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Abstract: We study the interplay between retardation and Coulomb recoil in the theory of Coulomb 

excitation of heavy ions at bombarding energies around 100 MeV/nucleon. A semiclassical calcula- 

tion with relativistically corrected trajectories and a full expansion of the electromagnetic propagator 

is performed. At these energies Coulomb excitation of giant resonances become dominant and the 

cross sections for it are very large, especially at grazing collisions. A comparison with the non- 

relativistic and with the relativistic calculations is made, showing that in intermediate-energy 

collisions neither of those reproduce the correct values of the cross sections. 

1. Introduction 

The excitation of a nucleus by means of the electromagnetic interaction with 

another nucleus is known as Coulomb excitation. Since the interaction strength is 

proportional to the charge 2 of the projectile nucleus, Coulomb excitation is 

especially useful in the collision of heavy ions, with cross sections proportional to 

2*. One can make sure that one has pure Coulomb excitation by keeping the 

bombarding energy below the Coulomb barrier. Indeed, this has been used for many 

years for the study of electromagnetic properties of low-lying nuclear states ‘). 

The probability for Coulomb exciting a nuclear state If) from an initial state (i) 

becomes larger the longer the transition time tfi = h/(./Z,- Ei) = l/o, is comparable 

with the interaction time t,,,, = a/v, in a heavy-ion collision with half-distance of 

closest approach a and projectile velocity ZI. Otherwise, the nucleus responds 

adiabatically to the interaction. That is, the cross section for Coulomb excitation is 

large if the adiabaticity parameter satisfies the condition 

t toll a 
5=-= W”u< 1. 

6-i 

This adiabatic condition limits the possible excitation 

in sub-barrier collisions. 

(1.1) 

energies to be below l-2 MeV 

A possible way to overcome this limitation, and to excite higher-lying states, is 

to increase the projectile energy. In this case, the shortest distance at which the 

nuclei still interact only electromagnetically is of the order of the sum of the nuclear 
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radii, R = Rp+RT_ At very high energies one has also to take into account the 
relativistic contraction by means of the Lorentz factor 

rz(l-n’/C*)-“*, (1.2) 

with c being the velocity of light. That is, in a collision with impact parameter R, 
the interaction time is of the order of RJ yv. For such a collision the adiabaticity 
condition (1.1) becomes 

From this relation one obtains that, for heavy-ion collisions at bombarding energies 
above 100 MeV/nucleon, states with energy up to lo-20 MeV can be readily excited. 

The theory of low-energy Coulomb excitation is very well settled ‘) and has been 
used for several decades to infer many properties of nuclear structure. The standard 
semiclassical theory of Coulomb excitation at low energies ‘) assumes that the 
relative motion takes place on a classical Rutherford trajectory, and the cross section 
for exciting a definite state if> from the state Ii> is then given by 

where P;_,r is the probability of exciting the target by means of the time-dependent 
electromagnetic field of the projectile. 

In the case of relativistic heavy-ion collisions pure Coulomb excitation may be 
distinguished from other processes, by demanding extreme forward scattering and 
avaiding collisions in which violent reactions take place 2). The Coulomb excitation 
of relativistic heavy ions is thus characterized by straight-line trajectories with impact 
parameter b larger than the sum of the radii of the two colliding ions. A detailed 
calculation of relativistic electromagnetic excitation along this basis was performed 
by Winther and Alder ‘>. As in the non-relativistic case, they showed how one can 
separate the contributions of the several electric (Eh) and magnetic (MA) multi- 
polarities to the excitation. 

Recently, a new interest both in the experiment and in the theory of relativistic 
Coufomb excitation appeared [see ref. ‘) and references therein]. Experimentally, 
with the high-energy machines operating in CERN and in Brookhaven, one studies 
several processes in which Caulomb excitation plays a much more important role 
than the contribution from strong interactions. These processes are mainly the 
excitation of giant resonances in the colliding nuclei, which normally leads to fission, 
or to particle emission. 

In the intermediate-energy regime, around 100 MeV per nucleon, Coulomb excita- 
tion of giant resonances is also a subject of increasing interest. Bertrand and 
collaborators ‘) have measured the inelastic scattering of ‘?O on ‘*‘Pb at a bombard- 
ing energy of 84 ~ev~nucleo~ with the GANIL Accelerator. They found that the 
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cross sections for the excitation of giant resonant structures are very large (2 b/sr), 

and that the spectra are dominated by Coulomb excitation of the isovector giant 

dipole resonance (IVGDR) and the isoscaiar giant quadrupole resonance (ISGQR). 

Their results demonstrate that inelastic scattering at medium energies 

(-100 MeV/nucleon) can be an important tool in the study of both isovector and 

isoscalar giant resonances. 

The semiclassical theory of Coulomb excitation in low-energy collisions accounts 

for the Rutherford bending of the trajectory, but relativistic retardation effects are 

neglected ‘). On the other hand, in the theory of relativistic Coulomb excitation 

recoil effects on the trajectory are neglected (one assumes straight-line motion) but 

retardation is handled correctly. In fact, the onset of retardation brings new important 

effects, such as the steady increase of the excitation cross sections with bombarding 

energy. In a heavy-ion collision around 100 MeV/nucleon the Lorentz factor y is 

about 1.1. Since this factor enters the excitation cross sections in many ways, like 

in the adiabaticity parameter (1.3), one expects that some sizeable modifi~tions in 

the theory of relativistic Coulomb excitation should occur. Recoil corrections are 

not negligible either, and the relativistic calculations based on the straight-line 

parametrization should not be completely appropriate to describe the excitation 

probabilities and cross sections. The Coulomb recoil in a single collision is of the 

order of 

Z,Z,e’ 
t-l*=- 

mOv2 ’ 
(I.51 

which is the well-known half-distance of closest approach in a head-on collision, 

with m, equal to the reduced mass of the colliding nuclei. Although this recoil is 

small for inte~ediate-energy collisions, the excitation probabilities are quite sensi- 

tive to it. This is important for example in the excitation of giant resonances, because 

the adiabaticity parameter is of the order of one (see eq. 1.3). When t(b) -=z 1, the 

excitation probabilities depends on b approximately like l/b’, while when t(b) 

becomes greater than one it has a e -2nS’b)/b2 behaviour. Therefore, when t== 1 a 

slight change of b may vary the excitation probabilities appreciably. 

It was suggested in ref. 6, that an interpolation between the non-relativistic and 

the relativistic Coulomb excitation theory would be reasonable to describe Coulomb 

excitation in intermediate-energy collisions, where both recoil and retardation effects 

are present. Nonetheless, the actual calculation leading to such interpolated values 

was not performed. A salient feature of their results is that if one uses the relativistic 

Coulomb excitation theory for all bombarding energies, the calculated excitation 

cross sections are much larger than the expected correct values for projectile energies 

below -200 MeV/nucleon. This can be readily understood, since the relativistic 

calculation neglects recoil and, their extrapolation to low-energy collisions, considers 

that the ions stay close much longer than they actually do. As a consequence, this 

increases the excitation probability. On the other hand, if one uses the low-energy 
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Coulomb excitation theory for all bombarding energies one finds that the excitation 

cross sections are much smaller than what they should be for energies greater than 

-50 MeV/nucleon [ref. “)I. This arises because retardation, which is not included 

in the non-relativistic calculations, increases the strength of the Coulomb interaction 

and consequently the excitation probabilities. 

In fact, as we shall show in the next sections, in the bombarding energy range 

50-200 MeV one must include both retardation and recoil effects. This can be 

accomplished in a straightforward way in the semiclassical approach with a sim- 

plified relativistic trajectory, appropriate for heavy-ion collisions, and the full 

expansion of the electromagnetic propagator. 

This paper is organized as follows. In sect. 2 we describe the classical trajectory 

appropriate for intermediate-energy heavy-ion collisions, to be used in the calcula- 

tion of the excitation amplitudes. Sect. 3 deals with the multipole expansion of the 

excitation amplitudes accounting for retardation effects. The calculation follows the 

same approach as the one followed in the non-relativistic case. Inclusion of retarda- 

tion leads to the appearance of extra terms and functions in the orbital integrals. 

In sect. 4 the cross sections are calculated and written as a product of a kinematical 

factor (the equivalent photon numbers) and a dynamical one, involving the matrix 

elements for electromagnetic transition in a nucleus. A comparison among the low- 

and the high-energy limits of the calculation is done in sect. 5, together with 

applications to some reactions. Our conclusions and summary are presented in 

sect. 6. 

2. The classical trajectory 

In the semiclassical theory of Coulomb excitation the nuclei are assumed to follow 

classical trajectories and the excitation probabilities are calculated in time-dependent 

perturbation theory. At low energies one assumes Rutherford trajectories for the 

relative motion, while at relativistic energies one assumes straight-line motion. In 

intermediate-energy collisions, where one wants to account for recoil and retardation 

simultaneously, one should solve the general classical problem of the motion of 

two relativistic charged particles. But, even if radiation is neglected, this problem 

can only be solved if one particle has infinite mass ‘). This approximation should 

be sufficient if we take, e.g. the collision 160+ 208Pb as our system. An improved 

solution may be obtained by use of the reduced mass, as we indicate below. 

In the classical one-body problem, one starts with the relativistic lagrangian 

Lf= -moc2 l-3 (p+ &$2) 
{ 1 “’ ZpZTe2 _~ 

r ’ 
(2.1) 

where I: and 4 are the radial and the angular velocity of the particle, respectively 

(see fig. 1). Using the Euler-Lagrange equations one finds three kinds of solutions, 

depending on the sign of the charges and the angular momentum in the collision. 
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Fig. 1, Classicat Coulomb scattering of a charged particle by another, infinitety-heavy one. The system 
of axes used in text is shown. The deflection angle is denoted by 8. 

In the case of our interest, the appropriate sotution relating the coItisionaI angle # 
and the distance r between the nuclei is ‘) 

;= A[E GOS w#--l-j, (2.2) 

where 

(2.3a) 

(2.3b) 

(2.3c) 

E is the total bombarding energy in MeV, m, is the mass of the particle and Ii, its 
angular momentum. In terms of the Lorentz factor y and of the impact parameter 
b, E = ymoc2 and L o = ym,ub. The above solution is valid if Lo> Zpi?Te”/c. In 
heavy-ion collisions at intermediate energies one has Los Z&e”/c for impact 
parameters that do not lead to strong interactions. It is also easy to show that, from 
the magnitudes of the parameters involved in heavy-ion coIIisions at intermediate 
energies, the trajectory (2.2) can be very well described by approximating 

W=l, A=% 
yb2’ 

E=: 1 (2.4) 

where a0 is half the distance of closest approach in a head-on collision (ifthe nuclei 
were pointlike and if non-relativistic kinematics were used), and E is the exceatricity 
parameter. In the approximation (2.4) b is related to the deflection angle i) by 
b = (ao/ y) cot $8. In the case of heavy-ion collisions at intermediate energies, the 
error in the deflection angle that one finds by using these approximations is less 
than 5.1%. 
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The time dependence for a particle moving along the trajectory 

directly obtained by solving the equation of angular momentum 

Introducing the parametrization 

we find 

I=-$[X+esinhX]. 

453 

(2.2) may be 

conservation. 

(2.5) 

(2.6) 

Using the scattering plane perpendicular to the z-axis, one finds that the correspond- 

ing components of r may be written as 

x=a[coshX+E], (2.7a) 

y=afisinhX, (2.7b) 

z=o, (2.7~) 

where a = a,/~. This parametrization is of the same form as commonly used in the 

non-relativistic case ‘), except that a, is substituted by a,/ y 5 a. Since in general 

a < b, one might assume that a good approximation to describe Coulomb excitation 

at intermediate energies would be a resealing of the impact parameter b which 

appears in the analytical expressions of the theory of relativistic Coulomb excitation. 

The reason is that the excitation occurs most probably when the nuclei are closer 

along the trajectory. But then they are displaced by an extra distance of order of 

a,,/ y due to Coulomb repulsion. Nonetheless, this recoil correction enters the orbital 

integrals for Coulomb excitation in a delicate way. Winther and Alder “) have shown, 

by means of an analysis of the orbital integrals in the non-relativistic case for large 

angular momenta (large impact parameter), that a reasonable approximation is a 

resealing the form 

in the analytical expressions for relativistic Coulomb excitation. This resealing 

averages the contributions of all impact parameters around the straight-line value 

b. In section 5 we shall make a comparison of the relativistic expressions, improved 

by this correction, with the semiclassical calculation based on the trajectories 

parametrized by eq. (2.7). 

As we quoted before, the classical solution for the relative motion of two relativistic 

charges interacting electromagnetically can only be solved analytically if radiation 

is neglected, and if one of the particles has infinite mass. Non-relativistically this 

problem is solvable by the introduction of centre-of-mass and relative-motion 

coordinates. Then, the result is equivalent to that of a particle with reduced mass 
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m, = mpmT/(mp+ mT) under the action of the same potential. The particle with 

reduced mass m, is lighter than those with mass mp and MT, and this accounts for 

the simultaneous recoil of them. An exact relativistic solution should reproduce this 

behaviour as the relative-motion energy is lowered. We shall use the reduced mass 

definition of m, as usual in the parametrization of the classical trajectory of Coulomb 

excitation in intermediate-energy collisions, as outlined above. In a 160+208Pb 

collision this is not a too serious approximation. For heavier systems like U + U it 

would be the simplest way to overcome this difficulty. But, as energy increases, this 

approximation is again unimportant since the trajectories will be straight lines, 

parametrized by an impact parameter b. Therefore, the parametrization of the 

classical trajectory as given by eq. (2.7) with a reduced-mass particle, besides 

reproducing both the non-relativistic and the relativistic energies, must give a 

resonable solution to the kind of collisions we want to study. 

In the next section we shall formulate the theory of Coulomb excitation for 

intermediate-energy collisions, where such questions are relevant, using the 

parametrization of the trajectory as given by eq. (2.7). Then, we make a comparison 

with what one expects from the non-relativistic and relativistic Coulomb excitation 

formulas ‘X3,4). 

3. Excitation amplitudes 

The amplitude for Coulomb excitation of a target from the initial state (i) to the 

final state If) is given in first-order time-dependent perturbation theory by 

1 
a,=_ 

rh J{ ,dr)4(w, r) +‘h(r) * A(@, r) d3r 
c > 

(3.1) 

where pa(&) is the nuclear transition density (current) and 

J m iKlr-r’(r)l 

qb(w, r)=&e jw’ e -me jr-r'(t)ldf7 
(3.2a) 

Zpe m 
A(w, r) =- J 

eirclr-r'(r)i 

c -cc 
u’(t) e’w’,r_r,(t), dt, (3.2b) 

are the retarded potentials generated by a projectile with charge Zp following a 

Coulomb trajectory. The frequency w is given in terms of the initial, Ei, and final, 

Ef, energies of the excited nucleus as 

Aw = Ef- Ei (3.3) 

and K = w/c. The magnitude of the amplitudes (3.1) will be small compared to unity 

for the situations we shall study. Therefore, use of first-order perturbation theory 

is justified. 
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Using the continuity equation for the nuclear transition current, expanding 4(w, r) 
and A(@, r) into multipoles and assuming that the nuclei do not interpenetrate, one 
obtains 

Zpe 4x 
%=-T-C- l* hi 2A + 1 (-l)*{S(EA, ILL)WEA, -ru)+S(MA, P)J@(MA, -P)) (3.4) 

where J% (rrh, EL) are the matrix elements for electromagnetic transitions, defined as 

J@@& PFL) = 
(2A+l)!! 

h+rC( A + 1) J h(r) . vxWA(~r)Yhp(@, 4)) d3r, (3Sa) 
K 

&(Mh, /.L) = - 
i(2A + l)!! 

~‘C(h+l) J hi(r) . t{_L(~r) Yhp(@ 4)) d3r (3Sb) 

with L= -irxV. 
The orbital integrals S( WA, CL) are given by 

S( EA, /.L) = - ,(i;“i),, J y . . cc ~,{r’(t)h:“[~~‘(t)l}Y*r[e~(~), 4'(t)] do' dt 

(3.6a) 

S(MA,P)=-~ K 
A+1 

ymoc A(2A -l)!! 

J 
a? 

x L* * v’{~~‘[Kr’(f)]Y~~[e’(f), 4’(f)]} eio’ dt (3&b) 
-CO 

where Lo is the angular momentum of relative motion, which is constant: 

Lo = yarn,,, cot@, (3.7) 

with 9- equal to the (centre-of-mass) scattering angle. The by’(x) are first-order 
spherical Hankel functions “). In non-relativistic collisions 

I I 

KrI=WIE2) 41r_<“< 1 

C cv c 

because when the relative distance r’ obeys the relations wr’/ v 2 1 the interaction 
becomes adiabatic. Then one uses the limiting form of hi’) for small values of its 
argument *) to show that 02 SNR( EA, /.L) = J r’-*-‘(f)Yh~{i3’(f),(b’(f)}eiw’df, (3.9a) 

-m 

SNR(Mh, /.L> = -&I/,, . J 
co 

V’{p’-“-‘(f>Yhl*[9’(f), c;b’(t)]}e’“‘df, (3.9b) 
0 --oc 
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which are the usual orbital integrals in the non-relativistic Coulomb excitation theory 

with hyperbolic trajectories (see eqs. II.A.43 of ref. I)). 

In the intermediate-energy case the relation (3.8) is partially relaxed (of course, 

for relativistic energies, z, - c, it is not valid) and one has to keep the more complex 

form (3.6) for the orbital integrals. 

Using the z-axis perpendicular to the trajectory plane, the recursion relations for 

the spherical Hankel functions*, and the identity 

dx dr 
v.r=--@---~=aaevsinhx, 

dt dx 
(3.10) 

we can rewrite the orbital integrals, in terms of the parametrization (2.6) and (2.7), 

as 

S(Eh, /L) = - 
iKh7j 

cc 

cX(2h -l)!! 
% 

s 
dx e 

ir)(csinh~+~) 

A&l -_m 

X 
(e+cosh~+iJe~-1 sinhx)” 

(E cash x’ l)&-’ 

x (h+l)h,-~(Ecoshx+l)h,+l+i z *TE/I, sinhx 
0 1 

where 

10, forh+p=odd, 

+$?, 
V 

and with all h,‘s as functions of (v/ c)n (E cash x + 1). 

For convenience, we define 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

and we translate the path of integration by an amount $ iv to avoid strong oscillations 

of the integrand. We find, 
A+1 1 

A(2h -l)!! 
e-V/2 

X 
(E+isinhx-Ecoshx)w 

(k sinhx+l)+‘-’ 
2 

(h+l)h,-zh,+,- ~~&coshx 1 (3.15) 

* From now on we shall drop the index 1 of the Hankel functions, being clear that they are the 

first-order ones. 
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where all h,‘s are now functions of 
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z=z~(i~sinhX+l). 
c 

(3.16) 

In the case of magnetic excitations, one may explore the fact that LO is perpen- 

dicular to the scattering plane to show that 

The magnetic orbital integrals become 

S(Mh,p)=-iaZ1 K 
A+’ 

c A(2h -l)!! 

h,[~r’(t)]-l-- eiW$‘(f) eiw’ dr. 
r’(f) 

(3.17) 

Defining, 

z(MA, EL) = - 
hcahS(MX, p) 

ce A+,,CL cot16 {C(2A + 1)/W +3)I[(A + l)*-~‘]]-~‘~ (3.18) 
2 

we obtain, using the parametrization (2.4) and (2.7), and translating the integral 

path by fir, 

i(vrl/c>“+’ -_nv,2 u3 
J(MA,P)= (2A _1)!! e _wdxh(z)ep vtcorhx 

x ei,,X (E + i sinh x --Je2 - 1 cash x)” 

(k sinhX+l)‘” . 
(3.19) 

Generally, the most important magnetic excitation has Ml multipolarity. 

4. Cross sections and equivalent photon numbers 

The square modulus of eq. (3.4) gives the probability of exciting the target nucleus 

from the initial state IZiMi) to the final state ]ZfMF) in a collision with c.m. scattering 

angle 19. If the orientation of the initial state is not specified, the cross section for 

exciting the nuclear state of spin Z, is 

(4.1) 
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where &z2c4dR is the elastic (Rutherford) cross section. Using the Wigner-Eckart 

theorem and the orthogonality properties of the Clebsch-Gordan coefficients, one 

can show that 

(4.2) 

where r = E or M stands for the electric or magnetic multipolarity, and 

is the reduced transition probability. 

Integration of (4.2) over all energy transfers E = hw, and summation over all 

possible final states of the projectile nucleus leads to 

(4.4) 

where &.Y) is the density of final states of the target with energy E,= Ei + E. Inserting 

(4.2) into (4.4) one finds 

da, -= 
d0 

where 

are the photonuclear absorption cross sections for a given multipolarity 

total photonuclear cross section is a sum of all these multipolarities, 

fly = c (TrA(&). 
rr.4 

(4.5a) 

(4.5b) 

rrA. The 

(4.5c) 

The functions n,,,(a) are called the equivalent photon numbers 4), and are given by 

dn, z&r A[(2h + 1)!!12 C2U2E4 

-= 297 (A + 1)(2A + 1)3 K*(*--l) ,$ da 
---CIS(~~,P)12, (4.6) 

where (Y is the fine-structure constant. Since all nuclear excitation dynamics is 

contained in the photoabsorption cross section, the equivalent photon numbers (4.6) 

do not depend on the nuclear structure. They are kinematical factors, depending 

on the orbital motion. They may be interpreted as the number of equivalent (virtual) 

photons that hit the target per unit (solid) scattering angle. The usefulness of 

Coulomb excitation, even in first-order processes, is displayed in eq. (4.5a). The 

field of a real photon contains all multipolarities with the same weight and the 

photonuclear cross section (4.5~) is a mixture of the contributions from all multi- 

polarities, although only a few contribute in most processes. In the case of Coulomb 
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excitation the total cross section is weighted by kinematical factors which are different 

for each projectile or bombarding energy. This allows one to disentangle the 

multipolarities when several ones are involved in the excitation process. 

In terms of the orbital integrals I(Eh, p), given by (3.15), and using the eqs. 

(3.14) and (3.11), we find for the electric multipolarities 

dn,, z’,(Y c ** A[(2A +l)!!]* 4 _**+* 
=- - 

0 dR 8rr2 v (A + 1)(2A + l)* ’ n 

x c 
(A -/I)!(A+P)! ,l(EA P),2 

[(A -p)!!(A +/.L)!!]~ ’ ’ F 
(4.7) 

In the case of magnetic excitations we find 

dn,, Z’,(Y c 2(h-‘) [(2A +1)!!12 -=- - 
0 da 8~’ v A(A +1)(2A +l)*' 

--2*+*c4(E*_1) 

x c [(A+l)*-~*](h+l-~)!(A+I+~)! 

[(A+i-P)l!(~+i+P)ll]2 
II(MA, y)]‘. (4.8) 

fi 
h+s=odd 

Since the impact parameter is related to the scattering angle by b = a cot $9, we can 

also write 

dn,, 4 dn, =-- 
2rrb db a2c4 da ’ 

(4.9) 

which are interpreted as the number of equivalent photons of frequency w, incident 

on the target per unit area, in a collision with impact parameter b. 

The concept of the equivalent photon numbers is very useful, especially in 

relativistic collisions. In these collisions the momentum and the energy transfer due 

to the Coulomb interaction are related by Ap = AE/ v = AE/c. This means that the 

virtual photons are almost real. One usually explores this fact to extract information 

about real photon processes from the reactions induced by relativistic charges, and 

vice versa. This is the basis of the Weizsacker-Williams method, commonly used 

to calculate cross sections for Coulomb excitation, particle production, bremsstrah- 

lung, etc. (see e.g. ref. “)). In the case of Coulomb excitation, even at low energies, 

although the equivalent photon numbers should not be interpreted as (almost) real 

ones, the cross sections can still be written as a product of them and the cross 

sections induced by real photons. This happens because the excitation occurs in a 

divergence-free field (in contrast to electron scattering), since it is assumed from 

the beginning that the nuclei do not interpenetrate. Then the matrix elements for 

the excitation contain only the transverse components of the electromagnetic field, 

and turn out to be the same as those appearing in photoexcitation of the nuclei. 
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This allows one to extract information about photonuclear processes by means of 

measurements on Coulomb excitation, even at low- and intermediate-energy col- 

lisions, with the advantage that one has access to processes which could hardly be 

performed by using real photons like, e.g. multiple excitation. Recently 6), it has 

been proposed the study of radiative capture cross sections of interest in astrophysics 

by means of an unfolding of the Coulomb breakup of light nuclei incident on a 

target with large 2. As seen from the projectile, the target provides a large amount 

of equivalent photons which lead to its disruption. In principle such experiments 

are easier to perform than the radiative-capture cross-section measurements at the 

extremely low relative energies required for astrophysical studies “). 

5. Results and comparisons 

Using the eqs. (4.7) and (4.8), we make an analysis of Coulomb excitation 

extending from low- to high-energy collisions. As an example, we study the excita- 

tions induced by “0 in ‘60+20*Pb collisions. Since the expression (4.6) is quite 

general, valid for all energies, under the assumption that the nuclei do not overlap, 

the equivalent photon numbers contain all information about the differences among 

the low and the high-energy scattering. 

In figs. 2, 3 and 4 we show dn,,/2rb db, for the El (fig. 2), E2 (fig. 3), and Ml 

(fig. 4) multipolarities, and for the collision 160 + 2o8 Pb with an impact parameter 

b = 1.5 fm. They are the equivalent photon numbers with frequency w = 10 MeV/h 

incident on “‘Pb. The dotted lines are obtained by using the non-relativistic eq. 

(A.l) of the appendix, while the dashed lines correspond to the relativistic 

expressions (A.3a-c) of the appendix. One observes that the relativistic expressions 

overestimate the equivalent photon numbers at low energies, while the non-rela- 

tivistic expressions underestimate them at high energies. The most correct values 

are given by the solid lines, calculated according to eqs. (4.7) and (4.8). They 

reproduce the low- and the high-energy limits, giving an improved interpolation 

between these limits at intermediate energies. These discrepancies are more apparent 

for the El and the E2 multipolarities. In the energy interval around 100 MeV/nucleon 

neither the low-energy theory nor the high-energy one can reproduce well the correct 

values. This energy interval is indeed very sensitive to the effects of retardation and 

of Coulomb recoil. 

In order to illustrate more clearly the errors one obtains by the use of the low 

and the high energy theories, extended to the intermediate energy, we plot in fig. 5 

the relative difference 

(5.1) 

for the El (fig. 5a) and the E2 (fig. 5b) multipolarity, as a function of the excitation 

energy, and at 100 MeV/nucleon. By nr: (nz,) we mean the equivalent photon 
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E,,, (MeV/nucleon) 

Fig. 2. Electric dipole number of equivalent photons per unit area d’b = 2rrb db, with energy of 10 MeV, 

incident on “*Pb in a collision with 160 at impact parameter b = 15 fm, and as a function of the 

bombarding energy in MeV per nucleon. The dotted line and the dashed line correspond to calculations 

performed with the non-relativistic and with the relativistic approaches, respectively. The solid line 

represents a more correct calculation, as described in the text. 

numbers calculated within the non-relativistic (relativistic) formalism. We observe 

that the relative error is approximately constant for hw < 10 MeV, being larger 

(around 15%) when one uses the non-relativistic than when one uses the relativistic 

theory. These discrepancies increase sharply when one reaches the excitation energy 

of hw > 10 MeV. The reason is that, for such excitation energies, the adiabaticity 

factor of eq. (1.3) becomes greater than unity (5 > 1). This means that excitation 

energies of order of 10 MeV (like in the case of giant resonance excitation) are in 

the transition region from a constant behaviour of the equivalent photon numbers 

to that of an exponential (-ewmir’) decay. This is more transparent in fig. 6 where 

we plot the equivalent photon numbers for Elab = 100 MeV/nucleon, b = 15 fm, and 

as a function of hw. One also observes from this figure that the E2 multipolarity 

component of the electromagnetic field dominates at low frequencies. Nonetheless, 

over the range of hw up to some tens of MeV, the E2 matrix elements of excitation 

are much smaller than the El elements for most nuclei, and the E2 effects become 

unimportant. However, such effects are relevant for the excitation of the isoscalar 

E2 giant resonance (ISGQR) which have large matrix elements. 

Winther and Alder indicated a simple way to account for recoil corrections in 

the theory of relativistic Coulomb excitation. This was done by a comparison among 
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E ,ob (MeV 1 nucleon) 

Fig. 3. Same as fig. 2, but for the E2 multipolarity. 

E lab ( MeV /nucleon) 

Fig. 4. Same as fig. 2, but for the Ml multipolarity 
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Fig. 5. Relative difference (see eq. (5.1)) between the non-relativistic (NR) and the relativistic(R) electric 

dipole number of equivalent photons per unit area, with the results calculated with the theory developed 

in text. We used E,,,= 100 MeV per nucleon and b = 15 fm in a ‘60+*08Pb collision. Fig. 5b displays 

the same, but for the electric quadrupole multipolarity. 
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ho (MeV) 

Fig. 6. Equivalent photon numbers per unit area incident on 2oxPb, in a collision with ‘&O at 100 MeV 

per nucleon and with impact parameter 6 = 15 fm, as a function of the photon energy hw. The curves 

for the El, E2 and MI multipolarities are shown. 

the amplitudes obtained in the relativistic straight-line calculations with the ampli- 

tudes calculated non-relativistically in a collision with large angular momentum (i.e. 

for a hyperbolic orbit of large excentricity, with the same impact parameter). They 

showed that an improved expression for relativistic Coulomb excitation is obtained 

by the resealing indicated by the formula (2.8). This resealing is related to the recoil 

shift in the distance between the ions during the collision. For t = 0 the shift is a&. 

For t < 0 it is fess, and for f > 0 larger. The factor &T takes into account that the 

average shift is larger than a,/ y. Thus by using b + ~~~/2 y instead of b, the relativistic 

expressions could give improved results in intermediate-energy collisions “). In figs. 

7 and 8 a comparison between the correct values and the relativistic expressions of 

the appendix, corrected with a resealing of the impact parameter as indicated above, 

is displayed. The curves represent the percentual difference 

8;;‘== lOO(1 -dn,A/dn:~c}, (5.2) 

where dnc,ohrre are the relativistic equivalent photon numbers with “corrected” impact 

parameter. 

In fig. 7 we show this percentual difference in a I60 + ‘*‘Pb collision with b = 15 fm 

and hw = 10 MeV, as a function of the bombarding energy per nucleon. Fig. 8 

displays the percentual error for the same collision, but with EIab/A = 100 MeV, 
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E lob (MeV/nucbon) 

Fig. 7. Percentual difference (see eq. 5.2) between the equivalent photon numbers calculated with the 

theory developed in sect. 4 and the relativistic formulas of the appendix corrected for recoil. We take 

an ‘60+2”XPb collision with ho = IO MeV and b= 15 fm. 
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Fig. 8. Same as fig. 7, but for E,,, = 100 MeV per nucleon, and as a function of the excitation energy hw. 
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and as a function of ho. The difference is larger at low frequencies o. At frequencies 

above 10 MeV the corrected expressions work very well. In both figures one sees 

that the Ml equivalent photon numbers are less sensitive to a more correct treatment 

of the orbital motion. As expected, the improved straight-line expressions are not 

very accurate for low-energy collisions, but work quite well for energies above 

100 MeV per nucleon. 

As an application of the semiclassical approach to Coulomb excitation in inter- 

mediate-energy collisions, we study the excitation of giant isovector dipole reson- 

ances (El) and of giant isoscalar quadrupole resonances (E2) in 208Pb by means of 

the Coulomb interaction with a 160 projectile. At 100 MeV per nucleon the maximum 

scattering angle which still leads to a pure Coulomb scattering (assuming a sharp 

cutoff at an impact parameter b = Rp+ R-,-) is 3.9”. The cross sections are calculated 

by assuming a lorentzian shape for the photonuclear cross sections: 

rrh E2T2 
uy =grn (2-EQ2+2r2’ (5.3) 

with (T, chosen to reproduce the Thomas-Reiche-Kuhn sum rule for El excitations, 

i 
u:‘(.F) da =60FMeV* mb (5.4a) 

and the energy-weighted sum rule for the quadrupole mode, 

I ~:‘(a)$= 0.22ZA2’3pb/MeV. 

The resonance energies are approximately given by EGDR = 77A-“3 MeV and 

E GQR = 63A-“3 MeV. We use the widths lo) rob, = 4 MeV and roaR = 2.2 MeV for 

*“Pb. 

The cross sections increase rapidly with increasing scattering angle, up to an 

approximately constant value as the maximum Coulomb scattering angle is neared. 

This is explained as follows. Very forward angles correspond to large-impact- 

parameter collisions in which case cob/ yv > 1 and the excitation of giant resonances 

in the nuclei is not achieved. As the impact parameter decreases, increasing the 

scattering angle, this adiabaticity condition is fulfilled and excitation occurs. Also, 

the equivalent photon numbers vary slowly with b, in an interval from some tens 

of fermis down to the minimum grazing value. This explains the behaviour of fig. 

9. It is seen that at 100 MeV per nucleon the excitation of the quadrupole mode 

dominates by a factor 2 over the dipole mode. But this could in fact be less if we 

had used the experimental values for the photonuclear cross reaction yields, which 

deplete about 60% of the energy-weighted sum rule ‘I). 

In fig. 10 is shown the total cross section for the excitation of giant dipole and 

of giant quadrupole resonances in 208Pb in a collision with I60 as a function of the 

laboratory energy per nucleon. The same average behaviour of the photonuclear 
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Fig. 9. Differential cross sections for the excitation of giant electric dipole (El) and quadrupole (E2) 

resonances in *“Pb by means of the Coulomb interaction with I60 at 100 MeV per nucleon. 6,,, is the 

maximum Coulomb scattering angle, which is about 3.9”. 

cross sections, as assumed in eqs. (5.3) and (5.4), is used. The Coulomb excitation 

cross sections were obtained by an integration over the scattering angle up to the 

maximum value of pure Coulomb scattering. The cross sections increase very rapidly 

to large values, which are already attained at intermediate energies. A salient feature 

is that the cross section for the excitation of giant quadrupole modes is very large 

at low and intermediate energies, decreasing in importance (about 10% of the El 

cross section) as the energy increases above 1 GeV per nucleon. This occurs because 

the equivalent photon number for the E2 multipolarity is much larger than that for 

the El multipolarity at low collision energies. That is, nE2 s nE, , for z7 < c. This has 

a simple explanation. Pictorially, as seen from an observator at rest, when a charged 

particle moves at low energies the lines of force of its corresponding electric field 

are isotropic, diverging from its centre in all directions. This means that the field 

carries a large amount of tidal (E2) components. On the other hand, when the 

particle moves very fast its lines of force appear contracted in the direction perpen- 

dicular to its motion due to Lorentz contraction. For the observator this field looks 

like a pulse of plane waves of light. But plane waves contain all multipolarities with 

the same weight, and the equivalent photon numbers become all approximately 

equal, i.e. nE, = nE2 f nM, , and increase logarithmically with the energy for y > 1. 

The difference in the cross sections when y 3 1 are then approximately equal to the 

difference in the relative strength of the two giant resonances a~*/a~‘<O.l. The 
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Fig. 10. Total cross sections for the excitation ofgiant electric dipole (El) and quadrupole (E2) resonances 

in *“‘Pb by means of the Coulomb interaction with 160, as a function of the laboratory energy. 

excitation of giant magnetic dipole resonances is of less importance, since for low 

energies rrM1 < n,, (nMI = (v/c)‘n,,), whereas for high energies, where q,,,, = YZ~,, 

it will be also much smaller than the excitation of electric dipole resonances since 

their relative strength cry’/, t’ is much smaller than unity. 

At very large energies the cross sections for the Coulomb excitation of giant 

resonances overcome the nuclear geometrical cross sections. Since these resonances 

decay mostly through particle emission or fission, this indicates that Coulomb 

excitation of giant resonances is a very important process to be considered in 

relativistic heavy-ion collisions and fragmentation processes, especially in heavy-ion 

colliders. At intermediate energies the cross sections are also large and this opens 

new possibilities to establish and study the properties of giant resonances ‘). 

As a last remark, we point out that a study of the interplay of Coulomb repulsion 

and of retardation in Coulomb collisions at intermediate energies should also 

consider the fact that the intrinsic referentials of the two nuclei are non-inertial 

ones. Fewell 12) has performed a study of these effects, although in low-energy 

collisions, and for back-scattering angles where the corrections are more important. 

His calculations are very elaborated, involving differential geometry, and aiming to 

find a hamiltonian for an accelerated system of charged particles in an external 

electromagnetic field. For some situations where first-order perturbation theory is 

applicable, he found that the corrections can exceed 10% from what one obtains 

by using the standard non-relativistic Coulomb excitation theory. At intermediate 
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energies, due to the fact that the scattering angle is limited to the very forward 

direction, we expect that effects from non-inertiality are not important. Nonetheless, 

this should be an interesting point for future investigations, and is a fascinating 

problem even in the classical context. 

6. Conclusions 

We developed an extension of the semiclassical theory of Coulomb excitation to 

include retardation effects in intermediate-energy collisions. For the scattering of a 

light by a heavy nucleus, one can quite straightforwardly use an analytical param- 

etrization of the classical trajectory corrected relativistically. The retardation is 

included automatically by a multipole expansion of the retarded electromagnetic 

potential for a particle moving along such trajectory. Excitation amplitudes are then 

calculated within the semiclassical approach. 

The Coulomb cross sections can be reduced to the cross sections for the corre- 

sponding photoreactions by using the idea of equivalent photons. Therefore, the 

measurement of Coulomb scattering is a complementary method to study photo 

cross sections and hence to reveal the nuclear structure. At intermediate and high 

energies, above 50 MeV/nucleon, mainly collective states of different multipole 

orders, like giant resonance states, are excited. Of great interest in experiments at 

these energies is the investigation of exotic decays of heavy target nuclei “). This 

could be accomplished through a multiple excitation of giant resonances, which 

can lead to very large collective motions of the nucleons, followed by an unusual 

decay of the nucleus. 

We have shown that at intermediate energies discrepancies as large as 20% are 

obtained if one uses the low- or high-energy theories of Coulomb excitation. Such 

discrepancies should be considered in experiments with energies around 100 MeV 

per nucleon which are now becoming available ‘). The semiclassical approach 

outlined in the previous sections gives an improved solution to this problem. 

One of the authors (C.A.B.) is very indebted to Prof. A. Winther and to Prof. G. 

Baur for useful discussions. 

Appendix 

Inserting the non-relativistic orbital integrals (3.9) into eq. (4.6), we get the 

following relation for the non-relativistic equivalent photon numbers (NR) 

dnNR Tih= z2 h[(2h + l)!!]’ ml*+2 c ‘(*+*)d& 

da p(y (27r)‘(A +1) 5 0 v 
dR (835) (A.11 

where 6 = 0 for electric, and 6 = -1 for magnetic multipolarities, and 5 = wao/ ZI. 

The non-relativistic Coulomb excitation functions fnh (8, 5) are very well known 

and e.g. are tabulated in ref. ‘) or may be calculated numerically. 
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The expression for the equivalent photon numbers in relativistic collisions is “) 

(A.2) 

where G( S-A, p)[ c/ v] are the relativistic Winther-Alder functions, given analytically 

in ref. ‘) and K, is the modified Bessel functions of order p. 

For the El, E2 and Ml multipolarities one finds 

dn:z z;ff 4 c 4 
-=- - 

01 2n-b db rr2b2 v 
-$K;+~K,K,+&2K;]+~2(2-v2,‘c2)2K; 

dnh zagK2 ~=- 
2rrb db =2 b2 1 > 

(A.3a) 

(A.3c) 

where all K@‘s are functions of k(b) = wb/ yv. Improved expressions to describe 

Coulomb excitation in intermediate energy collisions, where Coulomb repulsion 

becomes as important as retardation, may be obtained by substituting b + b + m,/2y 

in the above expressions. 
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