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The Stopping of Low Energy Ions in Reactions
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The velocity dependence of the stopping power of swift protons and deuterons in low
energy collisions with hydrogen and helium gas targets is investigated with the numerical so-
lution of the time-dependent Schrödinger coupled-channels equations using molecular orbital
wavefunctions. At low projectile energies the stopping is mainly due to nuclear stopping,
charge exchange of the electron, and excitation of the lowest levels in the target. The second
and third mechanisms dominate at E < 200 eV. At lower energies it is also shown that a
threshold effect is responsible for a quick drop of the energy loss. This investigation sheds
more light on the long standing electron screening problem in fusion reactions of astrophysical
interest.

Nuclear fusion reactions proceed in stars at extremely low energies, e.g., of the
order of 10 keV in our sun.1),2) At such low energies it is extremely difficult to
measure the cross sections for charged particles at laboratory conditions due to
the large Coulomb barrier. One often uses a theoretical model to extrapolate the
experimental data to the low-energy region. Such extrapolations are sometimes far
from reliable, due to unknown features of the low-energy region. For example, there
might exist unknown resonances along the extrapolation, or even some simple effect
which one was not aware of before. One of these effects is the laboratory atomic
screening of fusion reactions.3),4) It is well known that the laboratory measurements
of low energy fusion reactions are strongly influenced by the presence of the atomic
electrons. This effect has to be corrected for in order to relate the fusion cross
sections measured in the laboratory with those at the stellar environment. One has
observed experimentally a large discrepancy between the experimental data and the
best models available to treat the screening effect by the electrons in the target
nuclei.5) The screening effect arises because as the projectile nucleus penetrates the
electronic cloud of the target the electrons become more bound and the projectile
energy increases by energy conservation. Since fusion cross sections increase strongly
with the projectile’s energy, this tiny amount of energy gain (of order of 10–100 eV)
leads to a large effect on the measured cross sections. However, in order to explain
the experimental data, it is necessary to have an extra amount of energy about twice
the expected theoretical value.5)

In order to extract the fusion cross sections from experiment one needs to correct
for the energy loss in the target to assign the correct projectile energy value for
the reaction. The authors in Refs. 6) and 7) have shown that a possible solution
to the long standing discrepancy between theory and experiment for the reaction
3He(d, p)4He could be obtained if the projectile energy loss by electronic excitations
and charge exchange with the target atoms would be smaller than previously assumed
in the experimental data analysis. There have been indeed a few experiments in
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which evidences of smaller than expected electronic stopping power were reported
(see, e.g. Ref. 8)). Other reactions of astrophysical interest (e.g., those listed in
by Rolfs and collaborators3),4)) should also be corrected for this effect. Whereas at
higher energies the stopping is mainly due to the ionization of the target electrons,
at the astrophysical energies it is mainly due to excitations of the lowest levels,
charge-exchange between the target and the projectile, and the nuclear stopping
power.

The static two-center p+H system has been solved by Edward Teller in 1930.9)

He showed that as the distance between the protons decreases the hydrogen orbitals
split into two or more orbitals, depending on its degeneracy in the two-center system.
Analogous problems are well known in quantum systems. For example, take two
identical potential wells at a certain distance. For large distances the states in one
well are degenerated with the states in the other potential well. As they approach
this degeneracy is lifted due to the influence of barrier tunnelling. Thus, the lowest
energy state of hydrogen, 1s, splits into the 1sσ and the 2pσ states as the protons
approach each other. The 1sσ state is space symmetrical, while the 2pσ state is
antisymmetric. As the proton separation distance decreases their respective energies
decrease. At R � 1 Å the energy of the 2pσ state starts to increase again, while the
energy of the 1sσ state continues to decrease. For proton distances much smaller
than 1 Å the 1sσ and the 2pσ energies correspond to those of the first and second
states of the He atom, respectively.9)

The full time-dependent wavefunction for the system can be expanded in terms
of two-center states, φn(t), governed by Schrödinger’s equation. For the p+H system
and at very low proton energies (Ep � 1 keV) it is fair to assume that only the low-
lying states are involved in the electronic dynamics. Only at proton energies of order
of 25 keV the proton velocity is comparable to the electron velocity, ve � αc. Thus,
the evolution of the system is almost adiabatic at Ep � 10 keV. The higher states
require too much excitation energy and belong to different degeneracy multiplets.
The initial electronic wavefunction is a clear superposition of 1sσ and 2pσ two-center
states. One thus expects that only these states are relevant for the calculation. In
fact, at these energies the population of the 2p atomic state in charge exchange
is much less than the population of the 1s atomic state. These assumptions are
well supported by the calculations of Grande and Schwietz,10) who have used a
dynamical approach based on target-centered wavefunctions. In their approach one
has to include a great amount of target-centered states in order to represent well the
strong distortion of the wavefunction as the projectile closes in the target. We also
have assumed that the proton follows a classical trajectory determined by an impact
parameter b.

If one includes only the two lowest energy molecular states in the p+H system,
Schrödinger’s equation becomes11)

i�
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where the indices + and − refer to the 1sσ and 2pσ states, respectively, E0 = −13.6
eV, V± (t) = E±(t)−E0, and W (t) is the residual potential.11) We use the formalism
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of Teller9) to calculate the wavefunctions Ψ± (R) at different inter-proton distances,
R(t), corresponding to a particular time t. The static Schrödinger equation is solved
in elliptical coordinates. This yields two coupled differential equations which can
be solved by expanding the solutions in Taylor series. A set of recurrence relations
is obtained for the expansion coefficients when the boundary conditions are used.
The energies E1sσ (R) and E2pσ (R) are obtained by adjusting the constant which
separates the two coupled equations11) to its correct matching value.

It was further shown in Ref. 11) that the potentials V± (t) extend much farther
out than W (t) . Moreover, as Ep decreases the potential W decreases faster than
the projectile’s velocity, vp. At Ep � 100 eV the potential W loses its relevance
as compared to V±, which have no dependence on vp. When one sets W = 0 in
Eq. (1), the equations decouple and it is straightforward to show that the exchange
probability is given by

Pexch =
1
2

+
1
2

cos
{

1
�

∫ ∞

−∞
[E− (t) − E+ (t)] dt

}
. (2)

At Ep = 10 keV there is an appreciable difference between the full calculation and
the approximation (2). But, for Ep = 100 eV the results are practically equal, except
for very small impact parameters at which the potential W still has an effect.

The exchange probability is not constant at small impact parameters, but os-
cillates wildly around 0.5, specially for low projectile energies. One might naively
assume that because the collision is almost adiabatic, the system loses memory of
to which nucleus the electron is bound after the collision. Thus, for small impact
parameters one would expect a 50% probability of finding the electron in one of
the nuclei at t = ∞. However, this is not what happens. From Eq. (2) we see
that minima of the probability occur for impact parameters satisfying the relation∫ ∞
−∞ [E− (t) − E+ (t)] dt = 2π� (n + 1/2) , n = 0, 1, 2, · · · , N.

This relation looks familiar, of course. It simply states that the interference
between the 1sσ and the 2pσ states induces oscillations in the exchange probability.
The electron tunnels back and forth between the projectile and the target during
the ingoing and the outgoing part of the trajectory. When the interaction time is
an exact multiple of the oscillation time, a minimum in the exchange probability
occurs. The average probability over the smaller impact parameters is indeed 0.5.
As the impact parameter decreases from infinity, the first maximum in the exchange
probability indicates the beginning of the region of strong exchange probability. At
low proton energies this starts at b � 3 Å. The size of the hydrogen atom is about 0.5
Å and thus the electron travels in a forbidden region (tunnels) of about 2 Å from the
target to the projectile. This is possible because of the strong interference between
the 1sσ and the 2pσ states, which for some trajectories satisfy the quantum relation
above.

To obtain the stopping power we need the total cross section for charge exchange,
σ = 2π

∫
Pexchbdb. For Ep −→ 0, the charge exchange cross section becomes the

constant value σ (Ep = 0) = 37.88 ×10−16 cm2. This happens because, when Ep −→
0 and as the projectile nears the targets, the increasing electron binding in the
two-center system acts as a push in the relative motion energy to compensate for
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Fig. 1. The stopping cross section of protons on H-targets. The dotted line in gives the energy

transfer by means of nuclear stopping, while the solid line is our results for the charge-exchange

stopping mechanism. The data points are from the tabulation of Andersen and Ziegler.13)

energy conservation. The average result is that the cross section for charge exchange
becomes approximately constant for projectile energies of tens of eV and below.

In Fig. 1 we show the stopping cross section of the proton. The stopping cross
section is defined as S =

∑
i ∆Ei σi , where ∆Ei is the energy loss of the projectile in

a process denoted by i. The stopping power, SP = dE/dx, the energy loss per unit
length of the target material, is related to the stopping cross section by S = SP /N ,
where N is the atomic density of the material. In the charge exchange mechanism the
electron is transferred to the ground state of the projectile and the energy transfer
is given by ∆E = mev

2
p/2, where vp is the projectile velocity. Assuming that there

are a few free electrons in the material (e.g., in a hydrogen gas) only one more
stopping mechanism at very low energies should be considered: the nuclear stopping
power. This is simply the elastic scattering of the projectile off the target nuclei. The
projectile energy is partially transferred to the recoil energy of the target atom. The
stopping cross section for this mechanism has been extensively studied in Ref. 12).
The nuclear stopping includes the effect of the electron screening of the nuclear
charges.

The dotted line in Fig. 1 gives the energy transfer by means of nuclear stopping,
while the solid line is our results for the charge-exchange stopping mechanism. The
data points are from the tabulation of Andersen and Ziegler.13) We see that the nu-
clear stopping dominates at the lowest energies, while the charge-exchange stopping
is larger for proton energies greater than 200 eV. Since we neglect the difference
between molecular and atomic hydrogen targets, there is a limitation to compare
our results with the experimental data. But, the order of magnitude agreement is
very good in view of our simplifying assumptions. We do not consider the change
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of the charge state of the protons as they penetrate the target material. The ex-
change mechanism transforms the protons into H atoms. These again interact with
the target atoms. The can loose their electron again by transfer to the 1s state of
the target.10)

The best fit to our calculation for the stopping power for proton energies in the
range 100 eV – 1 keV yields S ∼ v1.35

p . This contrasts with the extrapolation S ∼ vp,
based on the Andersen-Ziegler tables.

Let us now consider the systems p+4He and d+3He. The situation is more
complicated because of the electron-electron interaction. The atomic wavefunctions,
φµ =

∑
j cjµφSlat

j , are constructed as a linear combination of Slater-type orbitals
(STO)14) of the form φSlat

n = Nrn−1 exp (−ζr) Ylm (r̂), where the Slater coefficients
n and ζ are chosen to best approximate the exact atomic wavefunctions (see, e.g.
Ref. 14)). The molecular orbital wavefunctions for the p + He system, are obtained
with the φµ’s chosen so that half of the STO’s are centered on the proton (A) and the
other half are centered on the helium nucleus (B). The total wavefunction for the
two-electron system is finally written as a Slater determinant of the molecular orbital
wavefunctions. Configuration-interaction with double excitation configurations were
included in the calculation,15) with the coefficients n and the Slater parameters ζ
chosen in a variational method to obtain the lowest energy states of the system.

Using these conditions and variation method, one obtains the Hatree-Fock equa-
tions for the electronic states. Solving the Hartree-Fock equations one obtains the
coefficients cij which give the proper linear combination of atomic orbitals to form
the molecular orbital.

In Fig. 2 we show the intersection points of the states with same symmetry in
the H++He system. In a fast collision these states would cross (diabatic collisions),
whereas in collisions at very low energies (adiabatic collisions) they obey the von
Neumann-Wigner non-crossing rule.

In the dynamical case the full time-dependent wavefunction for the system can
be expanded in terms of two-center states, with expansion coefficients an (t). The
dynamical evolution of the H+He system is calculated using the same approach as
described in Ref. 11). The solutions are obtained starting from initial internuclear
distance of 15 a.u. for the incoming trajectory and stopped at the same value for
the outgoing trajectory. The probability for the capture in the proton is obtained
by a projection of the final wavefunction into the wavefunctions of the 1s, 2s and
and 2p states of the hydrogen atom.

A similar situation occurs for p+He collisions for the electron capture probability
by the proton at a few keV bombarding energy. There will be oscillations due to the
electron exchange between the ground state of the hydrogen and the first excited
state in He (1s2s). But, in contrast to the H+H system, the oscillations are strongly
damped. Following the work of Lichten16) we interpret this damping effect as due to
the interference between the participant states and a band of states of average energy
〈Ea〉 and width 2Γ , as seen in Fig. 2. The important regions where the diabatic level
cross occurs is shown in Fig. 2 inside the encircled areas. The damping mechanism
is best understood using the Landau-Zener theory for level crossing. At the crossing
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Fig. 2. Adiabatic energies (1 a.u. of energy = 27.2 eV, 1 a.u. of length = 0.53 Å) for the electronic

orbitals for the (H-He)+ system as a function of the internuclear separation. As the atoms

approach each other slowly curves of same symmetry repel each other. A transition between

states s and s’ can occur in a slow collision. In a fast collision a diabatic transition, with the

states crossing each other, will occur. This is shown in the inset.

there is a particular probability (1 − P ) of an adiabatic transition where P is given
by the Landau-Zener formula

Pexch = exp
[

2πH2
ss′

v (d/dR) (Es − Es′)

]
, (3)

where v is the collision velocity and Hss′ is the off-diagonal matrix element connecting
states s and s′. The oscillatory behavior of the exchange probability is due to the
many level transitions at the crossing. The interference with the neighboring states
introduces a damping in the charge exchange probability, i.e.

Pexch (b, t) � cos2
(〈Ea〉 b

v

)
exp

[
−2πΓ 2b

v 〈Ea〉
]

,

where 〈Ea〉 � 1. a.u. is the average separation energy between the 0Σ level and
the bunch of higher energy levels shown in Fig. 2. The exponential damping factor
agrees with the numerical calculations if one uses Γ � 5 eV, which agrees with the
energy interval of the band of states shown in Fig. 2.

At very low energies the only possibility that the electron is captured by the
proton is if there is a transition 1s2(1S0) −→ 1s2s(3S) in the helium target. Only in
this case the energy of one of the electrons in helium roughly matches the electronic
energy of the ground state in H. This resonant transfer effect is responsible for the
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Fig. 3. Energy loss of deuterons in 3He gas as a function of deuteron energy. Data are from Ref. 17).

The solid curve is the calculation for the electronic stopping power, while the dashed curve shows

the nuclear stopping.

large capture cross sections. When this transition is not possible the electrons prefer
to stay in the helium target, as the energy of the whole system is lowest in this case.
Another possible mechanism for the stopping is the excitation of the helium atom
by the transition 1s2(1S0) −→ 1s2s(3S). Thus, there must be a direct relationship
between the energy transfer to the transition 1s2(1S0) −→ 1s2s(3S) and the minimum
projectile energy which enables electronic changes. Reference 17) reported for the
first time this effect, named by threshold energy, which can be understood as follows.
The momentum transfer in the projectile-target collision, ∆q, is related to the energy
transfer to the electrons by ∆q = ∆E/v, where v is the projectile velocity. In order
that this momentum transfer absorbed by the electron, induces an atomic transition,
it is necessary that �

2∆q2/2me ∼ ∆E. Solving these equations for the projectile
energy one finds

Ethres
p ∼ mp

4me
∆E . (4)

This is the threshold energy for atomic excitations and/or charge exchange. If the
projectile energy is smaller than this value, no stopping should occur. The energy for
transition 1s2(1S0) −→ 1s2s(3S) in He is ∆E = 18.7 eV. Thus, for p + He collisions,
the threshold energy is Ethres

p ∼ 9 keV.
Figure 3 shows the energy loss of deuterons in 3He gas as a function of deuteron

energy. The data are from Ref. 17). The solid curve is the numerical calculation for
the electronic stopping power, while the dashed curve shows the nuclear stopping.
As discussed in Ref. 17) the threshold deuteron energy in this reaction is of the order
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of 18 keV, which agrees with the estimate based on Eq. (4). However, the numerical
calculations based on the electronic stopping (solid curve of Fig. 3) indicate a lower
threshold energy for this system. Nonetheless, the agreement with the experimental
data is very good for Ed > 20 keV. The threshold effect is one more indication that
the extrapolation S ∼ v, based on the Andersen-Ziegler tables is not applicable to
very low energies.

The steep rise of the fusion cross sections at astrophysical energies amplifies
all effects leading to a slight modification of the projectile energy.18) The results
presented here show that the stopping mechanism does not follow a universal pattern
for all systems. The threshold effect reported in Ref. 17) is indeed responsible for
a rapid decrease of the electronic stopping at low energies. It will occur whenever
the charge-exchange mechanism and the excitation of the first electronic state in the
target involve approximately the same energy. However, the drop of the electronic
stopping is not as sharp as expected from the simple classical arguments given by
Eq. (4).

The experiments on astrophysical fusion reactions have shown that the screening
effect is much larger than expected by theory. The solution to this problem might be
indeed the smaller stopping power, due to a steeper slope at low energies induced,
e.g. by the threshold mechanism. This calls for improved theoretical studies of the
energy loss of ions at extremely low energies of and for their independent experi-
mental verification. The present situation is highly disturbing because if we cannot
explain the laboratory screening effect, most likely we cannot explain it in stellar
environments.
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