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We develop data-to-data relations involving the giant-resonance cross-sections and
the elastic cross-section for heavy ion collisions at intermediate energies. The useful-
ness of this novel method is shown by applications to the 170 4 2°8Pb at Ep,, =
84 MeV /nucleon.

The Coulomb excitation of giant multipole resonances in heavy ion collisions at
intermediate energies allows a detailed study of multipolarity content, relative
strength, decay branching ratios and other aspects of these collective states.! When
compared to purely electromagnetic probes, heavy ions supply strong nuclear fields,
which may complicate the analysis. Usually, one uses DWBA codes,? which, when
compared to the experimental data, allow the extraction of the multipolarity con-
tent and relative strength of the excitation. Recently,® a simpler approach based
on the use of the eikonal approximation to the distorted waves was shown to be
quite adequate in describing the excitation of giant resonances in heavy ion induced
reactions.

In this article we derive data-to-data (DTD) relations involving the inelastic
cross-section for the excitation of giant resonances on the one hand and the elastic
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cross-section on the other. The competition between the Coulomb and the nuclear
interaction implies that the deflection function reaches a maximum at the so-called
rainbow angle, 6,. The region § > 0, is classically forbidden and is called the
dark side of the Coulomb rainbow. For § >> 6. absorption sets in and the cross-
sections for elastic scattering becomes very small. On the dark side of the Coulomb
rainbow, where the DTD relations strictly hold, the inelastic cross-section for a
given multipolarity is found to go as Cx¢%c¢(q), where g is the momentum transfer.
Thus we predict that in the relevant angular region the shape of the inelastic angular
distribution does not depend on the multipolarity A. These relations allow a reliable
and easier analysis of the experimental data, as shown by an application to the
170 4+ 208pPb system. Details of the calculations will be presented elsewhere.? Data-
to-data relations have been derived earlier for intermediate energy proton-nucleus
scattering by Amado et al.> The fundamental difference between our work and
Ref. 5 is the very important Coulomb effects in the heavy-ion system.

The amplitude for the transition of the nucleus from the ground state |0) to the
excited state |Ap) is given, within the eikonal approximation,® by [¢ = 2k sin(6/2))

f,':,‘,‘c(ﬁ) = /eiq»r+ix(b)(r, /\N|UN,C|1', 0>d2b dZ, (1)

ik
2mhv
where N(C) stands for the nuclear (Coulomb) contribution, Un,¢ is the nucleus-
nucleus interaction, and x(b) is the total eikonal phase. For comparison, the elastic
scattering amplitude is given by

fu(8) = %’:; / P 9[1 — X2 = ik / blo(ab) [1 - eX®] b, (2)

The phase x(b) is related to the potential by the usual eikonal formula
1 oo
X(b):—ﬁ;/ dz [UN (\/b2+22)+Uc (Vb2+22)] . (3)

The nuclear potential, Un(r), is evaluated using the “¢pp” approximation® with
due care to medium effects in the calculation of the nucleon-nucleon t-matrix. Since
the inelastic transitions considered are peripheral, the amplitudes are sensitive to
the surface region only. Therefore, as in Ref. 3, we employ Gaussian forms for
the densities p = pg e~r’/2” that are adjusted to reproduce the tail region of the
realistic densities. This fit imply the relations a; = v/2aR; and pg,; = (po/2)ef/2a
with i = 1,2; po = 0.17 fm~3;a = 0.65 fmand R; = 1.2 A)/> fm. The resulting Uy
becomes Gaussian® and the corresponding nuclear phase comes out to be

2 3.3

™ [0 4
XN (b) = = ={tnn) azz

b%/a?

PG,1PG,2€ ; (4)

where o = \/a? + a3. The Gaussian approximation for Uy is essential for a sim-
ple derivation of the DTD relations. Reinforcing our previous statements, this is
not a bad approximation for heavier systems since what matters for the inelastic
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scattering is a good description of the surface region of the nuclei, which can be
fitted by a Gaussian. For more details on the validity of this approximation see,
e.g., Ref. 7.

An analytical formula for the Coulomb phase, which reproduces the Coulomb
elastic amplitude when inserted in Eq. (2) is given by

2
xe () = 2222 1) (5)
v

This formula will be used in our numerical calculations. For the derivation of the
DTD relations it is however more useful to work with the definition given by Eq. (3).

In Fig. 1 we show the elastic scattering angular distribution for the system
170 4 28Pb at Ep., = 84 MeV/nucleon obtained with (exn) = 60 mb and
tRe/tim = 1, as in Ref. 3. The data® are very well reproduced with our calculation.
Further we have assessed that within the angular range of interest 0° < § < 6°
the cross-section is completely near-side® dominated and represents a nice case of
Coulomb rainbow scattering with the rainbow angle being 8, = 3.3°, as can be
seen clearly in Fig. 2 which shows the analogy of the deflection function, which we
appropriately call here, following Ref. 10, the momentum transfer function. The
rainbow momentum transfer, g.(b), which corresponds to 6, is 1.86 fm~!.
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Fig. 1. Elastic cross-section data for the system 170 + 2°8Pb at 84 MeV/nucleon. Data are from
Ref. 7. The solid curve is our theoretical prediction.
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Fig. 2. The momentum transfer function g(b) vs. b. See text for details.

When analyzing the inelastic amplitude, it is clear that the Coulomb-rainbow
scattering effect is also present through the phase, which is the same as the one that
appears in the elastic one. For ¢ < 1.86 fm~! two stationary phase contributions
dominate fe; and fine. These are the nuclear (inner branch) and the Coulomb
(outer branch) and the cross-sections clearly exhibits the known Coulomb-nuclear
interference. On the dark-side of the rainbow there is only one complex stationary
phase contribution. This is a mixture of Coulomb + nuclear scattering. Therefore,
no interference arises in fe) or finer-

It is in this region that one would expect a simple linear relationship between
the amplitudes to hold. Since the inelastic nuclear amplitude involves an inte-
grand containing the derivative of the potential (Tassie Model'l), which can be
related to the derivative of the eikonal phase with respect to b [see Eq. (3)], a sim-
ple integration by parts of Eq. (1) indicate that fine(g) should be proportional to
q fei(g) in this angular region. Similar arguments can be applied to the inelastic
Coulomb amplitude. Further, since the inelastic amplitude can be written in the
form® (after integration over the azimuthal angle ¢ defined by d?b = bdbd¢),

CYCk [ : o
1)\\7‘,10 = ;z‘v / db bJ,,(qb)e'X(b) / dz e'w?/v r'\UN,c(,\) (\/ b2 + z2) Pyu(9),
] —o00
(6)
the ¢ dependence arises entirely from the Bessel function. In the equations above,
we used q -z = (k' — k) -z >~ wz/v, valid for Ak € k. Hhw is the excitation energy
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and v is the projectile velocity. For collisions at intermediate energies, and excitation
energies about fw = 10-20 MeV, wz/v < 1 and the exponential exp(iw/v) can be
dropped off in the integral in (6). In Eq. (6) the factor »*Ux results from the use of
the Tassie model and a Gaussian nuclear potential. For the Coulomb interaction we
make a multipole expansion and r* Ucy=1/ r**1. The constant C) u Includes the
matrix element for the transition |0) — |Au), which in the Tassie model (nuclear
interaction) is proportional to a deformation parameter 8y. In the Coulomb case
this constant includes a matrix element of the form (Au|r*Y),|0) which is also
related® to a deformation parameter 8.

The integral over z can be related to derivatives, with respect to b, of y(b),
Eq. (2), if one uses the Gaussian approximation for the tails of the densities. Since
the b’s that contribute are large (roughly, the sum of the two radii of the two nu-
clei), and taking g to be near the rainbow value, one may use the asymptotic form of
Ju(qb), namely J,(gb) ~ \/2/7qb cos (qb—pn/2—n/4). Therefore, one would expect
that the A and y dependence to be almost irrelevant to the g-dependence. Accord-
ingly, the inelastic amplitudes on the dark-side should have similar ¢-dependence,
irrespective of the multipolarity.

The above can be made more quantitative by analyzing, within the stationary
phase approximation, the amplitude fI'\\, o Eq. (6). Calling the z-integral FN ho (b),
and considering only the incoming component of J,(gb), namely

~_ ex [~igb+i5T +iZ]
ongh ORI T Ty

(i.e., taking only the near-side contribution into account, which is quite valid in the
angle region of interest), we have

el@=ce / db b'/2 FRF(b) exp [ix(b) — igh] , (7)

where we include other factors in the constant CN'C Note that both fi and fc
are evaluated with the full eikonal phase (Coulomb + nuclear). Since b'/2 Fy/ "y c(b)
varies much slower with b than exp[ix(b) — igh] we may apply the stationary pomt
approximation to (7) and obtain, in the shadow side of the Coulomb rainbow

fnte(@) = CON Fate b)) 1N (a), (8)

where b(g) is the stationary phase point. The evaluation of the quantity Fﬁ‘,“ - [b(q)]
is lengthy but straightforward. The important point that we emphasize here is that
both Fr*[b(¢)] and F3*[b(g)] can be reduced to linear combinations of xn[b(¢)] and
XC[b(q)] and their higher derivatives with respect to b. For the giant dipole case
(A=1,u=1,0,-1) we find, e.g.,

Py B@] « A gy and FEM b)) o X o e (9)
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Identical relations can be obtained for F’ ,t,"_‘ and Fy~'. Asfar as Fﬁ,’,oc is concerned,
one can show that both x[b(q)] and dx[b(g)]/db are involved here. However the
derivative term is dominant. Note that ¢ and x are related by the stationary phase

condition dxn(®)  dxo(d)
XN XC
= = . 10
The full amplitude f1L, = fi! + f&, using (8) and (9) is proportional to e (q)

on the dark-side of the rainbow as already stated. The dependence on ¢ is of the
form
(@) = [CF av + CY ¢c] fai(a) - (1)
For the angular regions where either the Coulomb or the nuclear scattering domi-
nates, the above equation is then approximated by a numerical factor times ¢ fe(q).
A more accurate derivation of our DTD relations can be done following the
arguments presented above, with the use of the detailed form of P, ,(8) in terms
of b and z. With the help of the Tassie model!! and the uniform stationary phase
approximation!? we have obtained the DTD relations for the excitation of the isovec-
tor giant dipole (IVGDR) and isoscalar giant quadrupole (ISGQR) resonances. In
the dark region we write the data-to-data relations

ox(g) = Axqd® aalq), (12)

where A = 17,21 and A, is a normalization factor.

Owing to the use of the Glauber theory and the strong Coulomb field felt at small
angles, we anticipate that the above relations are qualitative, as far as the absolute
values of the cross-sections are concerned. Therefore, we use the normalization
factors A, as adjustable factors. The momentum transfer ¢, as defined in Eq. (10)
has an imaginary part. As shown by Amado et al® this introduces a slight shift
in the argument of o in Eq. (12). We therefore, guided by the discussion at the
beginning of this work, write the inelastic cross-section as

ox(q) = Ax ¢ ga(g + Ay, (13)

where A) and A, are then found by adjusting the data.

In Figs. 3 and 4 we show our data-to-data relation calculation for o, - (g) (Fig. 3)
and o3+(q) (Fig. 4) using the elastic scattering cross-section shown in Fig. 1. We
found 4; = 2 x 107° fm?, A; = 0.19 fm~'and 4, = 3.9 x 10~ fm2 A, =
—0.66 fm™1. The shifts in the argument of o, correspond to angular shifts of
Af; =0.7° and A8, = —1.2°.

In conclusion we have established in this work, that DTD relations can be derived
for heavy-ion scattering at intermediate energies. These relations, though do not
predict the absolute values of the inelastic cross-sections supply a very simple mean
to obtain their shapes quite well, in the Coulomb rainbow region. Further analysis of
these relations and the question of how to obtain the normalization factors in terms
of the nuclear excitation parameters is in progress and will be reported elsewhere.
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Fig. 3. Cross-section for the excitation of isovector giant dipole resonance. Data are from Ref. 7.

The solid curve was obtained from the data-to-data relation given by Egs. (7), with parameters
A; =2 x107% fm? and A; = 0.19 fm~1.
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Fig. 4. The same as in Fig. 3, but for the isoscalar giant quadrupole resonance. We used here
Az = 3.9 x107% fm? and Az = —0.66 fm™1.
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