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We investigate the effects of short range correlations on nucleon emission in peripheral
relativistic heavy ion collisions, following an idea originally proposed by Feshbach and
Zabek. Expressions for one- and two-nucleon emission cross sections are derived and
calculations for typical heavy ion systems are performed. We show that momentum
conservation in the phonon absorption process leads to pronounced ridges in the
quadruple-differential cross section for two-nucleon emission. We suggest that the presence
of such ridges in future exclusive experiments should be considered as a signature of
correlated emission of a nucleon pair.

1. Introduction

The study of relativistic heavy ion collisions (RHIC) over a decade has
produced a wealth of interesting information.! Although the major efforts have
been concentrated in central collisions, where there was hope of finding
signatures of the quark-gluon state, distant and peripheral collisions have aroused
considerable interest. In such cases, the collision partners preserve their identities
and coherent processes play an important role. The excitation of the Giant
Resonances through both electromagnetic and strong nuclear interactions have
been considered by several authors.? At such energies, the collision time is very
short and the action of the short range nuclear forces should excite the grazing
region of the colliding nuclei. This excitation could equilibrate, forming a
compound nucleus, and/or give rise to pre-equilibrium emission or other fast
dissipation processes.

Bayman et al.> have approached the problem of energy deposition in peripheral
RHICs, adopting straight line trajectories and using an impulse approximation
for the interaction. These authors treat the nuclear matter classically and assume
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that the nuclear surfaces do not have time to deform in response to the short pulse
of nuclear field. The excitation energy is then determined by the calculation of
the momentum transfer. Feshbach and Zabek* have considered the same
problem from a different angle. These authors called attention to the special role
played by nucleon pairs and their short-range correlations in peripheral RHICs.
In such collisions, the projectile carries a mean field proportional to its density,
which appears Lorentz contracted by the relativistic factor y in the laboratory
frame. If the projectile approaches the target with velocity v, the uncertainty
relation associated to the variation of the field on a scale Az (in the projectile
frame) leads to the energy and the momentum of the nuclear interaction pulse

E~—=—" p~—". (1.1)

For typical situations, Az is a few Fermis and the nuclear interaction pulse can
carry several hundred MeV. The cross section for nucleon emission induced by
nuclear forces will depend on the probability that the target nucleons absorb this
energy. Equation (1.1) shows that the field satisfies the dispersion relation £ = pv
of a phonon. Feshbach and Zabek pointed out that the phonons could hardly be
absorbed by a single nucleon since the latter would carry the momentum
~ +/2mE, which is appreciably larger than that of Eq. (1.1). However, the phonon
could be absorbed by a correlated nucleon-pair, which can have high kinetic
energy and small total momentum, when the nucleons move along approximately
opposite directions. These authors developed a semiclassical theory for the
calculation of cross sections for this process.

The present work is concerned with the role of short range correlations in
nucleon emission in peripheral RHICs. For this purpose, we use a model which is
similar to that of Feshbach and Zabek.* Like these authors, we take straight line
trajectories and use first order perturbation theory. However, we start with a
nucleon-nucleus potential and adopt different wave functions for the bound
nucleons. With the help of Gaussian approximations’ for the potential and for the
target nucleons, we obtain analytical expressions for the two-nucleon emission
cross section and also take proper care of absorption effects. In Sec. 2, we
introduce the theory and give the expressions for the cross sections. In Sec. 3, we
apply the theory to nucleon emissions in the collisions Ca + Ca at 14.5 GeV/u
and U + Agat 1 GeV/u, discuss a possible signature of short range correlation
effects. Finally, the main results of this work are summarized in Sec. 4.

2. Theoretical Treatment of the Short Range Correlation Effects

In this section, we study the effects of the short-range correlations in nucleon
emissions induced by a peripheral relativistic heavy ion collision. We consider
the coherent action of the projectile nucleons on each of the target nucleons. For
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Fig. 1. The collision of a Lorentz contracted nucleus with a nucleon pair in a target nucleus.

this purpose, we represent this interaction by a Lorentz contracted nucleon-
nucleus potential moving classically along the z-direction with constant velocity
v = ¢, as illustrated in Fig. 1. To a first order perturbation approximation, the ef-
fect of such a potential is to alter the state of a single nucleon in the target. How-
ever, as shown by Feshbach and Zabek,* the state of a second nucleon correlated
to the first one is also changed. To this order, the probability amplitude that the
initial state of a nucleon pair in the target ¥; changes into a final state ¥, in a
collision with impact parameter b is

1 © ) .
a(®) =~ f dt e f Prd ¥, (r, 1) [V, 1) + Ve, ) Wiy (2.1)

— o

where fiw = E, — E,. Since we are interested in the emission of a pair of nucleons,
we take for the final state the wavefunction

(1) = e ™" (2.2)

where k; (i = 1,2), are the wave vectors of the emitted nucleons. In order to
simplify the calculation of the integral appearing in Eq. (2.1), we consider
Gaussian approximations for the potential V(r, ¢) and the nucleon orbitals in the
initial state. The potential created by the projectile centered at the position
(X,Y,Z), with b = | X* + Y? and Z = vy, is given by

— )2 — )2 2 _ )2
Ve, ) =y V,exp {—(—)—(—2—'2—} exp {—u} exp {—y—(—litz—zi)—} (2.3)

ap ap Qap

where y = (1 — v?/c?)™"? is the standard relativistic factor introduced here to

take into account the Lorentz contraction of the nucleonic density of the
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projectile, which generates the potential. The strength ¥, and the range parameter
apare chosen so as to reproduce the magnitude and diffuseness of a Woods-Saxon
potential at the nuclear surface. According to Karol’s soft spheres approach,’
these values are ralated to the Woods-Saxon radial and diffuseness parameters,
Rp and a, respectively, by

Vs R,
V,= -—2— exp -2_a (2.4a)
and
Op = 2 aRp. (2.4b)

The initial wave function is given by

Y (r r)=NAexp{—i}exp{——rzf—}[l—exp{—‘—r*l—_—rzk}] (2.5)
ik 12 i 2a7—{ 2a72- rc2 > .

where N, is the appropriate normalization constant, r, the correlation range and
ar the Gaussian width, related to the radius and diffuseness of the target density
in a way similar to Eq. (2.4b).

The cross section for a transition i — f is given by the integral over impact par-
ameter

0:(k,, k,) = 27 f ) las(b)]? b db. (2.6)

Ry+Rp
We have set the impact parameter cutoff at » = R, + R in order to account

for the strong absorption effects that arise in close collisions. Substituting Egs.
(2.1-5) into Eq. (2.6) and performing the integrations (see the Appendix for
details), we obtain

aR,w? kir? kX))
oik,, k;) = Kexpy — ) expy — +exp—
yec 4 4

w\? aR; X
Xexpy—2aRr\k, + k,, — —C- exp —7|k,T + k2T| , (2.7)

where ¢ is the factor (1/2) (1 + R;/R;), K is the multiplicative constant of
Eq. (A.10), and k,, k;; (i = 1, 2) are the axial and transverse components of
k; (i = 1, 2), respectively.

The cross section for emission of a correlated nucleon pair can be obtained by
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multiplication of Eq. (2.7) by the density of final plane wave states,
d’k, d’k,/(2m), and by the number of nucleon pairs in the target
Ap(A; — 1)/2 ~ A%/2. In terms of the kinetic energies &, & and the directions
(6,, $1), (6,, ¢,) of the two nucleons, this cross section is

dc

m = K’ \J&,6, P&y, &) M,(,6,, &,0,) M1(&, 6,9y, £,6,¢,).

(2.8)
In Eq. (2.8), K’ 1s the constant
9 réa’ R} VZ(mcH? (c\? R;— R
K =— A2 p Ve lme) (5) exp{——f——”}, (2.9)
32 AR} () \v 2a

where m is the nucleon and A7 is the target mass number. P is the phonon spec-

trum factor, given by
g + & + B\?
P=expi—|———] }. (2.10)
Ap

C is the correlation factor given by

& 517
C=[exp{—z} +CXD{_X}] (2.11)

and M, and M, are the momentum conservation factors

—_ 2 )2
M, = exp {ﬂ_ (\/—a cos @, + \[E;cos 0, — (&, + & + B)/\/2mc ) }(2.12)

Ay

& sin’ 6, + &, sin” 6, + 2 \[&,¢, sin 6, sin 6, cos (¢, — ¢,)

My =exp— > LA .
i M

(2.13)

Above, B is the binding energy of the nucleon pair in the target and A,, A-and A,
are the energy widths.

7
Ap=—120 (2.14a)
J2aR,
_ 2(he)
o= (2.14b)

mc?r?
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2
A, — (fic)

= —. 2.14c¢
dmc*aR; ( )

The total cross section for the emission of a nucleon with energy ¢ along the
direction specified by the angles (6, ¢) can be obtained by integration of Eq. (2.8),
with the help of Egs. (2.9-14). The integral over the azimuthal angle can be
performed analytically and we get

d’o © "
= 2nK’ \/-Ef de’ \/?f dcos@ P(e, &) Cle,e’) M, (g6, &’ ¢)
dedS) o 0

(2.15)

&€’ sin @ sin ¢’ esin’ 8 + ¢ sin® @
X 10 €Xp 11— ?

Ay 2A4Ay

where I is the modified Bessel function of zeroth order.

In the next section, we show several examples of application of the formulae for
the one- and two-nucleon emission cross sections developed above.

3. One- and Two-Nucleon Emissions in High-Energy Peripheral Collisions

We now consider the application of the theory of Sec. 2 to reactions induced by
high energy heavy ion beams. The first example is the “’Ca + *Ca system at 14.5
GeV/u which can be studied with the Ca beam that will be soon available at
Brookhaven. The other is the U + "Ag system at 1 GeV/u, experimentally
studied (albeit for purposes different than those pursued in the present work) by
Friedlander et al® with the Berkeley Bevalac. In this case, we consider the
nucleon pair emission from the uranium nucleus. Consequently, we work in the
uranium-fixed frame of reference.

We first consider the quadruple-differential cross section of Eq. (2.8). The
parameter valuesr, = 1.2fm, r, = 0.7 fm, @ = 0.65 fm, and B = 16 MeV utilized
lead to the energy widths for the two systems appearing in Table 1.

Several interesting conclusions can be drawn from inspection of the Table I
and Eqgs. (2.14). First of all, we notice that the energy width associated to the
nucleon-nucleon correlation range, A, is independent of both the projectile-
target combination and the projectile energy. A second remark is that the energy
width A, of the phonon spectrum depends strongly on the incident energy but

Table 1. The energy widths in the two-nucleon emission cross section.

System Ap(MeV) Ac(MeV) Ay(MeV)

Ca+Ca 1420 171 3.9
U+Ag 134 171 22
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weakly on the system size. From the relation between the A ,and A - values, we ex-
pect that the correlation factor C will predominate over P in determining the be-
havior of the cross sections for the Ca + Ca system at 14.5 GeV/u, while both
factors should be about equally important in the U + Ag case at 1 GeV/u. Final-
ly, the small values of the A, parameters in both cases suggest that the
momentum conservation factors M, and M; strongly correlate the angles and
energies at which the two nucleons are emitted. Inspection of Eq. (2.12) indicates,
however, that the exponent of M, does not have a linear dependence on ¢, and ¢,.
Therefore A ,, does not give a direct measure of the energy spread of the cross sec-
tion. We comment further on these factors later in this section.

In Fig. 2, we illustrate the calculated cross section for a forward-backward
6, = 0°, 6, = 180°) nucleon pair emission for the two systems considered. The
curves of equal quadruple-differential cross section plotted as a function of the
final kinetic energies of the two nucleons were calculated using Eq. (2.8). As
mentioned above, there is a strong correlation between the nucleon energies,
resulting, in this case, from the M, factor. The effect of this factor is to produce a
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Fig. 2. The quadruple-differential cross section (d*c/de, de,dQ, dQ;) of Eq. (2.8) for 6, = 0°and 6, =
180°, as a function of & and &,. The cross sections are given in arbitrary units. The calculations were
performed in the rest frames of one of the Ca nuclei and the U nucleus, respectively.
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ridge in the cross section, which is determined by the values of ¢, and ¢, for which
the exponent appearing in M, vanishes. This condition defines the curve

&6+ &+ B=-2mc’ (V& — V&), (3.1)

represented in Fig. 2 by dashed lines, which describe the ridge to a good
approximation. As the general form of Eq. (3.1) suggests, the location of the ridge
is a kinematical property of the phonon absorption mechanism, which is
independent of the system or the collision energy. It is interesting to notice that
for emissions on the ridge the forward going nucleon carries a larger energy. This
is a direct consequence of the fact that the absorbed phonon carries momentum
along the beam direction. The other terms in Eq. (2.8) lead to slight changes in the
shape of the ridge, and more importantly, give rise to the broad maximum
observed at ¢, = 125 MeV, ¢, = 47 MeV, in the Ca + Ca case, and a sharper one
ate, = 47 MeV, g, = 24 MeV, in the U + Ag case. The narrower ridge obtained
in the latter arises from its smaller width A,. Larger systems possess larger
interaction regions, which causes a sharper definition of the energy transferred.

The factor M7 played no role in this first example since it is identically equal to
one. In order to observe transverse momentum effects on the two-nucleon
emission, we consider the situation where one of the nucleons is emitted at right
angles to the beam, 8, = 90°, and, for the sake of definiteness, we also fix its
energy at ¢, = 50 MeV, for which both systems have appreciable cross sections. In
Fig. 3, we plot the same quadruple-differential cross section of Eq. (2.8) as a func-
tion of the nucleon 2 observables &, and 8,. For simplicity, we consider that both
nucleons are emitted in a plane containing the beam direction, i.e., we set ¢, — ¢,
= 180°. We immediately notice that the emission of nucleon 2 is strongly
correlated in energy and angle with that of nucleon 1. In this case, the maximum
cross section occurs for emission energies and directions such that the exponents
of M, and M are both approximately equal to zero.This means that the most pro-
bable emission is such that the transverse momentum of the nucleon pair
vanishes and the longitudinal momentum of the pair is equal to that of the
absorbed phonon, w/c. This situation is depicted in the insets appearing in Fig. 3.
From the contour lines in this figure, we note that the cross section for emission
of a nucleon pair is quite concentrated around the angle corresponding to the
maximum (6, ~ 68° in both cases).

The properties of the quadruple-differential cross-sections illustrated in Figs. 2
and 3 are the signature of the nucleon pair emission via the short range nucleon-
nucleon correlations. It could be interesting to evaluate the contribution of this
process to the single nucleon spectra. As shown in Sec. 2, this can be obtained by
partial integration of the cross section discussed above, leading to Eq. (2.15). As
an example, we show the nucleon spectra that result from the U + Ag collision at
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Fig. 3. The cross section of Fig. 2 as a function of 8, and ¢,. The energy and direction of the first

max

nucleon are kept fixed at 6, = 90° and & = 50 MeV. The values of 6;"** and &;", where the cross
section is a maximum, are indicated. The inset shows the wave numbers k, and k; corresponding to
this maximum. The rest frames are the same as in Fig. 2.

several observation angles (see Fig. 4). In contrast to the energy spectra that arise
from a single nucleon knock-out, or the decay of a giant resonance excited in the
collision, we notice that in this case the distribution reaches very high energies,
especially in the case of forward angles.

In order to assess the relative importance of this mechanism of nucleon
emission, we have estimated the total cross section by numerical integration of
Eq. (2.15) over the nucleon emission angle and energy. Using a potential strength
Vo = 50 MeV, we find o ~ 85 mb in the Ca + Ca case and 6 ~ 30 mb forthe U +
Ag system, at the same collision energies used before. In spite of its relatively
small value, when compared to the total reaction cross section, we think that it
may be possible to extract a signature of this process. This could be done, for ex-
ample, through the study of correlations in the two-nucleon production data.

It is important to realize that the cross section values we have calculated are
considerably smaller than those obtained by Feshbach and Zabek for similar
systems, which exceed one barn.* It is difficult to pinpoint the origin of this
discrepancy since each work uses many different approximates. We would argue,
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Fig. 4. The one-nucleon emission spectrum (Eq. (2.15)) at several observation angles in the U rest
frame. The cross sections are given in arbitrary units.

however, that our results are more consistent with the peripheral nature of the
process and with the first order perturbation treatment employed in both works.
Being a peripheral process, its cross section may be written in the form
o ~2nA(Rp, + R;) & where A ~ 1 fm is the impact parameter range for grazing
collisions, and & the average probability for this reaction to occur within this in-
terval. Since 2nA(R, + R;) < 1b, it appears that the results of Ref. 4 overesti-
mate the cross section. Besides, the perturbation approximation requires << 1,
so that while our results are consistent with this constraint, those of Ref. 4 would
require =~ 1 in order to reach the high cross section values it finds.

4. Conclusions

We have studied the effect of the short range nucleon-nucleon correlations on
the emission of one or two nucleons from a heavy target induced in a peripheral
relativistic heavy ion collision. We have used Gaussian approximations for the
nucleon-nucleus potential and for each nucleon-pair wave function. In this way,
we took into account absorption effects explicitly and derived an analytical
expression for the quadruple-differential cross section for the emission of two
nucleons. This cross section is written as the product of several factors: a phonon
spectrum, analogous to the one discussed by Feshbach and Zabek, a factor
explicitly dependent on the correlation radius, and factors associated to
momentum conservation in the absorption of a phonon by a correlated nucleon
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pair. We have performed numerical calculations for the Ca + Ca and U + Ag
systems at 14.5 GeV/u and 1 GeV/u, respectively. The calculated cross sections
display a marked correlation between the energies and directions of the emitted
nucleons. We have shown that these correlations predominantly arise from
momentum exchange btween the nucleon pair and the absorbed phonon. It is sug-
gested that such correlations can be used as a signature for short range correlation
effects in future exclusive experiments, since our estimate for the total cross
section for this mechanism lies in the few tens of millibarns range. We have not
attempted to compare these predictions with experiment in this work since such
exclusive experimental data does not appear to be available at present.
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APPENDIX

In this appendix, we give details of the derivation of Eq. (2.7).
Substituting ¥; (Eq. (2.5)), ¥/(Eq. (2.2)) and V' (Eq. (2.3)) in Eq. (2.1), and then
taking the absolute value, we get

NyV, ri+r2 |r,—r,
as(b) = —————iyh J Zjd3rld3r2exp{— ]2 22—| ! 22' }

Jj=1 ar rc
2 2
xi+ -y
X exp {—4‘;2—_.))_]) h i(kl'rl + kz'r2)}
ap

© z; — vt)?
X dtexp{—yZLj—z-—)+ iwt}. (A.1)

— Qp

The integration over time can be easily performed,’” we get the value

2\ maR 1) aRpw?
NTR exp {izj —} exp {— ZPCZ) }, (A.2)
y v o

and Eq. (A.1) gives
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4|NV| naR,
2

las (b = e

2 2 2
aR,w
z I/I { 2,2 } (A3)
In Eq. (A.3), I; is the integral

4y =P xPH(b—y)?
Ij= fd2r1d3rzexp{— |2 Z_I ! 1'2‘ _ 7 (2 y])

2 2
ar r. Qp

w
X exp {—l (kl-l'l + kz'rz - _C‘> Zj}, (A.4)

The integral /; can be written as a product of the cartesian factors I, J;, and I,
given by

2 2 2 2

@ @ x; +x X, — X X;
1})(:[ dxlf abczexp{—l 22—(1 22)————1}
—w© ~ o 2aT r. Op

X exp {_l (klxxl + kzx.xz)}, (A.Sa)
@ @© 2 + 2 — 2 b—v 2
_ f y, f dy, exp {_J"1 2)’2 . 67 2yz) . ( zyj) }
—a —® 2a7- rc ap
X €Xp {_l (klyyl + kayZ)}’ (A-Sb)

and

2 2 2
@ @ zi +z zZ, — z

=f dzlf alzzexp{—l 22—(' 22)}
— - 2C¥7- r

[

X exp {_i (klzzl + kZZZZ - %)Z])}' (A.SC)

The integrals above can be carried out analytically and we get

2k2x 2
I\, = mup exp {_u 42 } exp {—p; (ks + 5k2x)2}, (A.62)
22 Ir2b 2 b?
I,, = mup exp {_ﬂ Zy} exp {-£— [— + i(k,, + 5k2y)] } exp {——},
4 4 |} al
(A.6b)

and
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2

u’ks, p w2
I, = mpp exp | —— = [ exp —Z(klz + dky,) — ;) , (A.6¢)

and similar expressions for j = 2, interchanging the subindices 1 and 2. Above 4,
p and J stand for

1 1 —172
=Gatn) o7
xr c
< l 1 1 uZ)—l/Z
~(—+=+—=-5) , (A.7b
’ 202 1! a,% rd )

and
(A.7¢)

We are interested in the effects of short range correlations, which satisfy the
condition r? << a?, a2. In this case, the parameters y, p and J can be evaluated to
lowest order in r?/ar, and we get

Qr _ 2aRT
V24 A
where ¢ is the factor 1/2(1 + R;/R;), which reduces to unity when the projectile

and the target have the same mass number. Substituting these results in Eq. (A.1)
and evaluating the integral over impact parameters, we get

aRyw? kir? k2r2 ]
os(k,, k,) = Kexpy — 2t expy — 2 +expy— 7

w\? aRr, )
X exp{—2aR;\ k,, + k,, — —) t exp — |k, + kyr Pt (AL9)
c L

uxr, ol p= , (A.8)

where

9réa’ RV, | R,—R
K= A1 exp ——T——”}. (A.10)

16 R}y #H2v? 4 2a
As we have discussed in Sec. 3, the momentum conservation factors appearing

in Eq. (A.9) (the last two exponentials) play a most important role in the two-
nucleon emission cross section. They allow for the emission of very energetic
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nucleons such that the nucleon pair has negligible transverse momentum
(k;r~k;7) and net longitudinal momentum k,, + k,, ~ w/c. This is possible
because the short range correlations (6 = 1) couples the momenta of the two
nucleons. If the correlations have long range, or the nucleons are not correlated,
one should take the limit r. — oo, which leads to d — 0. In this case, the momenta
of the two nucleons decouple and the emission of an energetic nucleon is strongly
hindered by the momentum conservation factors.
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