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Abstract: Experimental studies of the break up of light nuclear projectiles in the Coulomb field of a 

heavy nucleus, acting as a source of virtual photons, are proposed as an access to information 

about the reverse reaction, the fusion of the fragment particles at small relative energies. The 

mechanism of Coulomb dissociation is studied and the cross section of such reactions, being 

potentially of astrophysical interest, is estimated. The conditions of dedicated experimental investi- 

gations are discussed. 

1. Introduction 

The cross sections for radiative capture of a-particles, deuterons and protons by 

light nuclei at very low relative energies are of particular importance for the 

understanding of the nucleosynthesis of chemical elements and for determining the 

relative elemental abundances in stellar burning processes at various astrophysical 

sites ‘*‘). However, the direct experimental determination of the cross sections at 

astrophysically relevant energies under laboratory conditions is rather difficult or 

even precluded, mainly as the Coulomb barrier strongly suppresses the cross sections 

for the reactions of interest. For example, the 3He(4He, y)7Be reaction, which at 

solar temperatures affects the solar neutrino flux and bears strongly on the solar 

neutrino problem 3P4), is experimentally studied 4*5) down to c.m. energies E,,,, = 

165 keV, while the cross section is actually needed at E,,. = l-20 keV. A similar 

situation is found for the r2C( (Y, y)i60 reaction 6), which is important for the stellar 

helium-burning process and where the values of the low-energy cross section (at 

E E.rn. = 0.3 MeV corresponding to temperatures of 2 x lo8 K) are actually a matter 

of controversial discussion presently. In cases of nonresonant direct capture reactions 

’ On leave from Federal University of Rio de Janeiro, Brazil. 
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the energy dependence is dominated by the Coulomb barrier penetration, which is 
usually factored out by defining the astrophysical S-factor 

SC &n-J = ccapt EC.,. exp (25-71) , (1.1) 

where 

Z,Z2e2 

‘?= hv 

is the usual Coulomb parameter. This S-factor shows a smooth energy dependence 
and seems to be adequate for an extrapolation of the measured values to astrophysi- 
tally relevant energy ranges. But in most cases of interest the extrapolation covers 
several orders of magnitude and is particularly suspect if resonances and subthresh- 
old resonances are expected to be present in the considered reaction [see ref. ‘)I. 
In addition, the extrapolation needs often considerable theoretical support and bias, 
and despite of strong efforts to understand nuclear reactions on theoretical grounds, 
it appears to be generally impossible to predict the astrophysically interesting cross 
sections with sufficient accuracy. 

In view of this situation, all dedicated efforts which are able to explore additional 
experimental information on the quantities determining low-energy nuclear reaction 
cross sections are of considerable interest. Recently the investigation of continuum 
stopping processes has been discussed ‘) as a possible method to overcome the 
problem arising from the Coulomb barrier. However, the method involves a theoreti- 
cal reaction model which might cast some doubts on the results. 

In the present study we analyse a different approach which has been recently 
proposed *> for the investigation of electromagnetic transitions between a bound 
state of two nuclear particles and continuum states at small relative energies. The 
proposal suggests to use the nuclear Coulomb field as a source of the photodisintegra- 
tion processes. In fact, instead of studying directly the radiative capture process 

b+c+afy (1.2) 

one may consider the time reversed process (a being in the ground state) 

y+a+b+c. (1.3) 

The corresponding cross sections are related by the detailed balance theorem 

(2j,+1)2 2 
rr(b+c-a+rf=(2j~+l)(2j,+l) k2 

kT@(a+y+b+c). (1.4) 

The wave number in the (b+c) channel is 
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with pub, the reduced mass while the photon wave number is given 

_ E, E,,+O 

ky=z= 
- 

hc 
(1.6) 

(neglecting a small recoil correction) in terms of the Q-value of the capture reaction 

[eq. (1.2)]. Except for the extreme case very close to the threshold (k+ 0), we have 

k, < k, so that the phase space favours the photodisintegration cross section as 

compared to the radiative capture. However, direct measurements of the photodisin- 

tegration near the break-up threshold do hardly provide experimental advantages 

and seem presently impracticable [see ref. “)I. On the other hand the copious source 

of virtual photons ‘) acting on a fast charged nuclear projectile when passing the 

Coulomb field of a (large Z) nucleus offers a more promising way to study the 

photodisintegration process as Coulomb dissociation. Fig. 1 indicates schematically 

the dissociation reaction. 

a( 

6 a 

‘Ap, Z,) 

4 
Fig. 1. Coulomb dissociation a+ b+c in the field of a target nucleus (2,). 

At a sufficiently high projectile energy the two fragments b and c emerge with 

rather high energies (around the beam-velocity energies) which facilitates the detec- 

tion of these particles. At the same time the choice of adequate kinematical conditions 

for coincidence measurements allows to study rather low relative energies of b and 

c and to ensure that the target nucleus stays in the ground state (elastic break up). 

In addition, it turns out that the large number of virtual photons seen by the passing 

projectile leads to an enhancement of the cross section. In the following we give 

first some theoretical estimates of the Coulomb dissociation cross section on the 

basis of sufficiently accurate theoretical descriptions 9-12). We apply the results to 

two examples of actual astrophysical interest and consider briefly the experimental 

conditions and the feasibility of such Coulomb dissociation experiments. 

2. Virtual photon spectrum and double-differential cross section 
for Coulomb dissociation 

The calculation of the double differential cross section for a deflection of a charged 

projectile by the angle 8 with subsequent Coulomb excitation into the continuum 

to the excitation energy E, (= E,) starts with the following assumptions. 
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(i) The influence of the strong nuclear field on the projectile motion and the 

excitation process can be neglected. This is presumably the case for sufficiently large 

impact parameters b (see fig. l), i.e. small scattering angles. 

(ii) The application of a first order theory is expected to be of sufficient accuracy, 

thus disregarding “post-acceleration” effects of the broken up particles b and c in 

the nuclear Coulomb field, which might disturb the extraction of the correct energy 

Ebc of the relative motion. Such second order effects must be incorporated in a 

future theory. 

The double differential cross section for Coulomb excitation of the projectile to 

a state of electric multipole order A can be expressed in terms of the reduced 

transition probabilities B(EA ) of the corresponding transition, in a first order 

perturbation theory by 

a 
-2,4+2 dfa(R 5) 

da 
B(EA, Ii + Ir)pXE,) 9 (2.1) 

where v is the relative velocity, Z, is the target charge, a is half the distance of 

closest approach in a head-on collision, pr(E,) is the density of final states of the 

projectile per energy interval, and the adiabaticity parameter LJ = E,a/ fiv = wa/ v. 

The B(Eh) value is defined as in ref. 13) and it has the units e2 - fm2”. The function 

dfE*(O,,$) [see ref. “)I can be calculated in different ways: (i) in an exact quantum 

mechanical way using Coulomb wave functions for the incident and outgoing 

particle, (ii) by a semiclassical method where the projectile moves on a Rutherford 

orbit and is excited by the time-dependent electric field of the target. For the cases 

which will be of interest here, the first procedure which is computationally more 

complex, is expected to provide similar results as the second method. 

The B(EA) value is related to the photoabsorption cross section apEhffto by 

p,,oto _ (25-13(A + 1) 
uEA - 

A[(2A + l)!!]’ 
(ky)*“-‘B(EA, Ii + Ir)pX&) 

and we can rewrite eq. (2.1) as 

d*a ’ dnEA photo 

da dE, E, dR oEh ’ 

where 

dnEA A[2A + l)!!l* -2h+2 c 2’ dfE*(t’, 5) 

dR = z’Q (~T)~(A + 1) ’ 0 ; da 

(2.2) 

(2.3) 

(2.4) 

with (Y = e’/ hc = &. The function dn,,/dO does not depend on the internal structure 

of the projectile. It only depends on the kinematics of the relative motion and on 

the excitation energy E, = hw. We call dn,,/da the virtual photon number per unit 

solid angle. The first calculations of the function dfEh( 0, 5) was performed by 

Ter-Martirosyan 14). We restrict ourselves to the most important case, A = 1, for 
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which d&(8, e) can be expressed in terms of the modified Bessel functions KY(x). 
Inserting that expression in eq. (2.4) we obtain 

where the eccentricity parameter E = l/sin ($0) and K;,(x) means the derivative of 
&(x) with respect to the argument. 

For relativistic projectile energies the Rutherford trajectory can be substituted by 
a straight-line and instead of the scattering angle 6 the concept of impact parameter 
b is used. The virtual photon method in that case was first introduced by Enrico 
Fermi 15) and later developed by Weizsticker and Williams 16) [see also ref. “)I. It 
is given by 

(2.6) 

where y is the relativistic factor y = (1 - ~z/c2)-i’2 and x = ob/ yv. Since for a 
Rutherford trajectory the impact parameter is related to the scattered angle by the 
relation b = a ctg $0 we can rewrite eq. (2.6) as 

relat. 
K?(x) +; K;(x) . 

I 
(2.7) 

Of course, for relativistic energies 8 cr: 1 and x = (~$1 y) cos $8 = E+$/ y. 
For the nonrelativistic limit a small scattering angle is related to a large impact 

parameter trajectory (E = b/a > 1). If we assume 5 < 1, then by use of KA = -K, we 
obtain from (2.5) 

dn,, Z&x 
-=- E2 ; 
df2 4~~ 0 

*X2[K:(X)+K:(X)] (2.8) 

which is just the eq. (2.7) for y= 1. 
The shape of the virtual photon spectrum for a given impact parameter is seen 

in fig. 2 where the adimensional function #J(X) = x’[ Kg(x) + K:(x)] is plotted. In 
a crude approximation d, = 1 for x d 1, and # = 0 for x > 1. This means that the 
spectrum will contain all frequencies up to a maximum of order wrnax = v/b, and 
small impact parameter trajectories can lead to a great probability of exciting 
high-lying states of the projectile which preferentially decay by particle emission 
or disintegration. 

For not too large impact parameters, which still lead to small scattering angles 
the Rutherford bending of the trajectory is mainly reflected through the parameter 
& In that case eq. (2.5) is, approximately, 

2 

e-“5X2([K-y(X)]2+[K;(X)]2}. (2.9) 
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1.2, I 
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X 
Fig. 2. The shape of the virtual photon spectrum as function of x = wb/ yv (with E, = ho) for a given 

impact parameter b. 

Fig. 3 displays the ratio r(& x) = eq. (2.9)/eq. (2.8) which shows the effect of the 

Rutherford-bending to the straightline calculation. This effect increases steadily 

with 5. 

In eq. (2.5) the Rutheford trajectory is accounted for properly in the calculations, 

but retardation effects in the interaction are ignored. The reverse is true in the 

calculations which lead to eq. (2.6). While one can safely use eq. (2.5) in nonrelativis- 

tic problems and eq. (2.6) in relativistic ones, the previous discussion has shown 

that none of them is suitable for intermediate energy problems where both effects 

are present. But by a direct look at eqs. (2.5) and (2.7) we see that the main effect 

of the Rutherford trajectory would be present in the imaginary indices (it) of the 

modified Bessel functions as well as in the factor e-“‘. On the other hand retardation 

effects imply in the appearance of the -y-factors in the eq. (2.7), thus suggesting that 

0.0 1 I I I I 
0 0.4 0.8 1.2 1.6 

X 

Fig. 3. Effect of Rutherford-bending of the projectile motion for different values of the adiabacity 

parameter 5 = E,a/ hv. 
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one can account simultaneously for both effects by defining the new variable 

t = t/y = ma/ yv and setting 

dn,, Z$CY 

dn= 4?r= 
- j2e4 e --(i)‘{+( 1-~)[Ki~(E/)12+[Kh(ES)1z} * (2.10) 

This equation reduces to the eq. (2.5) for y = 1 and to eq. (2.7) for y > 1, E > 1 and 

should be a good improvement for the intermediate energy region. 

According to eq. (2.3) the differential Coulomb excitation cross section integrated 

over angles is 

da 1 photo 
dE,=g IIEl(+El (2.11) 

(with neglect of multipolarities A > 1 by assuming that the El contribution will be 

dominant). The virtual photon number n El is obtained by an integration of eq. (2.10) 

over all angles corresponding to pure Coulomb trajectories. In terms of the eccen- 

tricity parameter, this integral can be expressed as 

X jrn E d& { $ ( l-~)[K.I(&S)12+[Kh(ES)12} * 
80 

(2.12) 

The minimum value of the eccentricity parameter depends on whether the relative 

motion energy is smaller or greater than the Coulomb barrier energy E,: 

1 1 for E s EB 

“= J1+4(E/ErJ2(1 -EB/E) for E > EB . (2.13) 

We see that when E s= EB = Z,Z,e’/ R, then a0 = 2E/EB = R/a, where R is the sum 

of the two nuclear radii. The integration (2.12) can also be expressed in terms of 

the modified Bessel functions of imaginary or complex indices by means of the 

Lommel integral formulas ‘*). This gives 

n 

(2.14) 

where all K’s are functions of x = ao& In the nonrelativistic limit p = v/c + 0, a0 + 1 

and we obtain 

0 
2 

n - -1 z2& e-d c 
El - f&(5)K&(5). 

?r V 
(2.15) 
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In the relativistic limit /3 + 1, co = R/a + a and 5 = 5/y + 0, SO that 

(2.16) 

where the K’s are functions of x = .e05 = wR/ yv. 

Of course, both expressions (2.15) and (2.16) agree with the known results of 

previous calculations [see e.g. refs. 13*17)]. But, besides reproducing the nonrela- 

tivistic and the relativistic limits, eq. (2.14) might be useful for intermediate energy 

problems. 

3. Application to specific examples and cross section estimates 

We consider two specific reactions 

(i) ‘Be + 208Pb + (Y + 3He + “‘Pb, - 1.58 MeV , 

(ii) 160 + 208Pb + r2C + (Y + 208Pbg - 7.162 MeV , 

in which ‘Be and I60 projectiles, respectively dissociate by the electromagnetic field 

experienced when passing a “‘Pb nucleus with a sufficiently large impact parameter 

b > RPb + R,. After dissociation two fragments are emerging ( a-3He or “C-(Y, respec- 

tively) and are detected (coincidently) in a geometry of small angular spacing so 

that small relative energies of the moving fragments are kinematically allowed. 

The two cases are related to corresponding radiative capture reactions of actual 

astrophysical interest (see sect. 1). It has been found that in the “C(a, y)160 reaction 

the E2 component strongly competes with the isospin-forbidden El transition. 

Nevertheless we study here only the El contribution, which is dominating in the 

3He(a, y)‘Be case, and we leave the extension to other multipolarities and El-E2 

interferences to more detailed studies. In principle, there appears no limitation to 

include higher electromagnetic multipole contributions. 

The dependence of the virtual photon number dn,Jd0 on the excitation energy 

E,, on the impact parameter b and on the incident energy of the projectile (A,, 2,) 

can be expressed by eq. (2.8) as 

dnEl 
x20.165 Wb* (3.1) 

with W denoting the projectile energy per mass in units of MeV/amu and b given 

in units of fm. The explicit dependence on ZT apparently disappears since E = b/a = 

2bA, W/2,&e’). The virtual photon number per unit solid angle obviously increases 

linearly with the specific projectile energy W and quadratically with the value of 

the impact parameter b as long as x = wb/( yv) 4 1 so that 4(x) = 1. Preparing 

optimum conditions for a given energy W, x % 1 has to be ensured by keeping 

b < blim where blim is determined by the adiabatic cut-off of 4(x) (see fig. 2). This 

cut-off determines also the lower limit of W for given values of b and w > mth (a&,, 

the break up threshold). 
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Simultaneously one has to consider the elastic scattering, which may be an origin 
of experimental problems, when studying the break up reactions at very forward 
reaction angles. The elastic scattering cross section 

do Ruth 

-=-=_=;_ 

dR (3.2) 

increases with W2 and with b4. 
Therefore it is obvious that the impact parameter value should be chosen not 

larger than required by the condition of vanishing nuclear field. 
For numerical estimates for the two examples under consideration b = 10 fm is 

adopted, where presumably the influence of the nuclear field is negligible. The 
threshold Et,, = 1.586 MeV for the ‘Be + a + 3He reaction corresponds to Wmin = 3.04, 
the I60 + ‘*C + (Y threshold Eth = 7.162 MeV to Wmin = 62. We see, the larger threshold 
for the 160 dissociation requires considerably higher projectile energies, with 
increased experimental dilKculties as the pure Coulomb dissociation is restricted to 
a rather small angular range in extreme forward direction. 

For the threshold photon energies the virtual photon numbers are explicitly given 

by 

2 (b = 10 fm, E, = 1.586 MeV, W) = 50.5 W4 

for the ‘Be break up and 

2 (b = 10 fm, E, = 7.162 MeV, W) = 66W4 

(3.3) 

(3.4) 

for the 160 break up. 
The W-dependence is plotted in fig. 4 and the virtual photon spectra are shown 

in fig. 5 for different projectile energies for a value of the impact parameter b = 10 fm 
(see also fig. 2). 

In fig. 6 for the 160 dissociation at the threshold the total virtual photon number 
nm, integrated over all scattering angles (impact parameters) is displayed as calcu- 
lated on the basis of the three different expansions representing the nonrelativisti~ 
(eq. (2.15)) and the relativistic (eq. (2.16)) limits and the intermediate energy region 
(eq. (2.14)). Eq. (2.14) includes the necessary modifications when the parameter 
5 = X/E = oa/ v is appreciably larger than zero (see fig. 3) and orbital dispersion 
and retardation effects show up (see sect. 2). The comparison of the different 
expressions shows the over-estimation of nEl by the relativistic limit at lower energies 
and the underestimation by the nonrelativistic limit expression at higher projectile 
energies. 

In fig. 7 the total virtual photon number nai for the 7Be + *“Pb -+ LY i- ‘He -t 208Pb 
dissociation is shown as function of the kinetic center of mass energy E,.aHe in the 
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25 50 75 100 

W(MeV/amu) 

Fig. 4. Virtual photon numbers (El component) for the threshold energies of the two considered cases 
as function of the projectile energy. 

.----_-- 1s0+20ePb 
1011 , 1 I 

0 5 10 15 

Eg(MeV) 

Fig. 5. El virtual photon spectra, seen by the projectiles with b = 10 fm at different projectile energies. 

system of the emerging 3He and a-particles at various laboratory energies of the 

incident 7Be projectiles. 

It indicates the favourable features of lower energy projectiles for dedicated 

studies of the break up with small relative energies in the system of the escaping 

fragments. 

For an estimate of the cross section for the 7Be+ (Y +3He break up we adopt the 

astrophysical S-factor S = 0.5 keV . b [ref. ‘)I, which corresponds to a capture reac- 

tion cross section gGcapt (Ea_3He = 100 keV) = 0.5 nb or a photodisintegration cross 

section (T(7Be+ y+ (Y +3He, E, = 1.658 MeV) = 14 nb [see eq. (1.4)]. The 

‘*C(a, y)160 cross section extrapolated to E,. *zc = 1 MeV [see ref. “)I is of the order 

uccapt L- 10-l nb. The corresponding photodisintegration cross section a( 160 + y + 

‘*C-I- CY, E, = 8.162 MeV) = 3 nb is enhanced by a factor of about 30. Applying eq. 
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Fig. 6. The total virtual photon number (E, = 7.162 MeV) as calculated for I60 break up on the basis 

of the expressions eq. (2.14) (-----I, eq. (2.15) (-* -) and eq. (2.16) (- - -). 

300 3 I I 
\ 
\ 

- \ 7~e+208pb w a+3He +““Pb 
\ 
\ lOMeV/amu 

.-__--- lOOMeV/amu - 
..,.., ..,I... 1GeVJamu 

T-( __-__---- 10GcVf amu 
W 

c 

-----w___ ----*_. 

.r.‘....I___.,._ --__ 
---___ 

0 5 IO 15 

Ea_ 3tIe ( MeV 1 

Fig. 7. Angie-integrated virtual photon spectra plotted for various ‘Be projectile energies as function of 
the kinetic c-m. energy of the emerging ‘He and a-particles after Coulomb dissociation. 
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(2.3) with the results of sect. 2 for virtual photon number d&d0 the values of 

the double-differential cross section for exciting the projectile to an excitation energy 

E, = E,, by the Coulomb field of a Pb nucleus, passed with an impact parameter b 

(= (ZpZTe2/2E,) ctg $0) are estimated (b = 10 fm, E, = 30 MeV/amu) 

d2a 
p= 11 pb . MeV-’ . sr-’ 
dLI dE, 

in the case of ‘Be+ (Y +3He, and 

d2a 
~ = 2 pub * MeV-’ * sr-’ 
da dE, 

in the case of 160 -, r2C + (Y. 

(3Sb) 

4. Conditions of experimental investigations 

The emission of light particles is a quite usual feature in reactions of two complex 

nuclei and is associated with various different reaction mechanisms. The elastic 

projectile break up: a + b + c (leaving the target nucleus in the ground state) com- 

prises only a minor part of the total reaction cross section. Detailed and unique 

information about the process under consideration requires inevitably kinematically 

complete experiments. The fragments resulting from a binary dissociation in flight 

of a nuclear projectile, after being scattered and excited to a particular value of the 

excitation energy E, (in the continuum) have limits imposed on the energies with 

which they appear in the laboratory. Their kinetic energies in their c.m. system sum 

to the relative energy Ebc= E,-Q. The relevant momenta are illustrated in fig. 8. 

Fig. 8. Kinematics of the a+ b+c break up. 
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Here &, and pee stand for the fragments shares of the projectile momentum with 

\PObl =J2(m~/mpmj>Eb"b T (4.la) 

I~ocI=J2(m~lm,,,j)Eb"~ - (4.lb) 

The fragment laboratory momenta are resultants of their shares in the projectile 

and of pbc = (&c/ m&b + (,..&c/ m,)p, , the momentum they pick up from the internal 

energy Ebc of the “projectile” after dissociation. Since l&l =J2ybcEbc is rather 

small in cases of our interest as compared with the momenta associated with the 

projectile motion, both fragments emerge in the laboratory at fairly small angles to 

the direction of the scattered “projectile” (direction of the (b+c) subsystem). 

The laboratory energies and emission angles of the fragments are correlated by 

their dependence on the angle @ at which the particles are emitted in their rest system 
I 

Eb”“=d!!k Eb”b+LbcEbc+2 
mproj J A EtbEb, COS @, 

mb mproj 
(4.2a) 

E’,“b=%Eb”b+CLb’Ebc_2 
mbj J dk EFbEb, COS @ , 

111, mproj 

sindB,=ksin @= 

sin A0 = !&.S! Sin @ = c ,poc, 

(4.2b) 

(4.3a) 

(4.3b) 

The maximum opening angles (with respect to the direction of the scattered “projec- 

tile”) for a given relative energy Ebc are given by 

sin Ae,““” =&‘c/%)EdEbab, (4.4a) 

Sin de:“” = J( ll)+,/ m,)&,,/ Eb”b . (4.4b) 

As an example we consider the dissociation of 7Be + (Y + 3He by Coulomb scattering 

on *“Pb with an incident energy of Elab = 210 MeV (1) = 9.4) at @la,, = 6.4” (corre- 

sponding to b = a ctg fe,.,, = 10 fm) and with the relative energy Ea_sHe = 0.1 MeV 

of the emerging fragments. The laboratory energy of the scattered ‘Be (i.e. of the 

cy-3He center of mass) is Etb = 208.2 MeV and it follows that the break up fragments 

of that particular value of Ea_+e are emitted within Aey = 1.1” and A&,= = 1.5” 

Off the direction Of the &at, = 6.4”. The extreme energies for a definite Ea_3ne occur 

when the break up happens in line with the projectile flight directions, and E’,“b(max) 

occurs together with E!f$ (min) and vice versa. The width of the energy window 

(roughly centered around the “beam velocity” energy) is 

AE =d(pbc/m proj)EyEbc (=28.6 MeV for our case) . (4.5) 

Within this window a particular combination (Etb, EFb) [eqs. (4.2a, b)] with 

corresponding values (& , 6,) [eqs. (4.3a,b)] corresponds to a particular value of @ 
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for a specific value of Ebc. This kinematic feature enables, in principle, the access 

to information on the angular distribution of the dissociation. 

In a typical experimental situation two particle detector telescopes measure* the 

energies Etb and EFb of the particles b and c emitted with fixed laboratory angles 

ob and 8,, say in a “in-plane” geometry, so that the sum of the opening angles 

Al?, + A@, is given. The coincidence events related to elastic break up of the projectile 

follow 19) a well defined curve in the Ebpb, EFb plane. For a heavy target and a light 

projectile the kinematical curve is distorted to nearly a straight line. For the two 

considered cases and for a particular detector set up the kinematical loci (calculated 

on the basis of the relativistic kinematics) are shown in figs. 9 and 10. The allowed 

E kb, Etb combinations map the variation of the relative energy Ebc, which varies 

remarkably slowly with the laboratory energies (see insets).This “magnifying glass” 

effect enables detailed studies of the variation of the cross section with Ebc. However, 

one has to realize that the emission angle CD and the partition (AOb, AtI,) for the 

given (A&,+ A@,) value changes, too. In fact, there are two branches of Ebcr in 

general corresponding to different emission angles @ in the rest system 20) and to 

slightly different directions of the (b+c) c.m. motion for a specific value of Ebc on 

both branches. The minimum of Ebc is determined by the angular spacing of the 

two telescopes. 

*“Pb ( 7Be, a -3Hel *“Pb 

jo 60 60 
Efb [MeVI 

Fig. 9. Kinematical loci of the emerging ‘He and a-particles from a ‘Be dissociation on *“Pb at 

E,,, = 30 MeV/amu. The variation of Ea_)He around the minimum (,$& = 63 keV) is shown in the inset. 

* For sake of simplicity we assume the one detector observes only the particles b, the other only the 

particles c. 
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Fig. 10. Kinematical loci of the emerging a-particles ,and ‘%I from the % dissociation on “‘Pb at 
E,,, = 1000 MeV (E~~I?, = 235 keV). 

The flexibility of the kinematics is an inherent advantage of the approach discussed 
here. 

In order to indicate some implications of the kinematical features concerning the 
required energy and angular resolution of a proper experimental set up, we mention 
that a determination of the astrophysical S-factor of the 3He(4He, y) ‘Be reaction 
with an accuracy of 20% requires an accuracy of the relative energy of ca, 2 keV 
at Eb-_3He= 100 keV. This implies in the laboratory system a necessary energy resol- 
ution of ca. 50 keV and an angular accuracy of better than 5 * 10e2 degrees. This is 
experimentally feasible by special efforts using modern experimental techniques. 
One has also to realize the special advantage that the Coulomb dissociation approach 
principally allows tcz measure the variation of the cross section with E,,, (within the 
kinematic window) in one measurement, thus potentially leading to a good relative 
accuracy. 

For an estimate of the triple differential laboratory cross section d3a/dE, dL$, df2, 
we assume, for sake of simplicity, isotropic emission of the Fragments b and c in 
their rest system. Then 

(4.6) 

where dEbc = dE, and dL2Ta,8et_Cb+cj = dL2 in the expressions of sect. 3. Evaluating 
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the transformation from the relative and c.m. motion of the two fragments to the 
laboratory system [using the expressions of ref. “)I for the “*Pb(‘Be, rW-3He)208Pb, 
example in the situation of fig. 9, we find for Ea_aHe = 0.1 MeV (at Ezb= I I6 MeV 
and E?:e= 92.3 MeV, see fig. 9) 

d3a 

dEm don, d&re 
= 52 kb . MeV-’ sr-* . (4.7) 

This value appears to be measurable by special expe~mental efforts. One of the 
main difficulties arises from the dominant competition of the elastic scattering in 
forward direction with a differential cross section ca. 6 orders of magnitude larger. 
When detecting the break up fragments with magnetic spectrometers, it is possible 
to suppress strongly the elastic scattering by an effective shadowing 22) of the 
corresponding position in the focal plane, thus drastically reducing accidental 
coincidences and admitting larger beam currents. 

Very interesting and improved experimental possibilities would be provided by 
a dedicated set up at a synchrotron-cooler ring [see ref. ““)I with suitable magnetic 
spectrometers (like the proposal of ref. ‘“) ] enabling particle coincidence studies at 
very forward emission directions. The use of a storage ring seems to be indispensable 
when working with radioactive beams like the ‘Be. Even if the acceleration and 
preparation of such a beam would be successful in a conventional approach, the 
contamination problems arising from the accumulation of the radioactivity 
( T1,2(7Be) = 53.3 d) impose serious limits. On the other side, in a storage ring a 
current of 100 mA corresponds to a sufficiently small number of stored radioactive 
particles. A Hg vapour jet target 25) e.g. may serve as reaction target for the Coulomb 
break up measurements. 

5. Conclusions 

The proposed approach for studies of the interaction of nuclear particles at small 
relative energies requires experiments at extreme forward angles, in a region where 
aklastic/aR = 1. The elastic scattering cross section provides, in fact, a calibration of 
the break up cross sections. The values of the estimated coincidence cross sections 
are rather small, but appear to be measurable by present day experimental techniques. 
The kinematic situation with three outgoing particles provides particular advantages 
for studies of the excitation function i.e. the variation with relative energy of the 
emerging fragments, and of the angular distribution in the rest frame of the fragments 
subsystem. Investigation of the latter aspect, however require a quite good angular 
resolution. The cross sections can be interpreted in terms of electromagnetic interac- 
tion matrix elements which just determine the radiative capture cross section. By 
considering particular cases of astrophysical interest we have demonstrated that we 
can extend the information to rather low relative energy presently not accessible 
for direct capture measurements. With the same conclusion, a further example, the 
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Coulomb break up of 6Li at low (a + d) relative energies has been recently 
analysed 26) on the basis of a DWBA approach which includes distortion effects. 

We acknowledge valuable discussions with H.J. Gils, L. Lassen, G. Schatz and 
D.K. Srivastava. 
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