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Abstract. The description of the neutron-deuteron scattering process has been possible using the partial
wave approach since the 1980s (Few-Body Syst. 3, 123 (1988); Phys. Rep. 274, 107 (1996); Acta Phys. Pol.
B 28, 1677 (1997)). In recent years the so-called “three-dimensional” formalism was developed, where the
calculations are performed with operators acting directly on the three-dimensional degrees of freedom of the
nucleons. This approach avoids a tedious step of the classical calculations, the partial wave decomposition
of operators, and in this paper is applied to the neutron-deuteron scattering process. The calculations
presented here are a first step toward a new calculation scheme that would make it possible to easily
produce precise predictions for a wide range of nuclear force models. This paper is a continuation of the
work presented in Eur. Phys. J. A 43, 339 (2010) where the breakup channel was considered in detail.
The theoretical formulation used in this paper is very closely related to the formalism introduced in Eur.
Phys. J. A 43, 339 (2010) and Phys. Rev. C 68, 054003 (2003), however, we work directly with the matrix
representation of operators in the joined isospin-spin space of the three-nucleon system and use only the
driving term of the three-nucleon Faddeev equations. This greatly simplifies the numerical realization of
the calculation and allows us to consider also the elastic channel of the reaction.

1 Introduction

The nucleon-deuteron (Nd) elastic scattering is a process
of great importance to study three-nucleon (3N) physics.
In recent years many exact theoretical formalisms have
been developed to describe this process at low and in-
termediate energies [1–4]. In combination with continu-
ous progress in numerical methods and computational re-
sources this allows one to make exact predictions based
both on (semi) phenomenological [5–8] forces as well as
on potentials derived within the framework of chiral ef-
fective field theory [9,10]. It was proven [11,12] that a
three-nucleon force (3NF) gives a significant contribution
to the elastic scattering cross section and spin observables
at higher energies, which makes this process extremely in-
teresting for studies on the 3N Hamiltonian.

Also from the experimental side the proton-deuteron
scattering have been extensively investigated by many
groups, see for example [13–15] for recent experiments.
The comparison of theoretical predictions with the data
clearly shows, that 3NF effects grow with energy. At
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higher energies discrepancies between predictions and
data exist. These discrepancies cannot be removed by rela-
tivistic corrections [16,17] but have to originate from miss-
ing short-ranged parts of modern 3NFs. Due to the big
number of partial waves required at higher energies, the-
oretical formalisms which are based on the partial wave
decomposition (PWD) become not appropriable to de-
scribe Nd scattering at energies above around 250MeV.
Therefore it is desired to develop exact theoretical meth-
ods applicable at these energies which avoid partial wave
decomposition. For a short review of different formulations
avoiding PWD in the momentum space we refer to [11].

In this paper we apply the so-called “three-
dimensional” (3D) formalism to neutron-deuteron (nd)
scattering. Our nonrelativistic description is based on the
3N Faddeev equations [1,18] where, instead of resorting
to the PWD of operators involved in the calculations, we
use the general parity and time reversal invariant form
of the two-nucleon (2N) potential and work with opera-
tors and states constructed from three-dimensional vec-
tors. Our approach avoids the PWD and works directly
with the operator form of the potential making the calcu-
lations easily extensible to new models of nuclear forces. In
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spite of the restriction to the leading term of the 3N Fad-
deev equations, this work is the first step in the direction
of the full 3D treatment of 3N scattering.

The results presented in this paper are a natural con-
tinuation of the work presented in [19]. Following the for-
malism introduced in [19] we restrict ourselves to the driv-
ing term only but additionally extend the formalism to
elastic nd scattering. This was, in part, made possible by
not treating the spin and isospin spaces of the 3N system
separately since constructing operators, especially permu-
tation ones, in the joined isospin-spin space is a much sim-
pler task. It should, however, be stressed that the formal-
ism we present here is equivalent to the one used in [19].
The expressions presented in [19] were cross-checked with
the ones presented in this work. The only difference is the
combined treatment of operators in the isospin and spin
spaces of the 3N system that greatly simplifies the calcu-
lations.

The aim of the calculations presented here is to take
the first step in the direction of the full 3D treatment of
three nucleon (3N) scattering. We are aware that using
the driving term only is insufficient to properly describe
experimental results at the energies considered in this pa-
per. Nonetheless, in sect. 4 we provide a comparison with
the full PWD calculation that includes all terms. In or-
der to verify our calculations we compare them to results
obtained using well-established codes that are based on
PWD, but restricted only to the driving term. In all cases
we observe a very good convergence of the PWD results
to our 3D calculations.

We use a notation in which vectors are denoted us-
ing bold face (e.g., p), unit vectors are denoted using a
hat (e.g. p̂) and operators are denoted using an inverted
hat (e.g. Ǒ). The paper is organized as follows. Section 2
contains our formalism. First, the scattering amplitudes
for the breakup and elastic scattering, in their full form
and with the driving term only, are introduced. The next
sect. 3 describes the building blocks of the calculations.
We supply the final expressions for the scattering ampli-
tudes in terms of full 3N isospin-spin operators in sect. 3.1.
These expressions can serve as a good starting point in an
attempt to reproduce our results. The detailed descrip-
tion of the formal ingredients can be found in [20–22]. In
this paper we give an overview of the necessary deuteron
wave function and 2N transition operator calculations in
subsects. 3.2 and 3.3, respectively. Next, in subsect. 3.4,
we describe the permutation operators in the full isospin-
spin space of the 3N system. Finally, in sect. 4 we present
numerical results and summarize in sect. 5.

2 Theoretical description

The properties of the 3N system under consideration are
governed by the Hamiltonian operator,

Ȟ = Ȟ0 +
3∑

i=1

V̌i, (1)

where Ȟ0 = p̌2

m + 3q̌2

4m is the kinetic energy operator with
Jacobi momenta p and q, m is the nucleon mass and V̌i

is the 2N potential operator for particles l, n such that
i �= l �= n �= i. The key ingredients of our formalism are the
two-body transition operator ťi satisfying the Lippmann-
Schwinger equation (LSE) [18],

ťi(E + iε) = ťi(E + iε) + V̌iǦ0(E + iε)ťi(E + iε), (2)

and the deuteron bound state. In (2) the LSE is written in
the 3N space, G0(E + iε) ≡ (E + iε− Ȟ0)−1 is the free 3N
propagator and E is the 3N energy. The deuteron bound
state and the transition operator ťi will be discussed in de-
tail in sects. 3.2 and 3.3, respectively. In order to simplify
the notation in the following the iε term will be dropped,
the limit ε → 0+ will be implied and the energy argument
E will be omitted.

The transition operators for nd scattering have a well-
known form [1,19] both for breakup,

Ǔ0 = (1 + P̌ )Ť , (3)

as well as for elastic scattering,

Ǔ = P̌ Ǧ−1
0 + P̌ Ť , (4)

where the Ť operator satisfies the 3N Faddeev equation [1,
18]:

Ť = ťP̌ + ťǦ0P̌ Ť . (5)

In eqs. (3)–(5),

P̌ = P̌12P̌23 + P̌13P̌23

is the permutation operator (P̌ij being an operator ex-
changing particles i and j) and ť ≡ ť1.

The operators (3) and (4) can be used to calculate
transition amplitudes for the breakup and elastic channels:

ABU = 〈φ0|Ǔ0|φ〉, (6)

AEL = 〈φ′|Ǔ |φ〉, (7)

where the |φ′〉 and |φ〉 states comprise a deuteron formed
from nucleons 2, 3 and a free neutron 1. These states can
be projected onto Jacobi momentum eigenstates (with
particle 1 being the spectator, p related to the relative
motion of particles 2 and 3, and q related to the relative
motion of particle 1 with respect to the c.m. of the 2–3
subsystem) to give

〈pq | φ〉 ∝ δ3(q − qi) (8)

and
〈pq | φ′〉 ∝ δ3(q − qf ). (9)

Further, |φ0〉 in (6) is the final state of the breakup re-
action with three free nucleons —two neutrons and one
proton:

〈pq | φ0〉 ∝ δ3(p − pf )δ3(q − qf ). (10)

In the above relations qi and qf are the center-of-mass
momenta of the free particle in the initial and final states
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of the elastic scattering process, respectively, and pf , qf

are the Jacobi momenta describing the final state in the
breakup process with three free particles. The aim of this
paper is to provide a numerical realization of the calcula-
tions from [19], however, since we now deal with two final
channels, we chose a bit different notation for the kine-
matical variables. Momentum vectors related to the elastic
scattering process will be marked using lower indexes “i”
and “f” for the initial and final state, respectively. For the
breakup process upper indexes “i” and “f” will be used.
More details on the kinematics will be given in sect. 3.1
and in fig. 1. The isospin-spin structure of the final and
initial states will be described in detail in sect. 3.2.

Equation (5) can be iterated and written in the form
of a series:

Ť = ťP̌ + ťǦ0P̌ ťP̌ + ťǦ0P̌ ťǦ0P̌ ťP̌ + . . . . (11)

In this paper we restrict ourselves only to the first-order
term of this expansion, i.e. we approximate Ť by the driv-
ing term:

Ť ≈ ťP̌ . (12)

The consequence of using such an approximation is a new,
simplified form of the breakup and elastic scattering tran-
sition operators from eqs. (6) and (7), ǔ0 and ǔ:

〈φ0|ǔ0|φ〉 = 〈φ0|(1 + P̌ )ťP̌ |φ〉 (13)

and
〈φ′|ǔ|φ〉 = 〈φ′|P̌ Ǧ−1

0 + P̌ ťP̌ |φ〉. (14)

Following [20,21], in a numerical realization of the cal-
culations we will use the “three-dimensional” approach. In
this method we work with the three-dimensional degrees
of freedom of the nucleons directly and thus avoid the de-
composition of operators into partial waves. This makes
the calculations flexible and allows an easy incorporation
of new models of 2N interactions into the calculations.
The method outlined in [20,21] and used in this paper to
calculate the 2N transition operator and deuteron bound
state utilizes a general parity, time reversal and rotation
symmetric form of the nucleon-nucleon interaction. Using
this form of the potential is equivalent to using “all” par-
tial waves, however, the practical realization is limited by
the finite computer resources. Nonetheless it is expected
that numerical results obtained using the traditional PWD
approach will converge to the 3D results if an increasing
number of partial waves is taken into account.

From the practical side, after the momentum space
projection, all calculations in the 3D formalism are re-
duced to simple matrix equations as described in sect. 3.1.
The matrix representation of all operators that are intro-
duced in this section can be easily calculated using our
software for the Mathematica R© system [23]. In particular,
the treatment of particle permutations is greatly simplified
in comparison to the PWD approach. Construction of the
matrix representation of the permutation operators in the
spin and isospin spaces of the three particles is described
in sect. 3.4.

Fig. 1. Top panel: description of kinematic for elastic scatter-
ing. Initially the neutron has momentum qi in the ẑ-direction.
In the final state, after interacting with the deuteron, the neu-
tron receives momentum qf . Bottom panel: kinematic situation
for the breakup process. The momentum of the incident parti-
cle is qi ≡ qi. In the final state the Jacobi momenta of three
free particles are pf and qf .

3 Formal ingredients

In subsect. 3.1 we give the momentum-space–projected
versions of eqs. (13) and (14). Our calculations are per-
formed using the isospin formalism in which the proton
and neutron are two charge states of the same particle,
the spin 1

2 and isospin 1
2 nucleon. Thus, any isospin-spin

operator in the 3N system can be represented, after the
momentum space projection, as a 64 × 64 matrix.

The choice to work with 64× 64 matrices directly was
made out of convenience. The alternative approach is to
separate the spin and isospin cases but this makes the an-
alytical calculations involving multiple permutation oper-
ators significantly more complicated.

In the subsections that follow, subsects. 3.2, 3.3
and 3.4, we outline the construction of all relevant matrix
elements in terms of 64× 64 matrices and 64 dimensional
vectors in the full isospin-spin space of the 3N system.

3.1 Momentum space representation

The kinematical variables in the center-of-mass frame are
depicted in fig. 1. We consider the breakup and elastic
channels of the nd scattering process with the initial rela-
tive, with respect to the deuteron, momentum of the nu-
cleon qi in the ẑ-direction. This together with the on-shell
condition limits the possible kinematics of the final state
for both channels. For the elastic process, the final state
is uniquely determined by the center-of-mass scattering
angle θc.m. and the magnitudes of the final and initial
neutron momenta are equal |qf | = |qi|. For the breakup
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process we use Jacobi momenta pf , qf (with particle 1
being the spectator, pf related to the relative motion of
particles 2 and 3, and qf related to the relative motion
of particle 1 with respect to the c.m. of the 2–3 subsys-
tem). The final kinematics can, as in the elastic case, be
uniquely determined by one real parameter if the direc-
tions of momenta of two particles in the final state are
fixed. This follows from the on-shell condition:

|pf |2
m

+
3|qf |2
4m

=
3|qi|2
4m

− |Ed|, (15)

where m is the nucleon mass and Ed < 0 is the deuteron
binding energy. The parametrization “S” fully determines
the kinematics we will use a convention that is described
in sect. 2.4.1 of ref. [1].

The momentum-space–projected versions of eqs. (13)
and (14) are worked out by using the completeness rela-
tion: ∫

d3pd3q|pq〉〈pq| = 1̌, (16)

where |pq〉 is a product state of Jacobi momentum eigen-
states normalized as

〈p′q′ | pq〉 = δ3(p′ − p)δ3(q′ − q). (17)

The momenta p, q are chosen so that particle 1 (neutron,
projectile in the initial state) is the spectator and p de-
scribes the relative momentum of particles 2, 3 (deuteron
in |φ′〉, |φ〉).

We first focus on the matrix elements necessary to cal-
culate the breakup scattering amplitude (13). Inserting
the identity operator (16) twice into (13), before the ini-
tial and after the final state yields the momentum-space–
projected expression:

〈φ0|ǔ0|φ〉 =∫
d3p(〈φ0 | pfqf 〉〈pfqf |ťP̌12P̌23|pqi〉〈pqi | φ〉

+ 〈φ0 | pfqf 〉〈pfqf |ťP̌13P̌23|pqi〉〈pqi | φ〉
+ 〈φ0 | pfqf 〉〈pfqf |P̌12P̌23ťP̌12P̌23|pqi〉〈pqi | φ〉
+ 〈φ0 | pfqf 〉〈pfqf |P̌12P̌23ťP̌13P̌23|pqi〉〈pqi | φ〉
+ 〈φ0 | pfqf 〉〈pfqf |P̌13P̌23ťP̌12P̌23|pqi〉〈pqi | φ〉
+ 〈φ0 | pfqf 〉〈pfqf |P̌13P̌23ťP̌13P̌23|pqi〉〈pqi | φ〉). (18)

In the above equation 〈pfqf | φ0〉 and 〈pqi | φ〉 are the
momentum-space–projected final and initial states. They
are represented by vectors in the joined isospin-spin space
and their structure will be discussed in the next section.
Since the projectile momentum qi in the initial state as
well as qf and pf in the final state are specified, three inte-
grations from (16) can be eliminated. The only remaining
integral in (18) stems from the relative 2N momentum in
the deuteron (initial state) and can be eliminated using
the property of the two particle transition operator in 3N
momentum space:

〈p′q′|ť(E)|pq〉 = δ3(q′ − q)

〈p′|ť2N

(
E2N = E − 3

4m
q2

)
|p〉, (19)

where 〈p′|ť2N |p〉 is the matrix element of the transition
operator between the 2N relative momentum eigenstates
of particles 2, 3 and E− 3

4mq2 is the 2N subsystem energy.
The momentum space permutations in (18) can be car-

ried out using (see, e.g., [19,22]):

P̌12|pq〉 =
∣∣∣∣
1
4
(2p + 3q) p − q

2

〉
, (20)

P̌23|pq〉 = | − p q〉, (21)

P̌13|pq〉 =
∣∣∣∣
1
4
(2p − 3q) − p − q

2

〉
. (22)

Considering all the permutation cases from (18) or similar
equations is a meticulous task. We gather all the relevant
resulting expressions in appendix A for the readers’ conve-
nience. This way, below, we can focus on the isospin-spin
structure of the final expressions for the scattering ampli-
tudes.

After carrying out all the momentum space permu-
tations using (20)–(22) and the application of proper-
ties (17), (19) the final expression for the breakup scatter-
ing amplitude can be written as

〈φ0|ǔ0|φ〉 =
6∑

c=1

[
〈pfqf | φ0〉

]† [
P̌BL

c

]

[
〈pBL

c | ˇt2N

(
E − 3

4m
|qBQ

c |2
)
|pBR

c 〉
]

[
P̌BR

c

] [
〈pBD

c qi | φ〉
]
, (23)

where index “c” enumerates the six permutation cases
from eq. (18):

(1̌ + P̌ )ťP̌ = ťP̌12P̌23 + ťP̌13P̌23 + P̌12P̌23ťP̌12P̌23

+ P̌12P̌23ťP̌13P̌23 + P̌13P̌23ťP̌12P̌23 + P̌13P̌23ťP̌13P̌23

and all objects inside square brackets [. . .] are isospin-spin
operators or states, represented by 64 × 64 matrices or
64 dimensional vectors, respectively. The vectors [〈pfqf |
φ0〉] and [〈pBD

c qi | φ〉] contain the complete information
about the spin and isospin of the final and initial state.
[P̌BL

c ] and [P̌BR
c ] are permutation operators, in particular

[P̌BL
1 ] = [P̌BL

2 ] = [1̌]. Further,
[
〈pBL

c | ˇt2N

(
E − 3

4m
|qBQ

c |2
)
|pBR

c 〉
]

is the transition operator matrix and finally pBL
c , pBR

c ,
qBQ

c and pBD
c are momenta that result from the applica-

tion of the permutations. A complete list of permutation
operators and momenta necessary to construct (23) for
every case “c” is given in tables 1 and 2 in appendix A.
The transition operator and the deuteron bound state re-
quire special attention and will be discussed separately
in subsects. 3.2 and 3.3. The explicit form of the particle
exchange operators will be discussed in 3.4.

The expression for the elastic transition amplitude (14)
is more complex. Let us consider two parts of this expres-
sion separately,

aEL
1 = 〈φ′|P̌ Ǧ−1

0 |φ〉 (24)
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and
aEL
2 = 〈φ′|P̌ ťP̌ |φ〉, (25)

so 〈φ′|ǔ|φ〉 = aEL
1 + aEL

2 . As in the case of the breakup
scattering amplitude, we will construct the amplitude in
terms of 64 × 64 matrices and 64 dimensional vectors.

The amplitude aEL
1 takes a simple form. The momen-

tum space projected expression originates from inserting
the completeness relation (16) after the permutation op-
erator. More details on the final |φ′〉 and initial |φ〉 states
will be presented in subsect. 3.2 but it is not surprising
that they are constructed from a linear combination of
states with different relative momenta of particles 2 and
3 that form a bound state. This can potentially introduce
two three-fold integrations, however since

Ǧ−1
0 |pq〉 =

(
E − p2

m
+

3q2

4m

)
|pq〉,

the 2N relative momentum in the deuteron is fully de-
termined by qi and qf . Thus the amplitude aEL

1 has the
form

aEL
1 =

2∑

c=1

(
E − |pER

c |2
m

+
3|qi|2
4m

)

[
〈pEL

c qf | φ′〉
]† [

P̌E
c

] [
〈pER

c qi | φ〉
]

(26)

and the index “c” takes on only two values since there are
only two possible permutation in eq. (24) related to the
two terms in

P̌ Ǧ−1
0 = P̌12P̌23Ǧ

−1
0 + P̌13P̌23Ǧ

−1
0 .

The complete information on the permutation operators
and momenta for above cases is given in tables 3 and 4
from appendix A.

The amplitude aEL
2 is more demanding but the method

of calculation is very similar to (23). In this case, since
there is a deuteron bound state both in the initial and in
the final state, only one three-fold integral remains:

aEL
2 =

4∑

c=1

∫
d3q

[
〈pEDL

c qf | φ′〉
]† [

P̌EL
c

]
[
〈pETL

c | ˇt2N

(
E − 3

4m
q2

)
|pETR

c 〉
]

[
P̌ER

c

] [
〈pEDR

c qi | φ〉
]
. (27)

This time the index “c” takes on four values that are re-
lated to the four terms in (25):

P̌ ťP̌ = P̌12P̌23ťP̌12P̌23 + P̌12P̌23ťP̌13P̌23

+ P̌13P̌23ťP̌12P̌23 + P̌13P̌23ťP̌13P̌23.

These terms correspond directly to four of the six terms
from eq. (18). All momenta and permutation operators,
for each case “c”, are gathered in tables 5 and 6 in ap-
pendix A. It should be stressed that for the amplitude (27)

there are different possible choices for the remaining inte-
gral. The choice made in (27) allows us to treat the singu-
larity of the 2N transition operator at the deuteron bound
state energy using the standard subtraction method (see
sect. 3.3).

Looking at the forms of the final expressions (23), (26)
and (27) it becomes apparent why our choice to work in
the full 64 dimensional isospin-spin space is advantageous.
Not separating the permutation operators into their spin
and isospin components, we can use very straightforward
equations that require only matrix manipulations. That
being said one should also note the disadvantage of this
approach which is an increase in computing time required
for the calculations.

3.2 The deuteron and 3N states

Following [20,24] the deuteron bound state projected on
a state with the relative momentum of the two nucleons
p can be written in an operator form,

〈p | φd(md)〉 =
2∑

l=1

φl(|p|)b̌l(p)|1md〉, (28)

where |1md〉 is a 2N state with the total spin 1 and its pro-
jection md, b̌l(p) are 2N spin operators listed for example
in [20]. The isospin state of the system is |00〉. Using the
3D approach, the task of finding the deuteron bound state,
for a given 2N interaction, is transformed into a system
of linear equations, in which energy-dependent operators
act on the scalar functions φ1(|p|), φ2(|p|) from (28). This
is achieved by eliminating the spin degrees of freedom in
the integral, time-independent Schrödinger equation and
introducing a suitable grid of |p| points. The scalar func-
tions φ1(|p|), φ2(|p|) are directly related to the s and d
wave components of the deuteron wave function (as given
explicitly in [24,20]) and are a necessary ingredient in the
construction of the initial and final states for the nd scat-
tering amplitudes.

The operator form of the deuteron bound state can be
used to work out the form of the final |φ′〉 and initial |φ〉
state. In both cases only an additional free neutron with
isospin | 12 − 1

2 〉 and spin |12mn〉 has to be added. The 64
dimensional vector, containing the complete information
on the initial and final spin and isospin of the system, can
be constructed in a straightforward way. The initial and
final states, projected onto a Jacobi momentum eigenstate
|pq〉 can be written as

[〈pq | φ〉] =

δ3(q − qi)
2∑

l=1

φl(|p|) [Bl(p)] [|mnmd〉] (29)

[〈pq | φ′〉] =

δ3(q − qf )
2∑

l=1

φl(|p|) [Bl(p)] [|m′
nm′

d〉] , (30)
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where mn is the neutron spin projection and md is
the deuteron spin projection. The matrices and vectors
in (29), (30) can be constructed by using the Kronecker
product ⊗ to implement the tensor product of operators
and states. Using this method, [|mnmd〉] and [Bl(p)] have
the following forms:

[|mnmd〉]64 =
([∣∣∣∣

1
2
− 1

2

〉]2

⊗ [|00〉]4
)3N isospin

⊗
([∣∣∣∣

1
2
mn

〉]2

⊗ [|1md〉]4
)3Nspin

(31)

and

[Bl(p)]64×64 =
([

1̌
]2×2 ⊗

[
1̌
]4×4

)3N isospin

⊗
([

1̌
]2×2 ⊗

[
b̌l(|p|)

]4×4
)3Nspin

. (32)

In (31) and (32) single nucleon states and operators are
represented by 2 dimensional vectors [. . .]2 and 2 × 2 ma-
trices [. . .]2×2, respectively. 2N states and operators are
represented by 4 dimensional vectors [. . .]4 and 4×4 matri-
ces [. . .]4×4. In particular [1̌]2×2 is an identity operator in
the 2N spin (isospin) space. Additionally, the expressions
have the 3N isospin and spin spaces marked separately.

All calculations that will be presented here are done
with the Bonn B [5] potential and the deuteron bound
state calculations are performed according to [20]. This
approach results in the deuteron binding energy Eb =
−2.2242MeV. The calculation scheme that we developed
is, however, flexible and can be applied also to other mod-
els of nuclear forces.

3.3 The two-nucleon transition operator

The 2N transition operator ťi(E) is the most crucial ele-
ment of our calculations. It was introduced in eq. (2) where
it was written in the full 3N space. The presence of only
one 2N interaction operator V̌ := V̌1 in (2) makes it possi-
ble to limit the calculations to the 2N space. The relation
between the two particle transition operator calculated in
3N space and the two particle transition operator calcu-
lated in 2N space was given in (19) and in this subsection
we will focus on the latter.

Using the methods from [20–22] allows for an easy in-
corporation of new models of 2N interactions. This useful
feature is also an important motivation behind the appli-
cation of the 3D approach to nd scattering. A detailed
description of the transition operator calculations can be
found in one of our earlier papers [20–22] and below we
give only short description of these calculations.

The starting point is the general, parity and time re-
versal symmetric form of the 2N potential [25]. In this

form, the 2N interaction is defined by the scalar functions
vγ

i via

〈p′|V̌ |p〉 =
6∑

i=1

∑

γ

vγ
i (|p′|, |p|, p̂′ · p̂)|γ〉〈γ| ⊗ w̌i(p′,p), (33)

where |γ〉 is one of the 4 possible isospin states of the 2N
system, p′, p are the relative 2N momenta and w̌i(p′,p)
are known 2N spin operators (they are listed, for exam-
ple, in [20]). The same symmetry considerations that lead
to (33) can also be applied to the 2N transition operator.
It can be defined by the energy-dependent scalar functions
tγi (E) via

〈p′|ť(E)|p〉 =
6∑

i=1

∑

γ

tγi (E; |p′|, |p|, p̂′ · p̂)|γ〉〈γ| ⊗ w̌i(p′,p). (34)

In the next step decompositions (33) and (34) are in-
serted into the Lippmann-Schwinger equation (2) and the
spin dependencies are removed. The final result is a set
of linear equations, in which energy-dependent operators
act on the scalar functions tγi (E). In order to find the so-
lution, the functions tγi (E; |p′|, |p|, p̂′ · p̂) first need to be
discretized over a given mesh of |p′|, |p|, p̂′ ·p̂ points, effec-
tively turning them into vectors. Next it is possible to use
various approaches. One approach requires the construc-
tion of a matrix representation of the energy-dependent
operators and the direct solution of the resulting ma-
trix equation. Another, more simple, approach utilizes the
Arnoldi algorithm [26] and requires only the numerical im-
plementation of the action of the energy-dependent oper-
ators on the scalar functions. Both approaches were ex-
plored in [20–22] but the present results, given here in
sect. 4, are obtained using the second method. It should
be stressed out that the final operator equations take on a
different form for positive and negative 2N energy cases.

In order to construct the amplitudes (23) and (27), the
transition operator must be calculated for a wide range of
2N energies, both positive and negative. The task of com-
puting the appropriate scalar functions is numerically very
demanding. We use the computing resources of the Jülich
Supercomputing Center to calculate these functions for the
wide spectrum of energies required by nd scattering.

A further complication comes from the fact that the
transition operator has singular behavior at the deuteron
binding energy Ed for the isospin |00〉 case. The form of
this pole is well known:

ť
|00〉
i (E2N → Ed) ∝

1
E2N − Ed + iε

, (35)

and this knowledge can be used to carry out the q inte-
gration in (27). A cut-off value |q| < q̄ is introduced to
this integral and the standard formula using the principal
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value can be applied:
∫ ȳ

0

dy
y2

y2
0 − y2 + iε

f(y) =
∫ ȳ

0

dy
y2f(y) − y2

0f(y0)
y2
0 − y2

+
1
2
y0f(y0)

(
ln

(
ȳ + y0

ȳ − y0

)
− iπ

)
. (36)

The choice of the final integration variable used in (27)
was made in order to make use of (36). It should be noted
that in the above formula, f(y) does not have to return
a number. In the practical realization of our calculations
it returned a 64 × 64 dimensional representation of the
operators form (27).

Finally, the 2N relative momentum space projected
matrix element of the transition operator,

〈p′|ť(E)|p〉,

is an operator in the isospin and spin spaces of the 2N sys-
tem. In order to construct the 64×64 dimensional matrix
representation of this operator in the 3N isospin-spin space
required by (23) and (27) we simply insert the identity op-
erator 1̌ in both the spin and isospin spaces of particle 1
of (34) in a similar fashion as in eq. (32):

〈p′|ť(E)|p〉 =
6∑

i=1

∑

γ

tγi (E; |p′|, |p|, p̂′ · p̂)

([
1̌
]2×2 ⊗ [|γ〉〈γ|]4×4

)3N isospin

⊗
([

1̌
]2×2 ⊗ [w̌i(p′,p)]4×4

)3Nspin

. (37)

3.4 The permutation operators

The final missing ingredients necessary to obtain the scat-
tering amplitudes are the permutation operators [P̌ij ]. In

order to work out the matrix representation of the par-
ticle exchange operators in the spin (isospin) space it is
necessary to consider the action of the permutation on in-
dividual particle spin (isospin) states. With our choice for
the basis from table 7 (|↑↑↑〉, |↑↑↓〉, |↑↓↑〉, . . ., |↓↓↓〉) the
matrix representations are given in eqs. (B.1), (B.2), (B.3)
from appendix B for the isospin and spin spaces separately.
The 64× 64 matrix representation of the permutation op-
erator in the joined isospin-spin space of the 3N system
can be easily constructed using the Kronecker product:

[Pij ]
3N = [Pij ]

3N isospin ⊗ [Pij ]
3N spin

. (38)

4 Numerical results

As mentioned earlier all 3D results were obtained using
the Bonn B potential [5] and are compared with results
derived using partial wave decomposition. Using partial
waves, convergence is observed as more partial waves are
taken into account. However, in some cases a very large
number of partial waves is necessary to observe full agree-
ment. Achieving this was, in some cases, difficult due to
the large memory requirements of the PWD code. This
demonstrates a nice feature of the 3D approach which is
equivalent to taking into account all partial waves. In ad-
dition, all 3D results obtained in first order only are com-
pared to values produced with the full equation for the Ť
operator (5).

Our calculations were performed for two different lab-
oratory energies 25MeV and 190MeV. For the breakup
case we chose a kinematical configuration in which two
neutrons in the final state emerge at angles 30◦ and 60◦
relative to the ẑ-axes and with the relative azimuthal an-
gle φ12 = 180◦. The location of the kinematics in the plane
of the kinetic energy of the first E1 and second E2 parti-
cle, for the 25MeV and 190MeV cases, is related to the
kinematics curve and is plotted in fig. 2. The differential
cross sections with respect to the kinematics parameter
“S” are presented in figs. 3 and 4. In fig. 3 we demonstrate
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, 15

2
, 25

2
and the maximum angular momentum of

the 2–3 particle subsystem jmax = 3, are given by using dash-
dotted, dotted and dashed lines, respectively. The lines above
Jmax = 15

2
merge. PWD results that take into account the full

equation for Ť as given in eq. (5) are plotted using the double-
dashed line for comparison, they are obtained using Jmax = 25

2

and jmax = 7.

convergence of the PWD calculations to the 3D result with
respect to increasing total angular momenta. In fig. 4 we
demonstrate convergence with respect to increasing angu-
lar momentum of the 2–3 subsystem.

We plot selected spin observables for the breakup pro-
cess, for the same configurations, in figs. 5 and 6. The plots
contain the deuteron and nucleon vector analyzing powers
(Ad

y, AN
y ) and the deuteron tensor analyzing powers (Axx,

Ayy, Azz) [1]. For 25MeV we observe nice agreement of
the PWD calculations with the 3D results even if only a
small number of partial waves is taken into account. For
190MeV we also observe convergence of the PWD results
to the 3D results, however, in order to get full agreement
a larger number of partial waves should be taken into ac-
count.

For the elastic nd scattering process excellent agree-
ment and convergence of the PWD results and the 3D
results is observed for all investigated observables and en-
ergies. Figure 7 contains the differential cross sections for
25MeV and 190MeV. Figures 8 and 9 contain selected
spin observables. In fig. 10 we demonstrate the conver-
gence of the PWD results to the 3D results for 190MeV
not only with the increasing 2–3 particle subsystem angu-
lar momentum but also with respect to the total angular
momentum.

All new results presented in this paper use only the
driving term of the 3N Faddeev equations. Nevertheless,
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Fig. 4. The same as in fig. 3 but for 190 MeV and Jmax = 25
2

.
Here the PWD results calculated with jmax = 3, 5, 8 are shown
using dash-dotted, dotted and dashed lines, respectively. The
solid obtained using the 3D approach is practically identical
as the dashed, jmax = 8, result. PWD results that take into
account the full equation for Ť (5) are plotted using the double
dashed line for comparison, they are obtained using Jmax = 25

2

and jmax = 7.

they are an important step in the development of the full
3D treatment of 3N scattering. We showed that the previ-
ously developed 3D techniques for calculating the transi-
tion operator and the deuteron bound state [20–22] can be
successfully applied to the new problem. These techniques
can be applied to any 2N potential (however, in this paper
we restricted ourselves to the Bonn B force [5]) and are
equivalent to using all partial waves. The high precision
and flexibility of these calculations could make the new
3D treatment of 3N scattering a valuable tool to verify
modern nuclear forces.

The formalism employed in the calculations presented
in this paper is closely related to that of [19]. In order to
simplify the calculations we decided not to separate the
isospin and spin spaces and instead to work directly with
the 64×64 dimensional representation of operators in the
joined 3N isospin-spin space. This allowed us to consider
both the elastic and breakup channels of the nd scattering
reaction in a consistent way that requires only simple ma-
trix manipulations. Furthermore, we believe that a similar
approach could also be applicable to calculations that in-
volve 3NFs.

5 Summary

In this paper we demonstrated that, up to the driving
term the “three-dimensional” calculations, of the neutron-
deuteron breakup and the elastic scattering processes, are
in good agreement with the classical calculations that use
partial waves. Convergence of the PWD results to the 3D
results, both in the relative and total angular momentum,
is observed. However, for higher energies around 190MeV
a very large number of partial waves is required. Imple-
menting this requirement was difficult due to the high
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2
and jmax = 7.

memory requirements of the PWD code and demonstrates
a nice feature of the 3D calculations —they take into ac-
count “all” partial waves up to infinity. This makes the
new approach a very good tool for calculations at higher
energies. The drawback of the new approach is the high
numerical cost of the calculations as compared to PWD
ones. The next step of our work will involve inclusion of
the full 3N Faddeev equation in the calculation and opti-
mizing the code to make it numerically more effective. We
believe that this can be achieved by introducing a general
form of the 3N scattering operator. This form would be

constructed to obey the parity, time reversal and rotation
symmetries implicitly.

The project was financed from the resources of the Na-
tional Science Center (Poland) under grants No. DEC-
2013/11/N/ST2/03733 and DEC-2013/10/M/ST2/00420.
Some numerical calculations have been performed on the
supercomputer clusters of the JSC, Jülich, Germany. This
work was additionally supported by U.S. NSF Grant
No. 1415656 and the U.S. DOE grant No. DE-FG02-
08ER41533.
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Appendix A. Breakup operators and
momenta

Table 1. The permutation operators in the breakup process,
see eq. (23).

c P̌BL
c P̌BR

c

1 1̌ P̌12P̌23

2 1̌ P̌13P̌23

3 P̌12P̌23 P̌12P̌23

4 P̌12P̌23 P̌13P̌23

5 P̌13P̌23 P̌12P̌23

6 P̌13P̌23 P̌13P̌23

Table 2. The momenta used in the description of the breakup
process, see eq. (23).

c pBL
c pBR

c

1 pf qi + qf

2

2 pf −qi − qf

2

3 1
4
(−2pf − 3qf ) qi + pf

2
− qf

4

4 1
4
(−2pf − 3qf ) 1

4
(−4qi − 2pf + qf )

5 1
4
(3qf − 2pf ) qi − pf

2
− qf

4

6 1
4
(3qf − 2pf ) 1

4
(−4qi + 2pf + qf )

c qBQ
c pBD

c

1 qf − qi
2
− qf

2 qf qi
2

+ qf

3 pf − qf

2
1
2
(−qi − 2pf + qf )

4 pf − qf

2
1
2
(qi + 2pf − qf )

5 −pf − qf

2
1
2
(−qi + 2pf + qf )

6 −pf − qf

2
1
2
(qi − 2pf − qf )

Table 3. The permutation operators in the P̌G−1
0 part of the

elastic amplitude, see eq. (26).

c P̌E
c

1 P̌12P̌23

2 P̌13P̌23

Table 4. The momenta in the P̌G−1
0 part of the elastic am-

plitude, see eq. (26).

c pEL
c pER

c

1 −qf − qi
2

qf

2
+ qi

2 qf + qi
2

− qf

2
− qi

Table 5. The permutation operators in the P̌ ťP̌ part of the
elastic amplitude, see eq. (27).

c P̌EL
c P̌ER

c

1 P̌12P̌23 P̌12P̌23

2 P̌12P̌23 P̌13P̌23

3 P̌13P̌23 P̌12P̌23

4 P̌13P̌23 P̌13P̌23

Table 6. The momenta in the P̌ ťP̌ part of the elastic ampli-
tude, see eq. (27).

c pEDL
c pETL

c pETR
c pEDR

c

1 qf

2
+ q −qf − q

2
qi + q

2
− qi

2
− q

2 qf

2
+ q −qf − q

2
−qi − q

2
qi
2

+ q

3 − qf

2
− q qf + q

2
qi + q

2
− qi

2
− q

4 − qf

2
− q qf + q

2
−qi − q

2
qi
2

+ q

Appendix B. Explicit forms of the
permutation operators in 3N spin (isospin)
space

The following matrix representations of 3N spin (isospin)
permutation operators use the single particle basis from
table 7:

[P12]
3N spin (isospin) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.1)

[P23]
3N spin (isospin) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B.2)

[P13]
3N spin (isospin) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B.3)
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Table 7. Reference list of 3N spin(isospin) basis states

| 1
2
, ν

spin(isospin)
1 (i)〉spin(isospin) ⊗ | 1

2
, ν

spin(isospin)
2 (i)〉spin(isospin) ⊗

| 1
2
, ν

spin(isospin)
3 (i)〉spin(isospin) quantum numbers. i is the num-

ber of the basis state and ν
spin(isospin)
j (i) is the projection of

the spin (isospin) of particle i.

i ν
(iso)spin
1 (i) ν

(iso)spin
2 (i) ν

(iso)spin
3 (i)

1 − 1
2

− 1
2

− 1
2

2 − 1
2

− 1
2

1
2

3 − 1
2

1
2

− 1
2

4 − 1
2

1
2

1
2

5 1
2

− 1
2

− 1
2

6 1
2

− 1
2

1
2

7 1
2

1
2

− 1
2

8 1
2

1
2

1
2
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