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Abstract: We make an analysis of the influence of the nuclear and of the Coulomb interaction in the 

dissociation of weakly-bound and cluster-like nuclei in coincidence experiments at high-energy 

collisions. We use the theory of diffraction dissociation to account for the nuclear effects and 

compare it to the Coulomb dissociation in the description of the angular distribution of the 

fragments, as well as in the total cross sections. The nuclear and the electromagnetic dissociation 

have very different characteristics and we show how this may help to disentangle their contributions 

in the study of experimental data. 

1. Introduction 

Besides the interest on the scattering process itself, the coincidence experiments 

for break-up of weakly-bound nuclei in high energy collisions can also give precious 

information about the structure of these nuclei and about the related photonuclear 

reactions. For example, a study of nuclear reactions of astrophysical interest like, 

e.g., 3He(4He, y)‘Be has been recently proposed ‘,233), by experimentally measuring 

the electromagnetic transition between a bound state of two nuclear particles and 

continuum states at small relative energies in the collisions of light nuclei with heavy 

ones which provide a strong Coulomb field. The proposal suggests to use the nuclear 

Coulomb field as a source of the photodisintegration processes. By means of the 

detailed balance theorem these processes can be related to radiative capture reactions 

of astrophysical interest “). The experimental investigation of the photodisintegration 

processes in the nuclear Coulomb field have to be separated from the nuclear 

interaction contribution to the projectile fragmentation on hitting the target. There- 

fore, a theoretical analysis of the angular distribution of the fragments arising from 

the break-up of the projectile by the nuclear and by the Coulomb interaction with 

the target is very useful and necessary for the experimental investigations. 

Another interesting possibility is the study of the nuclear matter distribution of 

extremely neutron-rich nuclei, like e.g. “Li. Some high-energy experiments 4,5,h) for 

the break-up of such nuclei are beginning to be available, and seem to be a very 

promising field of study of such nuclei. Nevertheless, such experiments up to now 

have been inclusive ones, i.e., only one fragment is observed. Therefore, a summation 

has to be done over all unobserved channels, leading to a partial loss of information 
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about the process. More useful would be the exclusive experiments where the 

dissociation process of the projectile is separated from the background of other 

reactions by means of the coincidence detection of the two outgoing fragments 

together with a simultaneous measurement of their energies. Although these experi- 

ments are much harder to perform in high-energy collisions, they are realizable and 

there are some experimental proposals in this direction (see e.g. refs. ‘,“)). Even at 

the highest energy of 14 GeV/nucleon such coincidence studies are planned “). 

Perhaps, one could determine the momentum transfer in these reactions by a 

measurement of the recoil energy of the target nucleus. 

Due to the scarcity of experimental information at present it seems not appropriate 

to carry out very detailed calculations of break-up reactions in high-energy collisions. 

We prefer to make a more qualitative study of these coincidence cross sections and 

of the role of the nuclear and of the Coulomb interaction. We use some simple 

assumptions about the structure of the weakly-bound nuclei, disregarding some 

more specific details for sake of simplicity. We use the diffraction dissociation theory 

to account for the nuclear interaction. This theoretical approach has been introduced 

by Akhiezer and Sitenko 9), Glauber lo), and Feinberg I’), to describe the dissociation 

of highly-energetic deuterons. Also important in this context is the so-called stripping 

reactions in which one of the clusters of the projectile suffers a strong inelastic 

collision with the target while the other is diffracted inelastically lo). The cross 

sections for the stripping reactions depend much more on the exact knowledge of 

the nuclear structure and can be only approximately calculated 12,13). 

The decomposition of the contribution of each electromagnetic multipolarity in 

relativistic Coulomb excitation has been recently performed (see e.g. refs. “,‘5)). 

We use those results to infer the relative importance of these multipolarities (mainly 

El and E2) in the dissociation process. An extension to include other multipolarities, 

for instance Ml, can be easily done. We obtain some useful analytical formulas 

and, since we envisage the applications in coincidence experiments, we do not 

consider the case of stripping reactions. Our study is complementary to many 

previous works on the fragmentation of relativistic particles. We refer for example, 

to the works of Hiifner and Nemes 16), Faldt 12), and of Evlanov and Sokolov “). 

In sect. 2 we give the formulas for the amplitudes of Coulomb and of diffraction 

dissociation of loosely-bound nuclei hitting a heavy nuclear target. In sect. 3 we 

make a qualitative study of the angular distribution of the fragments, and in sect. 

4 we study the dependence of the total cross sections for dissociation as a function 

of the projectile energy. Our conclusions are given in sect. 5. 

2. Dissociation of weakly bound nuclei 

The amplitude of the dissociation of the incident projectile on a target nucleus, 

assumed to stay in its ground state, in the eikonal approximation is 

fd( Q, 4) = g 1 d2b eiQbTd(b) , (2.1) 
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where k is the c.m. momentum of the projectile, Q is the momentum change in the 

scattering (Q = 2k sin $0 = k@, where 0 is the scattering angle of the center of mass), 

q is the relative motion momentum of the outgoing fragments, and k, and k2 are 

the momenta of the corresponding clusters with masses m, and m2, respectively. 

In non-relativistic collisions q = (m,k, - m, kJ/( m, + m,), while for high-energy col- 

lisions q can be determined by the invariant mass of the two fragments. I’,(b) is 

the profile function for the dissociation. In the approximations we shall use, it 

contains contributions from diffraction dissociation on the target surface, and from 

Coulomb dissociation for impact parameters b larger than the sum of the nuclear 

interaction radii. Assuming a sharp boundary target, it can be written as T,(b) = 

T,(b) + I’,(b), where T,(b) vanishes for b z R and I’,(b) vanishes for b G R. 

Therefore we obtain 

h(Q,q)=fdQ, q)+.fc(Q, 4). 
The total dissociation cross section is given by 

(2.2) 

(2.3a) 

where 

dL+QdQ (2.3b) 

for high-energy collisions. 

The relative motion of the clusters within the projectile is described by the wave 

function 

(2.4a) 

where n = (2~.5/h’)“’ is determined by the separation energy E of the cluster and 

p is the reduced mass of the system (1+2). The relative motion of the clusters 

released after the disintegration of the projectile is described by the wave function 

q+(r) =ei4”+ 
* e-‘“’ 

-- 
iq-7 r ’ 

(2.4b) 

These wave functions correspond to the assumption of zero-range nuclear forces 

between the clusters in the projectile. They are very useful because most of the 

following calculations can be performed analytically. An extension to the use of 

more realistic wave functions is straightforward. They form a complete set of 

orthonormal functions satisfying the relation 

Vi(r)P*(r’) + & 

I 
drbdYr’) d3q = s(r- r’) . (2.4~) 

The use of such wave functions presupposes a simple model, where no Coulomb 

repulsion between the clusters are taken into account (as would be important in 
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systems like (Y +3He, d+p, . . .). The Coulomb repulsion between the clusters must 

lose its importance for high relative motion after their dissociation. 

By using the energy and momentum conservation laws we can also express (2.3a) 

in terms of coincidence cross sections which are of interest in exclusive experiments. 

One finds 

d3a 
=--- %dQ, d/‘, 

CL 
da, dR,dE, (2rr)3#r2 k 

(2.5) 

where 0, and a2 are the solid angles of emission of the two fragments and E, is 

energy of one of them. But, since the theoretical analysis is more transparent by 

using the variables Q and q, we shall keep them, and use eqs. (2.3) in what follows. 

2.1. AMPLITUDE FOR DIFFRACTION DISSOCIATION 

The amplitudes for diffraction dissociation of deuterons by a “black nucleus” 

were calculated by Akhiezer and Sitenko. The extension to the dissociation of other 

weakly-bound nuclei gives “) 

_MQ, 4) = ikR I ~P+kbQ, 4) + FM, Q, s>l 

ikR* -- 
2rr 

dzQ, J,(Q’R) J,(IQ- Q’(R) 
0’ IQ- Q’t 

FM, Q - Q’, 9) , (2.6) 

where P1=m2/(m,+m,), &=m,/(ml+m2), R=1.2AY3fm is the radius of the 

target nucleus, and 

The first term in eq. (2.6) corresponds to the impulse approximation, i.e., the 

independent scattering of separate clusters by the target. The second term corre- 

sponds to the simultaneous scattering of the clusters, also called by eclipse term. It 

tends to interfere destructively with the first term. 

In describing the differential cross sections we shall keep the impulse approxima- 

tion, which gives reasonable results for small scattering angles. But, in order to 

obtain the total diffraction dissociation cross sections we have to include the second 

term since it decreases more slowly with increasing Q, and becomes the dominant 

contribution to the scattering amplitude (2.6). 
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2.2. AMPLITUDE FOR COULOMB DISSOCIATION 

The amplitude for Coulomb excitation of a high-energetic projectile was calculated 

in refs. r4.r5), f or all multipolarities of the excitation. In ref. 14) a semiclassical 

approach was used, while in ref. r5) the eikonal approximation in first order (which 

is formally equivalent to the first Born approximation) was used. We use the results 

of ref. 15) for the Coulomb excitation amplitude, multiplied by some normalization 

factors in order to have the same notation for fc and fN. We shall restrict ourselves 

to the electric dipole and to the electric quadrupole dissociation modes, which are 

the most important ones. We obtain 15) 

fc(Q, q)= iy ; kR2 C imd’+$G,,,jd)@m(Q)4(Elm), 0 (2.8) 
Im 

where the sum runs over I= I,2 and from m = -1 to m = 1. In this expression 2, is 

the nuclear charge of the target, u is the velocity of the projectile, y = (1 - u’/c~)-“~ 

is the relativistic Lorentz factor, cr is the fine-structure constant, and 

(2.9) 

is the sum of the absolute value of the binding energy and the kinetic energy of 

relative motion of the separated clusters. 

The adimensional function @, is given by 

J 
cc 

@m(Q) = 
I 

1 

=(Q2+~2/Y2v2)R 
-QJm+,~QR~K,t 

(2.10) 

The relativistic Winther-Alder functions Gs,,,,, are tabulated in the appendix B of 

ref. 14), and for the El and E2 multipolarities are 

G , G,,,,=-i$fi$, 

G 
2 %-cc2 

E22 = -- 
J 

-- 

5 6 yv”’ 

G E2O = $4 $ . (2.11) 

For m <O one can use GE,_, = (-l)“‘GElm. 

The function A(Elm) is the matrix element for electromagnetic transitions, and 

for the dissociation of the cluster (1 + 2) it is given by 

&(Elm)= c Z,e cpT(r)r: K,(&)cp,(r) d3r, 
k=1.2 

(2.12) 
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where r, = /3, r, r2 = -&r and C, = -6, are the position and direction of orientation 

of the clusters 1 and 2 in the center of mass system of the projectile, and Z, are 

their respective charges. Inserting the wave functions (2.4) in (2.12), expanding it 

in multipoles, and using the integral 

J 
m 

e -Tjr ‘I+lj,(qr) dr = I! (W’ 
0 ($+ q*)‘+’ ’ 

(2.13) 

we obtain 

I 

JU(Elm) = efi(-i)‘I!2’+‘[Z,P:+(-l)‘Z,P:] 
(,1*+qq2)‘-’ 

y,,(i) . (2.14) 

The Coulomb dissociation amplitude is obtained by inserting eqs. (2.9)-(2.11) 

and (2.14) on (2.8). We observe that for p,Z, = p2Z2 there will be no electric dipole 

contribution to the Coulomb dissociation. This is a well-known result and can be 

readily understood: in this case the electric dipole field pushes the two clusters with 

the same acceleration in the same direction and does not lead to their separation. 

In such situations the E2 multipolarity will be the most effective one for dissociating 

the projectile. This result is a direct consequence of the assumption of a cluster-like 

structure for the nuclei. For more complicated nuclear wave functions a deviation 

from this result is to be expected. For example, in the reaction y+ “0 + (Y + ‘*C 

one indeed finds experimentally an appreciable suppression of the El multipolarity, 

but not completely. In fact it is found that both multipolarities play important roles 

in such reactions (see, e.g., ref. I)). 

3. Differential cross sections 

As an application of the formulas developed in the last section we show in fig. 

1 the differential cross section d4a/d3q dQ for the dissociation of the simplest 

cluster-like nucleus, i.e. the deuteron, incident on *“Pb with energy Ed = 200 MeV. 

We take q = 7, Q = l/R and 8, = 90”, corresponding to the emission of the fragments 

perpendicular to the beam. +4 is the angle between Q and the component of q 

perpendicular to the incident beam. We observe that the Coulomb contribution C, 

as calculated from eqs. (2.3), (2X)-(2.11), and (2.14), is approximately proportional 

to cos* 44. The nuclear contribution N, as calculated from eqs. (2.3), (2.6) and (2.7), 

and the interference CN between them, are also shown. The interference tends to 

be destructive, oscillating around zero with approximately the same amplitude. This 

is a common trend, valid for all values of q and Q, as can be easily checked. 

Next we integrate (2.3) over the angular distribution nny of the relative motion 

between the fragments. We obtain the differential cross section d’a/dq dQ which 

can be related to d’a/dE, da, where E, is the energy of relative motion of the final 
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Fig. 1. The differential cross section d”v/d”q dQ for the dissociation reaction d+“*Pb-, n+ p+“‘Pb 

for deuteron energies of Ed = 200 MeV. We used q = 9, Q = l/R and @, = 90”. 4’, is the angle between 

Q and the component of q perpendicular to the beam. 

fragments and Jz is the solid angle of scattering of their center-of-mass. By using 
the impulse approximation, and eq. (2.7), we find for the nuclear contribution, after 
performing some tedious, but simple integrals, 

d2a, 
- = 4y?$Jj( QR) 
dq dQ 

2 2 

~3L+~q+~,~~2l~112+~~-P,V~2l+r772+~9+~2Q~2IC?72+~~-P2Q~2l 

(3.la) 

where 

M=$ln 
1 

(3.lb) 

N=$arctan 2#3,rlQ 
1 /3fQ++r12 +pzarctan p;Q24+ > 

1 
( 

W27lQ 
> * 

(3.lc) 

The Coulomb contribution is easily obtained from the o~honormaIity of the 
spherical harmonics and one finds, after inserting (2.X)-(2.11), and (2.14) in (2.3), 
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and summing over m, 

d2w, d’u,, d2a,, 

d4dQ=dqdQ+dqdQ’ 
(3.2a) 

where 

d2a 
El= 128 

z&N2 c 2 
- _ 

dq dQ 0 Y2 v 
(PiZ, -p Z )2,,QR4 

2 2 (3.2b) 

d2a,, 512 Z+a2 c 6 
=- 

dq dQ 
- - (P:Zz+ P:Zd2rlQR4 

0 15 y2 v 

(3.2~) 

The El-E2 interference is lost after the integration over +4. However, in coincidence 

experiments where d4a/d3q dQ is measured, the El-E2 interference is important. 

Finally, the interference term between Coulomb and nuclear amplitudes can be 

found by computing numerically the angular integral in the expression 

-=424 d’aciv 
dq dQ (2,ir)‘k2 

(f:_f~ +fiVc) da,. (3.3) 

In fig. 2 we plot d2u/dq dQ for the reaction d+208Pb+ n+ p+“‘Pb, at deuteron 

energy Ed = 200 MeV, for q = r), and as a function of QR. The Coulomb, C, the 
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Fig. 2. The double differential cross section d*u/dq dQ for the dissociation reaction d+2”8Pb+ 

n+p+ “‘Pb, at deuteron energies E, = 200 MeV, for 9 = 17, and as a function of QR. The curves labelled 

by C, N and CN correspond to the Coulomb, nuclear and Coulomb-nuclear interference contributions, 
respectively. 
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nuclear N, and the interference, CN, contributions are shown separately. One 

observes that the Coulomb contribution is peaked for low values of Q. Actually, it 

peaks around Q;-‘“” = w/ yu, so that for increasing beam energies the peak moves to 

lower values of Q, i.e. to more forward angles, and will also increase in height. This 

is in contrast with the nuclear contribution which, within our approach will always 

extend to large values of Q, being peaked around 0:“” = l/R. This behaviour may 

help to separate the nuclear and Coulomb dissociation from the measurement of 

scattering angle of the center-of-mass of the two-cluster system in intermediate 

energy collisions. Unfortunately, with increasing energy both nuclear and Coulomb 

dissociation will lead to very forward angular distributions, with emax = l/kR Q 1, 

which makes the experimental measurements very difficult to proceed. For ZPZ+ 3 

1, the effects of Coulomb repulsion between the projectile and target will consider- 

ably change the Q-dependence of the Coulomb dissociation amplitude. A study of 

these effects based on semiclassical calculations has been performed in ref. ‘). In 

the present context it implies in the use of Coulomb distorted waves, instead of 

plane waves, in the calculation leading to the amplitude (2.8). Nevertheless, the 

relative behaviour between the Coulomb and nuclear angular distribution remains 

qualitatively the same. 

In fig. 3 we plot d*g/dq dQ for the same reaction, as a function of q/T, and for 

Q = l/R. As a general trend, for fixed Q the Coulomb dissociation is more pro- 

nounced for q = 7, decreasing very fast for large values of q, while the nuclear 

dissociation peaks for q = Q and decreases slowly with increasing values of q. In 

both figs. 2 and 3 we see that the Coulomb + nuclear interference is very small, being 

some orders of magnitude smaller than the nuclear or the Coulomb contribution. 

d+ 208Pb -+n+p+ 208Pb 
-1 

Ed=200 MeV, Q=l/R - 

Fig. 3. The double differential cross section d’u/dq dQ for the dissociation reaction d+‘“‘Pb+ 

n+p+ “‘Pb at deuteron energies E,, = 200 MeV, for Q = l/R and as a function of q/v. The curves 
labelled by C, N and CN correspond to Coulomb, nuclear and Coulomb-nuclear interference, 

respectively. 
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4. Total cross sections 

Inserting (2.6) in (2.3a) and using the orthonormality condition (2.4~) the integra- 

tion over q can be easily performed in the impulse approximation. One gets 

- IJ d3~/~i(~))2(ei~~~t+e-~~~ 

-p[iarctan (y) +iarctan (?)I}. (4.1) 

Using (4.1) we find that for q + CO, corresponding to infinite binding energy of 

the clusters, da,/dQ + 0. For n -+ 0, corresponding to very loosely bound nuclei, 

du, h-R2 
-J:(QR) , dV+ Q 

which means that in this case the total nuclear dissociation cross section will be 

just the sum of the elastic diffraction cross section for each cluster separately. Both 

limits is what one expects from the simple arguments of the diffraction dissociation 

theory. 

But for larger values of Q the impulse approximation is not more reasonable; 

the second term of eq. (2.6) will increase in importance for Q P 7. Therefore, to 

obtain the contribution of diffraction dissociation to the total dissociation cross 

section, one has to integrate (2.3) numerically by using (2.6) and (2.7). 

By using the integral 

where 5 = wR/ yv, we find for the Coulomb dissociation 

doe do,, + doEz -=- - 
dq dq dq 

with 

da,, -= 
dq 

(4.2) 

(4.3a) 

(4.3b) 
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de2 512 2 4 
c--Z 

2 c 

dq 15 + 0 
; (P:Z, + izZ*,’ 

The total Coulomb dissociation cross section oi_ = gr, + gE2 can be obtained by a 

numerical integration of eq. (4.3). 

In fig. 4 we show the Coulomb and nuclear dissociation cross sections for the 

reaction ‘Be+ ‘08Pb+ LY + ‘He+ “‘Pb as a function of the laboratory energy per 

nucleon of the ‘Be projectile. In the caIcuIation of the Coulomb dissociation cross 

sections we use R +f?rZ,Zze”/meev2y, instead of R, as the minimum impact para- 

meter (see ref. I”)). This is a correction due to the Rutherford bending of the projectile 

trajectory, which is important for E,,,/nucleonS 100 MeV. A more detailed dis- 

cussion of the effects of the Rutherford bending of the trajectories on the excitation 

process has been given in ref. “). We observe that the El contribution is by far larger 

than the E2, and also than the nuclear dissociation. In such a case the study of the 

experimental data is very simpiified, since one can disregard the nuclear dissociation 

and assume all being due to the Coulomb dissociation, which is more accurately 

described. 

In fig. 5 we plot the values for the dissociation cross section in the reaction 

“Li + 20SPb + a + d+ “‘Pb. In this case, and within the simple cluster model, the El 

component of Coulomb dissociation vanishes and only the next component, E2, 

will be effective in order to dissociate the nucleus. This makes the Coulomb cross 

section smaller than the nuclear one and the separation between these two contribu- 

tions have to be measured on the basis of the angular distributions, as discussed in 

the last sections. 

E 
1 ab 

/nut I eon EMeVl 

Fig. 4. Dissociation cross sections for the reaction 7Be+z”aPb+ LY +‘He+““Pb as a function of the 

laboratory energy per nucleon of the ‘Be projectile. vN represents the nuclear diffraction dissociation, 

a,(El) the contribution ofthe electric dipole multipolarity to the Coulomb dissociation, and r<.(El+ E?) 

is the sum of the contributions of the electric and quadrupole multipolarities. 
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E 
I ab 

/nut I eon CMeVl 

Fig. 5. Same as fig. 4, but for the dissociation reaction ‘Li + *“Pb + 01+ d+ ‘“‘Pb. 

One observes in figs. 4 and 5 that the Coulomb cross sections increase with energy 

up to a maximum around approximately 100 MeV per nucleon, afterwards it 

decreases a little and then begins to increase with energy again, approximately 

proportional to In (l&/A), for very high energies. This behaviour is also found in 

the Coulomb cross sections for excitation of giant resonances in relativistic heavy 

ion collisions I’). It is basically of the same origin. Corrections due to the Rutherford 

bending of the trajectory, or equivalently the Coulomb distortions on the scattered 

wave functions, and corrections due to Lorentz contraction, compete in the region 

of some hundreds of MeV per nucleon. This can, indeed, be easily understood. 

With increasing energy, the nuclei come closer to each other where the fields are 

stronger, which increases the probability that they will get Coulomb excited. That 

is the reason why the cross sections increase with energy for E,,,s 100 MeV per 

nucleon. Above these energies the trajectories are approximately straight lines, and 

since the collision time decreases with energy the momentum transferred from the 

electromagnetic field to internal degrees of the nuclei also diminishes. That is the 

reason for the decreasing of the cross sections for &,,,a 100 MeV per nucleon. But 

this effect will not continue for too high energies because the electromagnetic field 

becomes contracted and stronger by a factor equal to the Lorentz parameter y: E = 

yZe’/ b. Since the momentum transfer is proportional to the product of the strength 

of the electromagnetic field and the collision time, which is approximately At = b/ yc, 

it will be constant, independent of the beam energy. This simple argument works 

for impact parameters up to a maximum value given by the adiabatic cutoff b = yc/ w, 

where hw is the excitation energy. That is the reason for the increasing of the cross 

sections for relativistic energies. A precise analysis (see ref. 18) shows that a,~ln y 

for y&l. 

One interesting application of the fragmentation of cluster-like nuclei is the 

possibility of deducing information on the neutron skin of neutron-rich nuclei. For 

example, the reaction “Li + x + ‘Li could give information about the possible stabil- 
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ity of the di-neutron system in the presence of a nuclear core I’). It has been suggested 

(see also ref. ‘“)) that the force between two neutrons, itself too weak to form a 

bound system, under the influence of another nucleus, can lead to a bound state of 

two particles: a di-neutron system and a nuclear core. The binding energy of the 

two neutrons in ‘Li is about 190* 110 keV. Assuming for “Li the above mentioned 

cluster-like structure, we find the value (T = 2.4 and 12 b for the Coulomb dissociation 

cross section for E4 = 80 or 300 keV, respectively, in the reaction “Li + *“Pb + 2n+ 

“Li + 2”xPb at “Li energies of 0.8 GeV/nucleon. For the diffraction dissociation one 

finds (TV = 210-662 mb. Recently, the inclusive reaction “Li+ Pb + 9Li at this energy 

has been performed at the LBL Bevalac by Tanihata et al. 4m6). They found the total 

cross section of about 9.5 b. One important contribution to this cross section is the 

stripping of the neutrons from the “Li nucleus. It is about the same order of 

magnitude as the Coulomb dissociation and depends much more on the assumptions 

about the neutron excess on the surface of that nucleus. Therefore, the knowledge 

of the Coulomb dissociation cross section and of the experimental values for inclusive 

reactions are of great importance for the study of the tail in the nuclear matter 

distribution. By using several targets and beam energies, one can separate the 

Coulomb and stripping contributions (diffraction dissociation is of little importance 

in this case) in these reactions due to their different dependence on the nuclear 

parameters. 

5. Conclusions 

Precise coincidence experiments for the dissociation reaction of weakly-bound 

nuclei at high bombarding energies are only at a beginning. As we discussed above, 

such exclusive experiments would give valuable information on photodisintegration 

reactions or, indirectly, of radiative capture reactions of astrophysical interest (see 

also refs. lm3)), d 1 an a so about the distribution of the nuclear density in the nuclear 

surface. 

At high energies both the electromagnetic and the nuclear interaction between 

projectile and target will be important. Far from being a drawback, this can be of 

utility to extract complementary information about these different reaction mechan- 

isms in the peripheral collisions. A decomposition of these mechanisms from the 

analysis of angular distribution of the fragments or from the dependence of the 

cross sections on the energy, charge and mass parameters, is possible in accurate 

measurements. In the case of electromagnetic dissociation this decomposition can 

tell us about the relevance of each multipolarity in the dissociation reaction. 

We have made very simple assumptions regarding the structure of the nuclei and 

pointed out the main theoretical considerations for more detailed calculations. Our 

results should give a characteristic behavior of the reaction cross sections for 

loosely-bound nuclei. More specific structure effects, such as e.g. resonances, are 

expected to appear on a background parameterized by the above equations. The 
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availability of experimental data in the near future will certainly arouse interest on 

the detailed investigation of such effect. 
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