex)(T, V, {µi}) = −T
∑

i

gi
λ3
i

V zi exp

(
−Ui
T

)
,

= −T
∑

i

gi
λ3
i

V zi

[
1− Ui

T
+

1

2

(
Ui
T

)2

− . . .
]
,

≈ −T
∑

i

gi
λ3
i

V zi

(
1 +

1

T

∑

j

vij
Ω

(ex)
j

V Φj
+ . . .

)
,

≈ −TV
∑

i

gi
λ3
i

zi

(
1−

∑

j

vij
gj
λ3
j

zj + . . .

)
,

= −TV
(∑

i

gi
λ3
i

zi −
∑

ij

vij
gigj
λ3
iλ

3
j

zizj + . . .

)
,

up to second order in the fugacities as also shown in Typel, Röpkec, et al.

(2010).

Low-density Limit

So far we have considered the general formulation of the excluded-volume

mechanism. However, the volumes vij are not fixed yet. In order to relate them
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to the volumes of the individual particles, the exact low-density limit of the

equation of state can be used to define them.

Virial Expansion

At finite temperatures, the low-density limit is given by the virial equa-

tion of state. It is an expansion of the grandcanonical potential

Ω(vi)(T, V, {µ(vi)
i }) = −TV

(∑

i

bi
λ3
i

zi +
∑

ij

bij

λ
3/2
i λ

3/2
j

zizj + . . .

)
, (2.22)

in powers of the fugacities

zi = exp

(
µ

(vi)
i −mi

T

)
, (2.23)

with dimensionless virial coefficients bi, bij, . . . . The expansion is valid only for

zi � 1 or niλ3
i � 1. The first virial coefficients bi = gi are just the standard

degeneracy factors.
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Classical Mechanics

The second virial coefficients in classical mechanics are given by

b
(cl)
ij (T ) =

1 + δij
2

gigj

λ
3/2
i λ

3/2
j

∫
d3r

[
exp

(
−Vij
T

)
− 1

]
, (2.24)

depending on the potential Vij between the particles i and j. For incompressible

spherical particles with radii Ri and volumes Vi = 4πR3
i /3 it is given by the

hard-sphere potential

Vij(r) =




∞ if r ≤ Rij,

0 if r > Rij,
(2.25)

with the sum of the radii Rij = Ri +Rj. Then we have

b
(cl)
ij (T ) =

1 + δij
2

gigj

λ
3/2
i λ

3/2
j

4π

∫ Rij

0

dr r2 [−1] = −1 + δij
2

gigj

λ
3/2
i λ

3/2
j

4π

3
R3
ij .

(2.26)

Comparing with the result for the series expansion of Ω(ex) we can identify

vij =
1 + δij

2

4π

3
R3
ij, (2.27)

if we set µ(ex)
i = µ(cl). In particular we find

vii =
4π

3
(2Ri)

3 = 8Vi, (2.28)
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because the centers of two equal particles cannot become closer than twice their

radius.

Quantum Mechanical Effects

The classical expression for the second virial coefficient does not take

into account quantum effects. Using the formalism described in both Uhlen-

beck & Beth (1936) and Beth & Uhlenbeck (1937), the quantum-mechanical

second virial coefficient (without additional quantum-statistical corrections for

Fermions or Bosons) is given by

b
(qu)
ij (T ) =

1 + δij
2

λ
3/2
i λ

3/2
j

λ3
ij

∫
dE exp

(
−E
T

)
Dij(E), (2.29)

with

λij =

√
2π

(mi +mj)T
, (2.30)

and the kinetic energy of the relative motion

E =
k2

2µij
, (2.31)

that contains the reduced mass

µij =
mimj

mi +mj
. (2.32)
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From these we can then determine the “level density” difference as shown in

Typel, Röpkec, et al. (2010)

Dij(E) =
∑

k

g
(ij)
k δ(E − E(ij)

k ) +
∑

l

g
(ij)
l

π

dδ
(ij)
l

dE
, (2.33)

with

g
(ij)
l = (2l + 1)gigj, (2.34)

which contains contributions from two-particle bound states k and scatter-

ing states l in partial-wave expansion (neglecting spin-dependent potentials).

Notably, we don’t have bound states for the hard-sphere potential but only

scattering states. Hence, we need the scattering phase shifts δ(ij)
l in all partial

waves l as a function of the relative momentum k. Using that, we can then

calculate the second virial coefficients

b
(qu)
ij (T ) =

∑

l

b
(l)
ij (T ), (2.35)

with

b
(l)
ij (T ) =

1 + δij
2

(2l + 1)gigj
π

λ
3/2
i λ

3/2
j

λ3
ij

∫ ∞

0

dk exp

(
− k2

2µijT

)
dδ

(ij)
l

dk
. (2.36)
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To include quantum effects we need to solve the time-independent

Schrödinger equation

Hijψ(r) = Eψ(r), (2.37)

with the Hamiltonian as

Hij =
p2

2µij
+ Vij, (2.38)

to obtain the scattering wave function ψ for the relative motion at energy

E = k2/(2µij) which can be written as

ψij(r) =
4π

kr

∑

lm

ilu
(ij)
l (r)Ylm(k̂)Y ∗lm(r̂), (2.39)

with spherical harmonics Ylm that depend on the direction of the coordinate

and momentum vectors r and k, respectively. The radial wave functions u(ij)
l (r)

have to fulfill the boundary conditions in each partial wave l. In case of the

hard-sphere potential, the radial wave functions for r ≥ Rij have the form

u
(ij)
l (r) =

1 + S
(ij)
l

2

[
Fl(kr) +K

(ij)
l Gl(kr)

]
, (2.40)

with the S-matrix elements are given in terms of the phase shifts δ by means of

S
(ij)
l = exp

(
2iδ

(ij)
l

)
, (2.41)
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and the K-matrix elements are

K
(ij)
l =

1

i

S
(ij)
l − 1

S
(ij)
l + 1

= tan δ
(ij)
l . (2.42)

Of these, the regular and irregular scattering wave functions can be

expressed with the help of spherical Bessel functions

Fl(z) = zjl(z), (2.43)

Gl(z) = −zyl(z), (2.44)

with the asymptotics

Fl(z) → sin
(
z − lπ

2

)
, (2.45)

Gl(z) → cos
(
z − lπ

2

)
, (2.46)

for z →∞. On the other hand, we have

Fl(z) → zl

(2l + 1)! !
, (2.47)

Gl(z) → (2l − 1)! !

zl+1
, (2.48)

for z → 0. For r ≤ Rij the radial wave function should vanish. This condition

ul(Rij) = 0, (2.49)
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leads to

tan δ
(ij)
l = −Fl(kRij)

Gl(kRij)
=
jl(kRij)

yl(kRij)
. (2.50)

Hence, we can calculate δ(ij)
l for all k and l. For l = 0 we explicitly have

tan δ
(ij)
0 = − sin(kRij)

cos(kRij)
, (2.51)

or

δ
(ij)
0 = −kRij . (2.52)

With help of the equations developed so far for the statistics and ther-

modynamics of particles with finite size, we can pave the road to understand

the effects of excluded volume mechanism on the equation of state for a gas of

nucleons and nuclei. Our analysis is not complete, but we show the effects in a

few numerical exercises in the next chapter.
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Chapter 3

NUMERICAL STUDIES

In order to see the differences between the various equations of states

and their approximations, numerical calculations have to be performed. We

will study different systems in the following.

Single species with finite volume

As a first application we consider a single particle species i. In order

to have realistic numbers we choose neutrons (i = n) as an example with rest

mass mn = 939.565 MeV/c2 and degeneracy factor gn = 2. We set the radius

to Rn = 0.5 fm, Rnn = 1.0 fm and the volume

vnn =
1

2

4π

3
R3
nn ≈ 2.094 fm3 . (3.1)

Then the function

Φn = 1− vnnnn , (3.2)

which appears in the effective degeneracy factor

g(eff)
n = gnΦn , (3.3)

with the neutron density nn becomes zero at the maximum density

n(max)
n =

1

vnn
≈ 0.4775 fm−3 . (3.4)
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Thus the equation of state with the excluded volume can be calculated only for

neutron densities 0 < nn < n
(max)
n .

Virial coefficients with excluded volume

Recalling the virialized coefficients b(l)
ij are functions of the partial waves,

then as a first step in calculating the neutron-neutron scattering phases shifts

we calculate from eq. (2.50)

tan δ
(ij)
l = −Fl(kRij)

Gl(kRij)
=
jl(kRij)

yl(kRij)
,

δ
(ij)
l = arctan

[
jl(kRij)

yl(kRij)

] (3.5)

for the specific case where i = j = n is given by

δ
(nn)
l = arctan

[
jl(kRnn)

yl(kRnn)

]
(3.6)

as a function of k for partial waves l = 0, 1, 2, . . . This is shown in Figure (1),

for the interval [0 MeV/c, 200 MeV/c].

Then, using (3.6), we can also find the derivatives, dδ(nn)
l /dk for the same

interval [0 MeV/c, 200 MeV/c] as shown in Figure (2). All of this information

can then be used to find the partial contributions

b(l)
nn(T ) =

(2l + 1)g2
n

π

λ3
n

λ3
nn

∫ ∞

0

dk exp

(
− k2

2µnnT

)
dδ

(ij)
l

dk
(3.7)
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to the second virial coefficient bnn(T ) as a function of T inside the interval

[0 MeV, 20 MeV] for l = 0, 1, 2, . . . shown in Figure (3).

Using (3.7), we can then calculate the total second virial coefficient,

which is given by as an infinite sum

b(qu)
nn (T ) =

∞∑

l=0

b(l)
nn(T ) . (3.8)

However, while the total second virial coefficient (in the quantum mechanics

case) can be analytically calculated as an infinite sum (for l > 0), the func-

tion converges relatively quickly and only 6 l-values are required to achieve

convergence (within 3.4 parts per million), as shown in Figure (4).

Similarly, we can calculate the classical second virial coefficient as a

function of the temperature, T which is given by the following equation (and

as illustrated as shown in Figure (5))

b(cl)
nn (T ) = −g

2
n

λ3
n

4π

3
R3
nn (3.9)

Finally, we can compare the classical second virial coefficient with the quantum

mechanical version both as functions of T, and we obtain Figure (6) which

definitely shows a disparity between both. This makes sense since a classical

billiard ball treatment doesn’t take into consideration quantum effects at short

distances.
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To examine this even further, we then calculate the function, called the

S-Function

(3.10)S(z) = − 1

z2

∑

l=0

2l + 1

[jl(z)2] + [jl(z)2]
.

Which, for the interval, z ∈ [0, 20] is shown in Figure (7). Then, defining an

approximation to this function (i.e. a fitting function) as

(3.11)S̃(z) = −1− 3

2
z − 2

3
z2.

Next, after comparing both of these together in Figure (9) we observe

that S̃ is a good (and fast) approximation to the general S-function which

involves spherical Bessel functions.

Finally, we can compare all three second virial coefficients b(cl)
nn (T ), b(qu)

nn (T ),

b̃
(qu)
nn (T ) as shown in Figure (10) and Figure (11) which illustrate that the

b
(qu)
nn (T ), b̃(qu)

nn (T ) coefficients deviate from the classical case.

Virial Equation of State

With the known second virial coefficients b(qu)
nn (T ) and b

(cl)
nn (T ) we can

calculate the pressure

p(vi,qu) = −Ω(vi,qu)(T, V, µ
(vi,qu)
n )

V
=

T

λ3
n

[
gnz

(vi,qm)
n + b(qu)

nn

(
z(vi,qm)
n

)2
]

(3.12)

and

p(vi,cl) = −Ω(vi,cl)(T, V, µ
(vi,cl)
n )

V
=

T

λ3
n

[
gnz

(vi,cl)
n + b(cl)

nn

(
z(vi,cl)
n

)2
]

(3.13)
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in the two approximations for the virial equation of state. In order to obtain

the fugacities

z(vi,qm)
n = exp

(
µ

(vi,qm)
n −mn

T

)
(3.14)

and

z(vi,cl)
n = exp

(
µ

(vi,cl)
n −mn

T

)
(3.15)

we consider the neutron densities

nn =
∂p(vi,qu)

∂µn

∣∣∣∣
T

=
1

λ3
n

[
gnz

(vi,qm)
n + 2b(qu)

nn

(
z(vi,qm)
n

)2
]

(3.16)

and

nn =
∂p(vi,cl)

∂µn

∣∣∣∣
T

=
1

λ3
n

[
gnz

(vi,cl)
n + 2b(cl)

nn

(
z(vi,cl)
n

)2
]
. (3.17)

Using these two (quadratic) equations, we can find the fugacities for

given temperature T and density nn. In a second step, the pressure can be

calculated.

Mixture of Nucleons and Deuterons

To observe the effect of volume-exclusion, we consider a classical mixture

of neutrons, protons and deuterons in chemical and thermal equilibrium.

From these considerations we can calculate the particle number densities from

ni =
gi
λ3
i

exp

(
µ

(id)
i −mi

T

)
(3.18)
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where we use the following constraints

Table 1
Particle masses and degeneracies.

Particle Mass (MeV/c2) Degeneracy
p mp = 939.565 gp = 2
n mn = 938.272 gn = 2
d md = 1875.612 gd = 3

and where the mass of Deuteron is calculated as: md = mn + mp − Bd =

939.565MeV/c2 + 938.272MeV/c2 − 2.2225MeV/c2 = 1875.612MeV/c2, (Bd

is the binding energy of the Deuteron nucleus (2.2225MeV/c2)).

As there are two independent densities, we can call this the total neutron

number density as shown in (Typel, Röpke, et al., 2010, p. 3)

n(tot)
n = nn + nd. (3.19)

Similarly, for the proton number density (Typel, Röpke, et al., 2010, p. 3)

n(tot)
p = np + nd. (3.20)

However, it is more convenient to introduce the total baryon number density

nB, which is a sum of the two

nB = n(tot)
n + n(tot)

p = nn + np + 2nd. (3.21)
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Next, we also consider the iso-spin asymmetry which is defined as

δ =
n

(tot)
n − n(tot)

p

nB
=
nn − np
nB

(3.22)

However, while the total neutron and proton number densities are inde-

pendent, the individual number densities of the neutrons, protons and deuterons

are not - as they are constrained by the chemical equilibrium such that

µn + µp = µd. (3.23)

Point Particles (Ri = 0 (i = n, p, d))

To further understand this, we first consider a mixture of point particles

of neutrons, protons and deuterons (i = n, p, d) such that Rn = Rp = Rd = 0

fm, and with δ = 0 as shown in Figures (12), (13), and (14) for neutrons,

protons and deuterons respectively.

From Figures (12), (13), and (14) we can assert that the deuteron mass

fraction decreases with rising temperature, and increases slowly with increasing

temperature and baryon density. The opposite effect is observed with the sym-

metric mixture of protons and neutrons, for increasing temperature and baryon

density.
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Finite Non-zero Radii Particles (Ri > 0 (i = n, p, d))

In this case, we assume that deuteron has a finite radius Rd = 1.2fm

Table 2
Particle Pairs Volumes

Particle Pair Volume (fm3)
vnn = vpp 2.094
vpn = vnp 2.094
vdn = vnd 7.238
vpd = vdp 7.238
vdd 57.906

where

vdn = vnd = vdp = vpd =
4π

3
R3
d = 7.238 fm3, (3.24)

and

vdd ≈
4π

3
(2Rd)

3 = 57.906 fm3. (3.25)

Using these terms we can introduce the rearrangement potentials into the num-

ber densities

Ui = −
∑

j

vij
Ω

(ex)
j

V Φj
, (3.26)
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hence

Ui = −
∑

j

vij
Ω

(ex)
j

V Φj
Ω

(ex)
i = −TV g

(eff)
i Φi

λ3
i

exp

(
µ

(ex)
i −mi − Ui

T

)
. (3.27)

Combining these last two equations, we express the potentials more simply as

Ui = T
∑

j

vij
gj
λ3
i

exp

(
µ

(ex)
i −mi − Ui

T

)
= T

∑

j

vij
nj
V Φj

. (3.28)

And, using this, we can finally include volume-exclusion in our calculation of

the particle densities

ni =
g

(eff)
i

λ3
i

exp

(
µ

(ex)
i −mi − Ui

T

)
(3.29)

=
giΦi

λ3
i

exp

(
µ

(ex)
i −mi − Ui

T

)
, (3.30)

the results of which are shown in figures (15), (16), and (17).

Comparing these to Figures (12), (13), and (14) for the point particles,

we have a vastly different scenario. Having considered volume exclusion, Figures

(15), (16), and (17) suggest that we get a decrease in deuteron mass fraction

as the baryon density increases. And, as temperature increases deuteron mass

fraction decreases.

As in the previous case for point particles, the trend of neutrons and pro-

tons against the deuterons is reversed. But this time, the proton and neutron
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mass fractions increase with baryon density, and also for increasing tempera-

ture.

Future Work

Hence, while the results presented in this chapter are for the special

case of a symmetric mixture of nucleons (i.e. δ = 0) for three particle species,

neutrons, protons and deuterons, this methodology should be applied and com-

pared against actual data for different nuclei species to confirm its validity.

Furthermore, more realistic consideration involving particle number conserva-

tion, non-conserved chemical potential, and energy loss or gain, and inclusion

of relativistic physical situations should also be considered.

However, while such an approach is beyond the scope of this study, the

arguments and approach made herein can be extended and applied in a more

general sense beyond a finite mixture of gases of simple nucleons - as we have

shown here.
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Chapter 4

APPLICATIONS TO BIG BANG NUCLEOSYNTHESIS

We also note that this methodology - with the inclusion of relativity

- can be applied to understanding Big Bang Nucleosynthesis. Additional but

unrelated work to the one shown herein, was done with a collaboration with

Prof. Spitaleri and his nuclear astrophysics group in Catania, Sicily as shown

in Pizzone et al. (2014), the abstract of which is cited below.

“Nuclear reaction rates are among the most important input for understanding

the primordial nucleosynthesis and therefore for a quantitative description of

the early Universe. An up-to-date compilation of direct cross sections of 2H(d,p)

3H, 2H(d,n) 3He, 7Li(p,α) 4He and 3He(d,p) 4He reactions is given. These are

among the most uncertain cross sections used and input for Big Bang nucle-

osynthesis calculations. Their measurements through the Trojan Horse Method

(THM) are also reviewed and compared with direct data. The reaction rates

and the corresponding recommended errors in this work were used as input for

primordial nucleosynthesis calculations to evaluate their impact on the 2H, 3,4He

and 7Li primordial abundances, which are then compared with observations.”
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APPENDIX A

CALCULATION OF bnn
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CALCULATION OF bnn

From eq. (2.22)

p(vi,cl) = −Ω(vi,cl)(T, V, µ
(vi,cl)
n )

V
=

T

λ3
n

[
gnz

(vi,cl)
n + b(cl)

nn

(
z(vi,cl)
n

)2
]
, (4.1)

and

p(vi,qu) = −Ω(vi,qu)(T, V, µ
(vi,qu)
n )

V
=

T

λ3
n

[
gnz

(vi,qu)
n + b(qu)

nn

(
z(vi,qu)
n

)2
]
, (4.2)

we have

nn =
∂p(vi,cl)

∂µn
=

1

λ3
n

[
gnz

(vi,cl)
n + 2b(cl)

nn

(
z(vi,cl)
n

)2
]
, (4.3)

and

nn =
∂p(vi,qu)

∂µn
=

1

λ3
n

[
gnz

(vi,qu)
n + 2b(qu)

nn

(
z(vi,qu)
n

)2
]
. (4.4)

Simplifying this, we arrive at the relations

nn =
1

λ3
n

[
gnz

(vi)
n + 2bnn

(
z(vi)
n

)2
]
, (4.5)

nnλ
3
n = gnz

(vi)
n + 2bnn

(
z(vi)
n

)2

, (4.6)
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leading to

(
z(vi)
n

)2

+ z(vi)
n

gn
2bnn

− nnλ
3
n

2bnn
= 0, (4.7)

which has the solution:

z(vi)
n =

1

4bnn

(
±
√
g2
n + 8bnnnnλ3

n − gn
)
. (4.8)

Hence, inserting into eqs. (4.1) and (4.2) respectively

p(vi) =
T

λ3
n

[
gnz

(vi)
n + bnn

(
z(vi)
n

)2
]
,

=
T

λ3
n

[
gnz

(vi)
n + bnn

(
nnλ

3
n

2bnn
− z(vi)

n

gn
2bnn

)]
,

=
T

λ3
n

[
gnz

(vi)
n +

1

2

(
nnλ

3
n − gnz(vi)

n

)]
,

=
T

2λ3
n

[
gnz

(vi)
n + nnλ

3
n

]
,

=
T

2λ3
n

[
nnλ

3
n + gn

(
±
√
g2
n + 8bnnnnλ3

n − gn
)]
,

=
T

2λ3
n

[
nnλ

3
n − g2

n ±
√
g4
n + 8g2

nbnnnnλ
3
n

]
. (4.9)
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To produce real values for p(vi) we must have the condition (constraint

to bnn)

g4
n ≥ −8g2

nbnnnnλ
3
n, (4.10)

or

g2
n

8λ3
nnn
≥ −bnn. (4.11)

For the classical case for neutrons, this is:

b(cl)
nn (T ) = −g

2
n

λ3
n

4π

3
R3
nn, (4.12)

or

g2
n

8λ3
nnn
≥ +

g2
n

λ3
n

4π

3
R3
nn. (4.13)

Thus, the limiting density is

g2
n

8λ3
nnn
≥ g2

n

λ3
n

4π

3
R3
nn, (4.14)
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or

1

8nn
≥ 4π

3
R3
nn. (4.15)

In terms of the neutron number density (and recalling that Rnn ≈ 1fm)

3

32π

1

R3
nn

≥ nn ≈ 0.029842 fm−3, (4.16)

the excluded volume is

vnn =
1

2

4π

3
R3
nn, (4.17)

leading to

3

32π

1

R3
nn

→ 1

16vnn
≥ nn ≈ 0.029842 fm−3. (4.18)

Noticeably, this is temperature independent and is only constrained to

the the volume of the sphere in question - i.e. volume dependent - as it should

be.
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For the quantum mechanical case

(4.19)b(vi,qm)
nn (T ) =

l=∞∑

l=0

b(l)
nn(T ),

thus, using

(4.20)b(l)
nn(T ) =

(2l + 1)g2
n

π

λ3
n

λ3
nn

∫ ∞

0

exp

(
− k2

2µnnT

)
dδ

(ij)
l

dk
,

we obtain

b(vi,qm)
nn (T ) =

l=∞∑

l=0

b(l)
nn(T ), (4.21)

where

g2
n

8λ3
nnn
≥ −

l=∞∑

l=0

b(l)
nn(T ). (4.22)

Defining the integration result as f(T), we have

b(vi,qm)
nn (T ) =

l=∞∑

l=0

(2l + 1)g2
n

π

λ3
n

λ3
nn

f(T ) =
(2l + 1)g2

n

π

λ3
n

λ3
nn

l=∞∑

l=0

f(T ), (4.23)

since

g2
n

8λ3
nb

(vi,qm)
nn (T )

≥ nn, (4.24)
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we get

g2
n

8λ3
n
g2n
π
λ3n
λ3nn

≥ nn
∑

(2l + 1)f(T ), (4.25)

or

πg2
nλ

3
nn

8λ3
ng

2
nλ

3
n

≥ nn
∑

(2l + 1)f(T ), (4.26)

that is

πλ3
nn

8λ6
n

∑
(2l + 1)f(T )

≥ nn. (4.27)

From an examination of the terms, we observe that
∑

(2l + 1)f(T )

requires that the overall integrand result be unitless, so that it can be thought

of as a single function dependent on T. Hence at a given temperature and

nucleon density, we can write

πλ3
nn

8λ6
nnn
≥
∑

(2l + 1)f(T ). (4.28)
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