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We discuss the effects of non-inertial motion in reactions occurring in laboratory, stars,
and elsewhere. It is demonstrated that non-inertial effects due to large accelerations
during nuclear collisions might have appreciable effects nuclear and atomic transitions.
We also explore the magnitude of the corrections induced by strong gravitational fields
on nuclear reactions in massive, compact stars, and the neighborhood of black holes.
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1. Introduction

Extremely large accelerations occur when atomic nuclei collide. For instance, two

lead nuclei in a head-on collision with a center-of-mass kinetic energy of 500 MeV,

reach a closest distance of 19.4 fm before they bounce back and move outward.

At this distance each nucleus accelerates with an intriguing ∼1027 m/s2. Very few

other physical situations in the Universe involve nuclei undergoing such large accel-

erations, usually related to astrophysical objects, as in the vicinity of neutron stars

and black holes, where huge gravitational fields exist. Here we explore the effects

of large accelerations and large gravitational fields, and their possible influence on

nuclear reactions in the laboratory and in astrophysical environments. Nuclear re-

actions are crucial for the formation of stellar structures and their rates could be

affected by various factors. To our knowledge, the effect of large gravitational fields

on nuclear reaction rates in stars has not been considered so far.

As mentioned in the previous paragraph, atomic and nuclear systems undergo

large accelerations during reactions. The effect of acceleration is observed in terms
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of excitations followed by decay of these systems. If we consider two-body reactions,

there are two systems of reference which are often used to describe the effects of the

collision: (a) the center-of-mass (cm) system of the two nuclei and (b) the system of

reference of the excited nucleus. System (b) is appropriate to use when the intrinsic

properties of the excited nucleus are described in some nuclear model. A typical

example is the case of Coulomb excitation. One assumes that the nuclei scatter

and their cm wave functions are described by Coulomb waves due to the Coulomb

repulsion between the nuclei. Then one considers the residual effect of the Coulomb

potential on the motion of the nucleons inside the nuclei. This is done by expanding

the Coulomb potential in multipoles and using the high order terms (higher than

first order) as a source of the excitation process. In this approach one illustrates

the privileged role of the cm of the nuclear system: the net effect of the external

forces is to (i) accelerate all the particles together, along with the cm of the system,

and (ii) to change the intrinsic quantum state of the system through the spatial

variation of the interaction within the system. Thus the theoretical treatment of

accelerated many-body systems is well under control in nonrelativistic dynamics.

In the nonrelativistic case, the separation of variables into intrinsic motion and

relative motion between the cm of each nucleus is a simple algebraic procedure.

A problem arises when one wants to extend the method to describe intrinsic ex-

citations of relativistic many-body systems. Very few works exist in the literature

addressing this problem. The reason is that for nuclear reactions in the laboratory,

the effect is expected to be very small, a common belief which must be tested. An-

other reason is that in stellar environments where the gravitational fields are large,

huge pressures develop, “crushing” atoms, stripping them from their electrons, and

ultimately making nuclei dissolve into their constituents. Effects of nuclear excita-

tion are not relevant in the process. But, on the other hand, nuclear reactions are

crucial for the formation of stellar structures and their rates could be affected by

minor effects such as those explored here.

Nuclei participating in nuclear reactions in a gaseous phase of a star follow

inertial trajectories between collisions with other nuclei. Such trajectories are “free

fall” trajectories in which all particles within the nucleus have the same acceleration.

That is surely true in the nonrelativistic case, but not in the relativistic one because

retardation effects lead to corrections due to the nuclear sizes. The central problem

here is the question regarding the definition of the center-of-mass of a relativistic

many-body system. We have explored the literature of this subject and found few

cases in which this problem is discussed. Based on their analysis we show that

relativistic effects introduce small corrections in the Lagrangian of a many-body

system involving the magnitude of their acceleration. We follow Refs. 1–3, with

few modifications, to show that a correction term proportional to the square of the

acceleration appears in the frame of reference of the accelerated system. To test

the relevance of these corrections, we make a series of applications to nuclear and

atomic systems under large accelerations.
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2. Hamiltonian of an Accelerated Many-Body System

Starting with a Lagrangian of a free particle in an inertial frame and introducing

a coordinate transformation into an accelerated frame with acceleration A, a “fic-

titious force” term appears in the Lagrangian when written in coordinates fixed

to the accelerated frame. Thus, in an accelerated system the Lagrangian L for a

free particle can be augmented by a (nonrelativistic) interaction term of the form

−mAz, that is

L = −mc2 +
1

2
mv2 − mAz , (1)

where z is the particle’s coordinate along the direction of acceleration of the refer-

ence frame.1

In the relativistic case, the first step to obtain the Lagrangian of a many-body

system in an accelerated frame is to setup an appropriate measure of spacetime in

the accelerated frame, i.e. one needs to find out the proper spacetime metric. The

free-particle action S = −mc
∫

ds requires that ds = (c− v2/2c +Az)dt, which can

be used to obtain ds2. To lowest order in 1/c2 one gets

ds2 = c2

(

1 +
Az

c2

)2

dt2 − dx2 − dy2 − dz2 = gµν dξν dξµ , (2)

where v dt = dr was used, with dξµ = (c dt, dx, dy, dz) and gµν = (g00,−1,−1,−1),

g00 = (1+Az/c2)2. The indices µ run from 0 to 3. Equation (2) gives a general form

for the metric in an accelerated system. This approach can be found in standard

textbooks (see, e.g. Ref. 1, § 87).

From the definition for the Hamiltonian, H = p · v − L, with p = ∂L/∂v =

mv/
√

g00 − v2/c2, and using the action with the metric of Eq. (2), after a straight-

forward algebra one finds

H =
g00mc2

√

g00 −
v2

c2

= c
√

g00(p2 + m2c2) . (3)

Expanding H in powers of 1/c2, one obtains

H =
p2

2m

(

1 −
p2

4m2c2

)

+ mAz

(

1 +
p2

2m2c2

)

+ O

(

1

c4

)

. (4)

This Hamiltonian can be applied to describe a system of particles with respect

to a system of reference moving with acceleration A, up to order 1/c2. For an

accelerated nucleus, the obvious choice is the cm system of the nucleus. But then

the term carrying the acceleration correction averages out to zero in the center-of-

mass, as one has (
∑

i miAzi = 0). There is an additional small contribution of the

acceleration due to the term proportional to p2. Instead of exploring the physics of

this term, one has to account for one more correction as explained below.

The above derivation of the Hamiltonian for particles in accelerated frames

does not take into account that the definition of the cm of a collection of particles
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is also modified by relativity. This is not a simple task as might seem at first

look. There is no consensus in the literature about the definition of the cm of a

system of relativistic particles. The obvious reason is the role of simultaneity and

retardation. Reference 2 examines several possibilities. For a system of particles it

is found convenient to define the coordinates qµ of the center-of-mass as the mean

of coordinates of all particles weighted with their dynamical masses (energies). The

relativistic (covariant) generalization of center-of-mass is such that the coordinates

qµ must satisfy the relation2

P 0qµ =
∑

i

p0
i z

µ
i , (5)

where the coordinates of the ith particle with respect to the center-of-mass are

denoted by zµ
i and the total momentum vector by P µ =

∑

i pµ
i . Reference 2 chooses

Eq. (5) as the one that is most qualified to represent the definition of cm of a

relativistic system, which also reduces to the nonrelativistic definition of the center-

of-mass. We did not find a better discussion of this in the literature and we also

could not find a better way to improve on this definition.

The above definition, Eq. (5), leads to the compact form, to order 1/c2,

∑

i

miri
√

g00 −
v2

i

c2

=
∑

i

miri

(

1 +
v2

i

2c2
−

ziA

c2
+ O

(

1

c4

))

= 0 , (6)

where ri = (xi, yi, zi) is the coordinate and vi is the velocity of the ith particle with

respect to the cm.

For a system of non-interacting particles, the condition in Eq. (6) implies that,

along the direction of motion,

∑

i

Amizi = −
∑

i

Amizi

(

v2
i

2c2
−

ziA

c2

)

. (7)

Hence, the Hamiltonian of Eq. (4) for a collection of particles becomes

H =
∑

i

p2
i

2mi

(

1 −
p2

i

4m2
i c

2

)

+
A2

c2

∑

i

miz
2
i + U(ri) + O

(

1

c4

)

, (8)

where we have added a scalar potential U(ri), which would represent a (central)

potential within an atom, a nucleus, or any other many-body system.

Notice that the term proportional to −mAz completely disappears from the

Hamiltonian after the relativistic treatment of the cm. This was also shown in

Ref. 3. It is important to realize that non-inertial effects will also carry modifications

on the interaction between the particles. For example, if the particles are charged,

there will be relativistic corrections (magnetic interactions) which need to be added

to the scalar potential U(ri) =
∑

j 6=i QiQj/|ri − rj |. As shown in Ref. 3, the full

treatment of non-inertial effects together with relativistic corrections will introduce

additional terms proportional to A and A2 in the Hamiltonian of Eq. (8), to order
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1/c2. Thus, a more detailed account of non-inertial corrections of a many-body

system requires the inclusion of A-corrections in the interaction terms, too. We

refer the reader to Ref. 3 where this is discussed in more details. Here we will only

consider the consequences of the acceleration correction term in Eq. (8),

Hnin =
A2

c2

∑

i

miz
2
i . (9)

3. Reactions in Stars

Nuclei interacting in a plasma or undergoing pycnonuclear reactions in a lattice can

experience different accelerations, allowing for an immediate application of Eq. (9).

But in order to use this equation to measure changes induced by the gravitational

fields in stars, we assume that one can replace A by a local gravitational field, g.

This assumption requires a few comments at this point. If we consider two nuclei

participating in a nuclear reaction in a star, they are, most likely, in a gaseous

phase following inertial trajectories in between collisions. The effect of gravity is to

modify slightly the inertial trajectories of the two nuclei due to the difference in the

gravitational field strength in their initial and final positions. Thus the best way to

study the reaction problem is to calculate reaction rates in terms of a local metric

at a point within the star. This metric can be deduced from General Relativity

at the reaction observation point. To first-order one can also use Eq. (2), which

is shown in Ref. 1 to describe particles in a gravitational field. Here instead, we

will adopt the Hamiltonian of Eq. (8) as representative of the same problem. Here

we will not attempt to prove the equality between the two procedures, and several

other issues (e.g., time-dependence of accelerations, modification of interactions in

presence of a gravitational field, etc.), leaving this for future studies. Our goal here

is to estimate the magnitude of the gravitational field which could produce sizable

“non-inertial corrections” and study physical cases where such corrections might

be important and could change appreciably the reaction rates and/or the internal

structure of many-body systems.

3.1. Nuclear fusion reactions

Nuclear fusion reactions in stars proceed at low energies, e.g., of the order of 10 keV

in our Sun.4,5 Due to the Coulomb barrier, it is extremely difficult to measure the

cross sections for charged-particle-induced fusion reactions at laboratory conditions.

The importance of small effects such as the correction of Eq. (9) in treating fusion

reactions is thus clear because the Coulomb barrier penetrability depends exponen-

tially on any correction. To calculate the effect of the term given by Eq. (9) we use,

for simplicity, the WKB penetrability factor

P (E) = exp

[

−
2

~

∫ RC

RN

dr|p(r)|

]

, (10)
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where p(r) is the (imaginary) particle momentum inside the repulsive barrier. The

corrected fusion reaction is given by

σ = σC · R , (11)

where σC is the Coulomb repulsion cross section and R = Pcorr(E)/P (E) is the

correction due to Eq. (9). The non-inertial effect is calculated using |p(r)| =
√

2m[VC(r) − E] and

|pcorr(r)| =

√

2m

[

VC(r) +
A2mr2〈cos2 θ〉

c2
− E

]

(12)

where 〈cos2 θ〉 = 1/2 averages over orientation and the Coulomb potential is given

by VC = Z1Z2e
2/r. In order to assess the magnitude of the acceleration A for

which its effect is noticeable, we consider a proton fusion reaction with a Z = 17

nucleus (chlorine) at E = 0.1 MeV. This is a typical fusion reaction in stellar

sites of interest. For this energy, we get RC = Z1Z2e
2/E = 245 fm and take

RN = 3.2 fm.

As we see in Fig. 1 the effect of acceleration becomes visible for accelerations

of the order g = A = 10−7c2/RC ≈ 4 × 1027 m/s2, which is about 26 orders of

magnitude larger than the acceleration due to gravity on Earth’s surface and 15

orders of magnitude larger than the one at the surface of a neutron star (assuming

Mns = M� and Rns = 10 km). It appears that the effect is extremely small in

stellar environments of astrophysical interest where nuclear fusion reactions play a

role. Such large gravitational fields would only be present in the neighborhood of a

black-hole. Under such extreme conditions nuclei are likely to disassemble, as any

other structure will.

10-9 10-8 10-7 10-6

ARC 
/ c2

0

0.4

0.8

1.2

R

Fig. 1. Suppression factor due to the non-inertial effects, R, for fusion reactions of protons on
chlorine at E = 0.1 MeV, and as a function of the gravitational field (in dimensionless units).
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3.2. Atomic transitions

As an example in atomic physics, we consider the energy of the 2p1/2 level in

hydrogen which plays an important role in the Lamb shift and probes the depths of

our understanding of electromagnetic theory. We calculate the energy shift of the

2p1/2 level within the first-order perturbation theory and we get

∆E
2p1/2

nin = 〈2p1/2|Hnin|2p1/2〉 =
24a2

HA2me

c2
, (13)

where aH = ~
2/mee

2 = 0.529 Å. One should compare this value with the

Lamb splitting which makes the 2p1/2 state slightly lower than the 2s1/2 state

by ∆ELamb = 4.372 × 10−6 eV. One gets ∆E
2p1/2

nin ' ∆ELamb for A ' 1021 m/s2,

which is 9 orders of magnitude larger than gravity at the surface of a neutron star.

Thus, even for tiny effects in atomic systems, the effect would only be noticeable

for situations in which electrons are bound in atoms.

4. Reactions in the Laboratory

The logical conclusion from the last section is that it is very unlikely that non-

inertial effects due to gravitational fields are of relevance in stars. Nowhere, except

in the vicinity of a black-hole, accelerations are of order of ∼ 1020 m/s2, which

would make the effect noticeable. However, there is another way to achieve such

large accelerations and that is nothing else but the huge accelerations which occur

during nuclear reactions. For example, for a nuclear fusion reaction, at the Coulomb

radius (distance of closest approach, RC) the acceleration is given by

AC =
Z1Z2e

2

R2
Cm0

, (14)

where m0 = mNA1A2/(A1 + A2) is the reduced mass of the system and mN is the

nucleon mass. For typical values, E = 1 MeV, Z1 = Z2 = 10, and A1 = A2 = 20,

one obtains RC = Z1Z2e
2/E = 144 fm and AC = 6.2 × 1025 m/s2. This is the

acceleration that the cm of each nucleus would have with respect to the laboratory

system.

As we discussed in the Introduction, the cm of the excited nucleus is the natural

choice for the reference frame. This is because it is easier to adopt a description

of atomic and nuclear properties in the cm frame of reference. Instead, one could

also choose the cm of the colliding particles. This latter (inertial) system makes

it harder to access the acceleration effects, as one would have to boost the wave

functions to an accelerated system, after calculating it in the inertial frame. This

is a more difficult task. Therefore we adopt the cm reference frame of the excited

nucleus, using the Hamiltonian of Sec. 2. This Hamiltonian was deduced for a

constant acceleration. If the acceleration is time-dependent, the metric of Eq. (2)

also changes. Thus, in the best case scenario, the Hamiltonian of Eq. (8) can be

justified in an adiabatic situation in which the relative velocity between the many-

body systems is much smaller than the velocity of their constituent particles with
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respect to their individual center of masses. If we accept this procedure, we can

study the effects of accelerated frames on the energy shift of states close to threshold,

as well as on the energy location of low-lying resonances.

4.1. Reactions involving halo nuclei

The nuclear wave-function of an (s-wave) loosely-bound, or “halo”, state can be

conveniently parametrized by

Ψ '

√

α

2π

exp(−αr)

r
, (15)

where the variable α is related to the nucleon separation energy through S =

~
2α2/2mN. In first order perturbation theory the energy shift of a halo state will

be given by

∆EN
nin = 〈Ψ|Hnin|Ψ〉 =

1

8S

(

Z1Z2e
2
~

R2
Cm0c

)2

. (16)

Assuming a small separation energy S = 100 keV, and using the same numbers in

the paragraph after Eq. (14), we get ∆EN
nin = 0.024 eV, which is very small, except

for states very close to the nuclear threshold, i.e. for S → 0. But the effect increases

with Z2 for symmetric systems (i.e. Z1 = Z2 = A1/2). It is thus of the order of

∆EN
nin = 1–10 eV for larger nuclear systems.

There might exist situations where this effect could be present. For instance,

the triple-alpha reaction which bridges the mass = 8 gap and forms carbon nuclei

in stars relies on the lifetime of only 10−17 s of 8Be nuclei. It is during this time

that another alpha-particle meets 8Be nuclei in stars leading to the formation of

carbon nuclei. This lifetime corresponds to an energy width of only 5.57±0.25 eV.6

As the third-alpha particle approaches 8Be, the effects of linear acceleration will

be felt in the reference frame of 8Be. This will likely broaden the width of the 8Be

resonance (which peaks at ER = 91.84 ± 0.04 keV) and consequently its lifetime.

However, this line of thought could be wrong if one assumes that the third-alpha

particle interacts individually with each of the two alpha particles inside 8Be, and

that the effects of acceleration internal to the 8Be nucleus arise from the different

distances (and thus accelerations) between the third alpha and each of the first

two. To our knowledge, this effect has not been discussed elsewhere and perhaps

deserves further investigation, if not for this particular reaction, maybe for other

reactions of astrophysical interest involving very shallow nuclear states.

4.2. Nuclear transitions

Many reactions of astrophysical interest are deduced from experimental data on

nucleus–nucleus scattering. Important information on the position and widths of

resonances, spectroscopic factors, and numerous other quantities needed as an input

for reaction network calculations in stellar modeling are obtained by the means of
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nuclear spectroscopy using nuclear collisions in the laboratory. During the collision

the nuclei undergo huge acceleration, of the order of A ' 1028 m/s2. Hence, non-

inertial effects will be definitely important.

A simple proof of the statements above can be obtained by studying the

Coulomb excitation. The simplest treatment that one can use in the problem is

a semiclassical calculation. The probability of exciting the nucleus to a state f

from an initial state i is given by

aif = −
i

~

∫

Vif eiωtdt , (17)

where ω = (Ef −Ei)/~, is the probability amplitude that there will be a transition

i → f . The matrix element Vif =
∫

Ψ∗
fV Ψi dτ contains a potential V of interaction

between the nuclei. The square of aif measures the transition probability from i to

f and this probability should be integrated along the trajectory.

A simple estimate could be obtained in the case of the excitation of a initial,

J = 0, state of a deformed nucleus to an excited state with J = 2 as a result of a

head on collision with scattering angle of θ = 180◦. The perturbation V is due to

the interaction of the charge Z1e of the projectile (one of the two nuclei) with the

quadrupole moment of the target (of the other) nucleus. This quadrupole moment

should work as an operator that acts between the initial and final states. One finds

that V = Z1e
2Qif/2r3, with

Qif = e2
i 〈Ψ

∗
f |3z2 − r2|Ψi〉 ' e2

i 〈Ψ
∗
f |z

2|Ψi〉 , (18)

where ei is the effective charge of the transition.

The amplitude is then written as

aif =
Z1e

2Qif

2i~

∫

eiωt

r3
dt . (19)

At θ = 180◦ the separation r, the velocity v, the initial velocity v0 and the

distance of closest approach s, are related by v = dr/dt = ±0v0(1 − s/r), which is

obtained from energy conservation. Furthermore, if the excitation energy is small,

we can assume that the factor eiωt in Eq. (19) does not vary much during the time

that the projectile is close to the nucleus. Then the remaining integral is easily

solved by substitution and one gets

aif =
4Z1e

2Qif

3i~v0s2
. (20)

Following the same procedure as above, we can calculate the contribution of

the Hamiltonian of Eq. (9). In this case, A = Z1Z2e
2/m0r

2 and the equivalent

potential V is given by

Vnin =

(

Z1Z2e
2

m0

)2
XmN

c2r4
, (21)
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where we assume that X nucleons participates in the transition. One then finds

anin
if =

(

Z1Z2e
2

m0

)2
32XmNQif

15is3~v0c2
. (22)

The ratio between the two transition probabilities is
∣

∣

∣

∣

∣

anin
if

aif

∣

∣

∣

∣

∣

2

=

(

8XmNZ1Z
2
2e2

5sm2
0c

2

)2

. (23)

Applying Eq. (23) to the lead–lead collision at 500 MeV, as mentioned in the

Introduction, we find |anin
if /aif |

2 = (0.0093X)2. This yields very small results for

the relative importance of non-inertial effects in single particle transitions (X ' 1),

but can become appreciable for the excitation of collective states such as the giant

resonances, for which X � 1. This result is intriguing to say the least. We think that

it deserves more studies, assuming that the physics of non-inertial effects described

in Sec. 2 is right. We have made a preliminary study of theses effects in the excitation

of giant resonances in relativistic heavy ion collisions using Eq. (9) which seem to

confirm this statement.

4.3. Electron screening of fusion reactions

In laboratory measurements of nuclear fusion reactions one has found enhancements

of the cross sections due to the presence of atomic electrons. This screening effect

leads to an enhancement in the astrophysical S-factor, or cross section:

Slab(E) = f(E)S(E) = exp

[

πη∆E

E

]

S(E) , (24)

where η(E) = Z1Z2e
2/~v, and v is the relative velocity between the nuclei. The

energy ∆E is equal to the difference between the electron binding energies in the

(Z1 + Z2)-system and in the target atom (Z2). For light nuclei, it is of the order

of 100 eV, enhancing fusion cross sections even for fusion energies of the order of

100 keV. For more details we refer the interested reader to Ref. 7.

An intriguing fact is that this simple estimate, which is an upper value for ∆E,

fails to reproduce the experimental data for a series of cases. In Ref. 8, several

small effects, ranging from vacuum polarization to the emission of radiation, have

been considered but they cannot explain the experimental data puzzle. Besides vac-

uum polarization, atomic polarization is one of the largest effects to be considered

(among all other small effects8).

Non-inertial corrections contribute to polarization potential

Vpol = −
∑

n6=0

|〈0|Hnin|n〉|
2

En − E0

. (25)

An estimate based on hydrogenic wave functions for the atom yields

Vpol(r) ' −
1

En0

(

Z1Z2e~

m0c

)4
exp(−2αr)

r4
. (26)
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Assuming α ∼= 1/aH , En0 = En − E0
∼= 10 eV and using Eqs. (10) and (11) to

calculate the modification of the fusion cross sections due to this effect, we find

the cross section for D(d, p)T and 6Li(d, α)4He can increase by up to 10%. This is

surprising compared with the smaller values reported on Table 1 of Ref. 8. It is not

a very accurate calculation as it relies on many approximations. But it hints for

a possible explanation of the difference between the experimental and theoretical

values of ∆E, as discussed in Ref. 7.

In stars, reactions occur within a medium rich in free electrons. The influence

of dynamic effects of these electrons was first mentioned in Ref. 9 and studied

in Ref. 10. The underlying assumption is that the Debye–Hueckel approximation,

based on a static charged cloud, does not apply for fast moving nuclei. In fact, most

of the nuclear fusion reactions occur in the tail of the Maxwell–Boltzmann distri-

bution. For these nuclear velocities Ref. 10 finds that an appreciable modification

of the Debye–Hueckel theory is necessary. One has to add to this finding the fact

that the nuclei get very strongly accelerated as they approach each other, and this

increases further the deformation of the Debye–Hueckel cloud.

5. Conclusions

In summary, assuming that the Hamiltonian for a system of particles moving in an

accelerated frame contains a correction term of the form given by Eq. (9), we have

explored the non-inertial effects for a limited set of nuclear reactions in stars and

in the laboratory. These results are somewhat surprising and present a challenge to

our understanding of accelerated many-body systems.

In the case of stellar environments, we have shown that only in the neigh-

borhood of black-holes would non-inertial effects become relevant. But then the

whole method adopted here is probably not rigorous enough, as one may have to

use the full machinery of general relativity. Nonetheless, it is very unlikely (and

perhaps unimportant, except maybe for science-fiction-like time-traveling) that in-

ternal structures of any object is of any relevance when it is extremely close to a

black-hole.

The apparent reason for the appearance of non-inertial effects in many-body

systems is that the non-inertial term of Eq. (9) only appears when relativistic

corrections are included, what has precluded its consideration in previous studies,

especially for reactions that are thought to be fully nonrelativistic such as fusion

reactions in stars. The main question is whether the relativistic definition of the

center-of-mass, through Eq. (5) as proposed by Pryce in Ref. 2 contains the right

virtue of describing correctly the center-of-mass frame of relativistic many-body

systems.

Even in the case of high energies nuclear collisions the intrinsic structure of the

nuclei are sometimes an important part of the process under study. Fictitious forces

will appear in this system which might not average out and appreciably influence
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the structure or transition under consideration. It is surprising that, for a reason

not quite understood, this effect has been overseen in the literature so far.
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