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Abstract: We evaluate the Coulomb-excitation cross sections in relativistic heavy-ion collisions by means 

of the plane-wave Born approximation. The final total cross section is shown to be equal to that 

obtained by a semiclassical method. As a byproduct the virtual photon spectrum for similar 

electromagnetic processes is derived. Comparison with other methods is performed. 

1. Introduction 

Recent experiments ‘) and theoretical works 2-5) created vivid interest in Coulomb 

excitation in relativistic heavy-ion collisions. The basic assumption in this kind of 

reaction is that the nuclei do not penetrate each other. When they penetrate the 

reaction is overwhelmingly due to the strong interaction so that the cross sections 

for the two different processes do not interfere. Since the Coulomb scattering for 

high energies is predominantly forward-peaked, Winther and Alder ‘) used a retarded 

Coulomb potential for a projectile moving in a straight line, i.e. the so-called 

LiCnard-Wiechart potential, in order to calculate the total Coulomb-excitation cross 

section of the target nucleus. Corrections due to the finite size of the projectile with 

respect to the Coulomb excitation of the target, and vice versa, were performed by 

Jsckle and Pilkuhn ‘) by means of the eikonal approximation. But, as already 

mentioned by Olson et al. ‘), their results are questionable, especially in their limiting 

form for a point projectile. The relation between the electric-dipole excitation cross 

section obtained by Winther and Alder and the virtual photon theory of Weizslcker 

and Williams was demonstrated by Hoffman and Baur3). Later on, it was shown 

by Goldberg “) how one can extend the Weizsicker-Williams method in order to 

calculate the virtual photon numbers not only for the El but also for all other 

multipolarities of the radiation. 

In sect. 2 we outline the calculation of the transition amplitude for the Coulomb- 

excitation process in the plane-wave Born approximation (PWBA). We found that 

some steps of our calculation are equal to those introduced by Winther and Alder *). 

As a matter of fact, it is shown in sect. 3 that, under certain assumptions, the 

* On leave of absence from the Federal University of Rio de Janeiro, Brazil, and supported by the 
Deutscher Akademischer Austauschdienst/CAPES. 
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excitation cross section integrated over the stiattering angle is equal to that obtained 

by these authors, integrated over impact parameters. This resembles the non-rela- 

tivistic case, where the equality between the cross sections obtained by the two 

different approaches is demonstrated [see ref. “)]. 

In sect. 4 it is shown that the Coulomb-excitation cross section can be separated 

in a dynamical factor, which describes the photon-nucleus interaction process, and 

a kinematical factor, which is related to the virtual photon numbers of the 

Weizsacker-Williams method. This later factor is written in an analytical form for 

all multipolarities and presents a final solution to the problem proposed by Goldberg. 

The result is also compared to the ultra-relativistic electron scattering calculations 

of an old paper from Thie et al. ‘) on the visual-photon theory. 

2. Transition amplitude in the PWBA 

We shall consider the target nucleus as fixed, neglecting its recoil, and we place 

the origin of our coordinate system in its center of mass. The target will be described 

by an eigenstate /I&f), where I is its angular momentum and M the magnetic 

quantum number. The projectile will be described by a plane wave Ik), where k 

denotes its wave vector. The transition amplitude in the Rorn approximation [see 

e.g. ref. I”)] is given by’ 

with 

’ d3rA,(r)(f,M,lj,(r)lliMi) aa=- 
c J (2Sa) 

A,(r) =f J 
iklr-r’j 

d3&----- 
/r--r’] 

(k~~~(r’)lki}, (2Sb) 

where j, = (cp, j) is the target four-current and J, the projectile one; r (r’) denotes 

the target (projectile) coordinate, and 

(2.2) 

with E equal to the relative motion energy. The function A,(r) represents the 

four-potential created by the transition current of the projectile. Asssuming that the 

velocity of the projectile is not appreciably changed during the collision, we can put 

(k~~J,(r’)~kJ=.Zpe~, eiqr’, (2.3) 

where ZPe is the projectile’s charge, 

q=ki-kf (2.4) 

’ Here we use the notation A,, = (A,, A) and the sum convention A,& = A&- A. B. We also use 
c.g.s. units with c equal to the velocity of the light and h to the Planck constant. 
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is the momentum transfer, and 

u,=(c,n) 

with tr equal to the projectile’s velocity. Choosing cylindrical coordinates for the 

projectile space integration and the z-axis in the incident beam direction, we obtain 

eiqr’- e iqLZ’ eiqTp’cos(tl-4’) 
(2.5) 

where I+IJ is the azimuthal scattering angle and qL (qT) is the longitudinal (transverse) 

momentum transfer to the projectile. For relativistic energies the polar scattering 

angle 0 due to the electromagnetic interaction is very small and we can put 

q,=ki-k,COs e2.ki-kf--w/v, (2.6a) 

qT= krsin O=(E/lzc)(v/c) sin 8, (2.6b) 

where we also assumed that the excitation energy Ei - E,-= hw is much smaller than 

the relative motion energy E = Ei = Ef. 
Using these approximations we can write 

A,(r) = zpe(vp/c) 

I 

iklr-r’l 

d3r’ ei(w/u)z’ ei%“cOs(+f”) b. 

The z’ integration can be performed by defining 

d2=p2+p’2-2pp’cos(+-r#/). 

This leads to 

(2.7) 

m 

dz’e ‘e 
,kjr-,‘I 

i(w/u)z -=2e’(“‘“)‘K,(wd/yv), 
--m Ir- r’( 

(2.8) 

where KO is the modified Bessel function of zeroth order and y is the relativistic factor 

y=(l-z?/c2))“2. (2.9) 

Using the Graf addition theorem [see ref. “)I in order to separate the target and 

projectile coordinates, the 4’ integration is easily obtained and A,(r) becomes 

A,(r) =4r&e(v,/c) ei(w’“)z f i” e-‘“’ e’“~{Jn(wp/Yv)XII(R)+T,(R, p)}, 

where 

n=-m 

(2.10) 

co 

/L(R) = J,(qTP’)K,(wp’lyv)p’dp’, 
R 

r,(R,p)={~n(~)-~n(R)}Jn(wplyv) 

(2.11) 
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and J,,(K,) is the common (modified) Bessel function of nth order. In these 

expressions R is taken as some nuclear radius inside of which the strong interaction 

is present. The function ,yn(R) involves the part of the projectile current that is 

outside a cylindrical hole of radius R. The function r,,( R, p), on the other hand, 

takes into account the part of the projectile current inside of this hole and includes 

the projectile-target penetration case. 

In contrast to the non-relativistic collisions, below the Coulomb barrier, it is 

impossible to obtain a pure Coulomb-excitation process in relativistic heavy-ion 

reactions. It is then necessary to introduce the “cutoff” parameter R which defines 

a frontier between Coulomb and non-Coulomb processes. In order to limit ourselves 

within the Coulomb-excitation contribution to the total reaction cross section we 

are also forced to disregard the function T,(R, p) in eq. (2.10). But we note that 

this is an ad hoc assumption which, was not contained in the original PWBA 

expression (2.1). It amounts to punching a cylindrical hole in the plane wave and 

resembles the semiclassical approach where R is identified as the minimum impact 

parameter that still leads to a pure Coulomb interaction. Such a cutoff approximation 

reminds us of the so-called “Butler” cutoff ‘*), a critical overview of which is found 

in ref. 13). 

After these considerations, many steps of our calculations are exactly the same 

as those performed by Winther and Alder ‘) in the semiclassical approach. Doing 

a multipole expansion of A,(r) we find 

- (Z-m)! “2 
A,(r) = (4~r)“‘Z,e(v,/c) C i’J21+ 1 ___ 

[ 1 (2m - l)!!(c/uy)” 
rm (l+m)! 

xe -i”‘xm(R)C;“_+,1’2(c/u)jl(kr)Y&,(F), (2.13) 

where C ;1’;,‘j2 are the Gegenbauer polynomials, j, are the spherical Bessel functions, 

and Y,, are the spherical harmonic functions. Now, inserting this relation into eq. 

(2.1), using the continuity equation for the nuclear current and the recursion relations 

of the Gegenbauer polynomials, one can write a fi in terms of the usual multipole 

matrix elements of nuclear excitation: 

~h=(2rZ~e/y) 2 i”k’J2Z+l e-‘“~xLX,(R)G,,,(c/~)(IfM~lJU(~Z,-m)IIiMi), 
Trim 

(2.14) 

where v = E or M, for electric or magnetic excitations, and 

A(EZm) = 
(21+ l)!! 

k’+‘c(l+ 1) J 
j(r) . V XUjdkr) Y,m(;)l d3r, 

JU(Mlm) = -iFiG:);; 1 j(r) . L[j,(kr) x,(i)] d3r. 

(2.15a) 

The functions G,,,(x) are given in terms of the Legendre polynomials S,,,(x) 
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calculated for x > 1. For m 3 0 they are 

GElm( x) = i’+m 
JGG (Z-m)! 1’2 

[ 1 1(21-t l)!! (I+ m)! 
(x2 _ 1)-w 

X E (f+l)(l+m)p, (X)_4j--m+l) m 
21+1 f I 

*[+I Pi&) t 1 
G,,,(x) = jrtm+’ 

(2.16a) 

(2.16b) 

while for m < 0 one can use 

GE!,--m(x) = (-l)“‘GEzm(x), (2.17a) 

G,+z(x) = -(-l)mG~~m(~) - (2.17b) 

A table of explicit expressions for Grrlm (x) and for 1 s 3 is presented in the appendix 
of ref. ‘). 

3. Cross sections 

The differential cross section, for the case in which the orientation of the target 
is ignored, is given by 

(3.1) 

From eq. (2.14), the Wigner-Eckart theorem and the orthogonality properties of 

the Clebsch-Gordan coefficients, one can show that 

(3.2) 

where (Y is the fine structure constant and B( &) is the reduced transition probability 

for Coulomb excitation of the target nucleus: 

The dependence of the differential cross section on the scattering angle is given 

implicitly by the function x,,,(R). For forward scattering, qT = 0, and we obtain 

xm(R 0 =0)/R’= L+,(5), (3.4) 

where 
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This implies that 

-g(B = 0) = (zp(u)2 g 5 2~2[K*(5)]2$ k2yC&/u)12~. ( ) (3.6) 

The quantity m is equal to the angular momentum transfer to the target in the 

direction of the incident beam, 

m=Mi-Mf, (3.7) 

and eq. (3.4) shows that, for exact forward scattering, it is equal to zero. In this 

case there is no magnetic excitation of the target. This can be explained in terms 

of the symmetry properties of the scattering of spin-zero particles. The ~onse~ation 

of parity of the total system forbids the change of internal parity of the target by 

(-1)“’ in the case m = 0 [see e.g. ref. r4), eq. (43)]. Since magnetic excitations are 

accompanied by this change of parity, the forward scattering amplitude must vanish 

in this case. 

For 0 # 0 one can analytically solve the integral (2.11) to obtain the dependence 

of the cross section on the scattering angle. But the exact form of this dependence 

is of little impo~ance. It suffices to say that it is extremely forward-peaked with a 

diffraction angle of about 

withn =ER 
he2 * 

(3.8) 

The parameter A is equal to the ratio between the nuclear dimension R and the 

quantum wavelength of the relative motion energy. For relativistic heavy ion col- 

lisions this quantity is much greater than unit and Ifd will be too small. We can also 

compare the diffraction angle ed with the classically expected Coulomb deflection 

ec= 
2ZpZte2 

ER . 

The ratio of these two quantities is 

(3.9) 

(3.10) 

showing that only for small projectile and (or) target charge the diffraction effects 

will be comparable to the Coulomb deflection. 

The total cross section is obtained by integrating (3.2) over the scattering angle 

0. But, by means of (2&b) we can transform the angular integration to one involving 

the momentum transfer q-,-: 

da = (ttc’/ Ev)‘q, dq, dtl,. (3.11) 

Accordingly, the integration in qT must go from 0 to Eu/Ftc2. Nevertheless, 

expressions (2.6b) and (3.8) imply that already for qr= l/R Q Ev/ hc2 the differential 
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cross section is negligible. It then makes no difference if we take the integral in qT 

until infinity. In this case we can use the closure relation of the Bessel functions 

(3.12) 

in order to obtain the total cross section 

(3.13a) 

where 

I 

m 

&(‘9 = gLn(5) = 27&JlY~)2 dKn(~~l~~)l~ dp 
R 

= ~52{[~m+,(5)12-[[K,(5)12-(2m/5)K,(5)Km+1(5)}. (3.13b) 

Expression (3.13a) is equal to the Coulomb excitation cross section first derived by 

Winther and Alder ‘) on the basis of semiclassical calculations. At first it may appear 

that this equality is due to the introduction of the cutoff parameter R in our 

calculations. To show that this is not really the case, we prove in the appendix that 

also in the absence of such a cutoff the PWBA total cross section is equal to the 

semiclassical one. 

The cross section (3.13a) depends on the validity of first-order perturbation theory. 

Normally, this is a reasonable assumption since the excitation amplitudes (2.14) 

are very small. Only in extreme cases it will break down. If, for example, one uses 

eq. (2.14) to calculate the excitation amplitude for the giant dipole resonance in 

the reaction 238U + 238U by taking 8 = 0, then one finds that it will approach unit 

magnitude. In that case, higher-order effects could be taken into account by means 

of e.g. Glauber approximation or semi-classical coupled-channel calculations. 

4. Virtual-photon numbers 

According to the virtual photon theory or Weizsacker-Williams method 6S7), the 

excitation of the target nucleus can be described as the absorption of virtual photons 

whose spectrum is determined by the Fourier time-integral of the electromagnetic 

interaction “). But, alternatively, we can also use the total cross section (3.13a) in 

order to obtain the virtual-photon spectrum. 
Integrating (3.13a) for all energy transfers E = hw and summing over all possible 

final states of the target, we obtain 

(4.1) 

where Pi represents now the density of final states of the target, with energy 
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E:= E:+E. Inserting (3.13a) in (4.1), we can rewrite it in the form 

vc = 4 ~4wb%4 + n,,(o)&‘(w)> dw/w, (4.2) 

where CT/ E’M are the photonuclear absorption cross sections for a given multipolarity 

We then obtain the “equivalent photon numbers” n,,(w) given by 

Mo) = %y2r)3(l+ 1) m z’(2z+1)!!12C IG,,,(c/v)\*g,(n$) 

(4.3) 

(4.4) 

Since all nuclear excitation dynamics is contained in the photon absorption cross 

section, the virtual-photon number (4.4) is independent of this process. It only 

depends on the way that the projectile moves. The virtual-photon theory consists 

of using its kinematics to calculate the intensity of the virtual radiation for a certain 

frequency interval. From that, one derives the virtual-photon numbers, which for a 

straight-line-moving projectile must be the same as those of eq. (4.4). 

It was shown by Hoffmann and Baur ‘) that, for El excitations, the virtual-photon 

numbers obtained from the total cross section (3.13a) are really equal to that 

calculated by the Weizsacker-Williams method. Nevertheless, while it is implicit in 

the Weizsacker-Williams method that the virtual-photon numbers are the same for 

all multipolarities, eq. (4.4) shows that this is not the case. Indeed, a merit of eq. 

(4.4) is that it gives an analytical expression to calculate the virtual-photon numbers 

for all different multipolarities and radiation types, in contrast to the method followed 

by Goldberg 4), which results in complicated integrals along the projectile trajectory. 

By means of a more sophisticated version of the virtual-photon theory, Jackie 

and Pilkuhn ‘) derived other expressions for rrE, and nM,. In their calculations it 

was assumed that the projectile had a Yukawa charge distribution with parameter 

Q = J(ri)/6, where J(ri) is the charge mean square radius of the projectile. We can 

compare their expressions with the eq. (4.4) if we take in their results the projectile 

as a point particle (a + 0). This leads to ‘) 

(4Sa) 

where the K’s are the modified Bessel functions as a function of 5 given by (3.5), 

except for the ones that are explicitly written as functions of 

4=wR/v. (4.6) 
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In the same way, one obtains 

r&(w) = Z;n32(KoK2- K:) . (4.5b) 

On the other hand, using our expression (4.4), together with the definitions (2.16) 

and (3.13b), we find that 

(4.7a) 

(4.7b) 

and also 

(4.7c) 

By means of the recurrence relations for the K-functions, one can immediately show 

that 

But one cannot reduce eq. (4.5a) to eq. (4.7a). Moreover, one cannot understand 

why the consideration of a charge distribution for the projectile would modify the 

final results apart from influencing the value of the minimum impact parameter R. 

The Coulomb potential for a projectile, with a spherical distribution of charge in 

its rest frame is the same as that for a point particle with equal total charge. A 

Lorentz transformation to another inertial frame of reference obviously cannot 

modify this equality. All following results, such as cross sections or virtual-photon 

numbers, are therefore not changed by introduction of a spherical charge distribution 

for the projectile. 

In fig. 1 we show nml (with 2, = unity) as a function of wR/c. We see that the E2 

spectrum exceeds that for El by a factor 3-10. Nevertheless, over the range of w 

where the virtual-photon numbers are large, the quadrupole cross sections of most 

nuclei are much smaller than the dipole cross sections. The same happens to the 

Ml transitions as compared to the El ones. We also see that there is an appreciable 

increase of the virtual-photon numbers for high frequencies with the increasing of 

the projectile energy. This implies that one can directly excite high-lying states by 

means of relativistic Coulomb collisions. In fig. 2 we see that, only in the extreme 

relativistic limit (y >> l), the result of Jackie and Pilkuhn (JPEI) agrees with the 

prediction of eq. (4.7a). 

For a small-mass projectile one can improve eq. (4.4) based on semiclassical 

ideas. In order to see how it works we compare the final improved expressions with 
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1O-2 

lo-3 

10-* 

6WC 

Fig. 1. Virtual-photon number per unit projectile charge, for El, Ml and E2 radiation, and as a function 

of the ratio between R and the photon wavelength. y is the ratio of the projectile energy to its rest energy. 

those obtained in the ultra-relativistic electron-nucleus scattering. But, besides the 

spin interactions, electron scattering is different from Coulomb excitation because 

the electrons can penetrate the nucleus and continue interacting only electromagneti- 

cally with it. Nevertheless, in the long-wavelength limit qeR Q 1, where qe is the 
momentum transfer of the electron, the nuclear volume plays a minor role and the 

matrix elements contributing to the excitation in the near-forward scattering are 

just that appearing in the photo-excitation process, with qe= k. To disregard the 

nuclear volume means to put R = 0 in expression (4.4). But in that case it goes to 

infinity, due to the neglect of the function T(R, p) in eq. (2.10). If we now evoke 

semiclassical ideas we note that a normal procedure “) within the virtual-photon 

theory is to use the quantum wavelength h/-yM,v of the projectile, instead of the 

nuclear radius, as the minimum impact parameter when the projectile’s mass AI, 

is small. This assumption is based on the uncertainty principle, which introduces a 

“smearing out” of the projectile’s coordinate in a space interval of about its 

wavelength. By means of this recipe, we then replace (3.5) by 

& = ho/ y2mev2, (4.8) 
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oR/c 
Fig. 2. Comparison of the virtual-photon number per unit charge with the Jickle and Pilkuhn result 

(JPEl) for the electric-dipole radiation (see text). 

where m, is the electron rest mass. This quantity is generally much less than one, 

so that the expressions (4.7) become 

nzytro” = (2/7r)a[ln (l/&e) - 6]= n*" , (4.9a) 

(4.9b) 

where 6 = 0.384. . . . 

Aside from an irrelevant factor, these are just the results that one derives from 

the virtual-photon numbers for electron scattering, first obtained by Thie er al. 9), 

in the ultra-relativistic limit with small energy loss, where one can put Ei = Er= 

ym,c2 S m,c2. 

Besides of a more transparent description of the excitation process, the virtual 

photon numbers can be used to obtain the cross sections for relativistic Coulomb 

fragmentation in heavy-ion collisions by using the experimentally measured photon- 

absorption cross sections, instead of the theoretical ones, in the eq. (4.2). This was 

indeed the procedure followed by Olson et al. ‘) but with the bad assumption that 

the virtual-photon numbers should be equal to nE,(w) for all multipolarities. 
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5. Conclusions 

The study of relativistic Coulomb collisions by means of the PWBA was useful 

in obtaining new insight into this subject. One interesting feature in this approxima- 

tion is the absence of magnetic excitations of the target nucleus in the case of 

forward scattering of the projectile. The cross section integrated over angles is shown 

to be equal to the semiclassical one integrated over impact parameters. In order to 

obtain this result, we had to introduce some assumptions, like the consideration of 

small momentum transfers to the projectile and a cylindrical hole cutoff. Neverthe- 

less, these assumptions are expected to be suitable in the high-energy region. 

By factorizing the cross section integrated over the excitation energy, we reached 

an expression for the number of equivalent photons, related to the virtual-photon 

theory, for different multipolarities and frequencies of the electromagnetic radiation. 

A comparison with the results derived by other methods was useful to clarify some 

points in this matter. 

We are grateful to Professor J. Speth for the hospitality given to one of the authors 

(C.A.B.). 

Appendix 

We shall prove that the PWBA and semiclassical total cross sections are the same 

for the electromagnetic interaction of relativistic spin-zero particles with an atomic 

or a nuclear system. The proof is similar to the one given by ref. “) in the non- 

relativistic case. Using the integral representation 

eiklr-r’l 

(r-r’1 2:’ 
=- 

I 

eip(r-r’) 

---d’p, 
p2-k2 

(A.11 

eq. (2.1) can be written as 

Ge 
eiCe-p).r’ 

a,=, 
297 

d3p d3r’- 
p2-k2 

F(P), 

where 

Integrating over r’ we obtain 

(A-2) 

(A.31 

(A.41 

(A.3 
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According to the relations (3.1) and (3.11) the total cross section is 

uPWBA = 8 n ( > G2 1 qT”” IF( 

fiu 21,+1M~, Jo (q2-k2)2qTdqT’ 
In the semiclassical calculations the excitation amplitude is given by 

where 

445 t) = 
z,er 

[(x-bJ2+(y-bJ2+ y2(z-vf)2]1’2 

(A.61 

(A.7) 

(‘4.8) 

is the Lienard-Wiechart potential for a charged particle moving in a straight line 

with an impact parameter b = Jbz + bt. By means of the Bethe integral we can write 

J e~~L~--R’(OI 4(c d=s d3p p2 , (A.9) 

where 

R = (x, Y, YZ) , R’= (b,, b,, yvt) . (A.lO) 

The integral in t yields 

2?i- 
yuaPdY4 3 

and therefore 

Ze 
Tfi = -XL J d2PT 

FW 
7rihv P++ cm/ YVj2 

eih’b 
’ 

(A.ll) 

where 

P” (PT, w/v). (A.12) 

The total cross section is obtained by integrating the above squared expression over 

all possible impact parameters: 

uss.c. =L 2 j- )T,J2d2b 
Zi + 1 M,M, 

IF(P’)I~ 
C J”, 2 ( , 

M,Mc CI PT+ w YV 
)2j2PTdPT. (A.13) 

Then, since 

(A.14) 
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the equality between the semiclassical and the PWBA cross section is guaranteed 
if we are allowed to replace q’;-‘“” by infinity in (A.@, which is generally the case as 
soon as the form factor F(q) is a rapidly decreasing function of qTS 
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