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Abstract: We investigate the Coulomb excitation of giant dipole resonances in relativistic heavy-ion 

collisions using a macroscopic hydrodynamical model for the harmonic vibrations of the nuclear 

fluid. The motion is treated as a combination of the Goldhaber-Teller displacement mode and the 

Steinwedel-Jensen acoustic mode, and the restoring forces are calculated using the droplet model. 

This model is used as input to study the characteristics of multiple excitation of giant dipole 

resonances in nuclei. Possibile signatures for the existence of such states are also discussed 

quantitatively. 

1. Introduction 

Coulomb excitation and decay of relativistic heavy ions has been extensively 

studied in the last years ls2). Traditionally, experiments have been done with 

activation methods to determine the cross sections for removal of few nucleons 

from the ions 3-5), or by using plastic foil detectors to measure charge-changing 

cross sections 6*7). M ore recently, the Coulomb excitation and decay of relativistic 

heavy ions (RHI) has been studied in exclusive experiments ‘), with improved 

detection techniques. 

The reaction mechanism proceeds mainly via the excitation of isovector giant 

dipole states, although at lower beam energies (6 1 GeV/nucleon) the isoscalar giant 

quadrupole also contributes significantly to the excitation cross sections gY1o). Since 

the main decay modes of the giant resonance states are the particle emission channels, 

relativistic Coulomb excitation (RCE) is an important mechanism of nuclear frag- 

mentation in RHI collisions, with cross sections exceeding the geometrical area of 

the ions for sufficiently high energies. In previous works ‘-‘), it has been shown that 

the gross features of the available experimental data can be well explained by means 

of the equivalent photon method, in which the electromagnetic excitation of the 

projectile (or target) is obtained by folding the flux of real photons “), equivalent 

to the time dependent electromagnetic field generated by the target (projectile), with 

the experimentally known values of the photonuclear cross section for the respective 

nucleus ‘,12). S emiclassical and quantum theoretical descriptions of the reaction 

mechanism lead to nearly the same results as the equivalent photon method 13-‘*). 
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Nonetheless, a complete understanding of the experimental data needs knowledge 

about the decay channels and branching ratios for the excited nucleus, not always 

known from experiment. One expects that, with the advent of more detailed exclusive 

experiments, RCE can become a new and useful tool to investigate excitation and 

decay of hitherto unexplored nuclear states. The most spectacular of such are the 

so-called multiphonon states, obtained from multiple RCE of giant dipole 

states 16,i7). The excitation of multiphonon states may be viewed as the absorption 

by the target (projectile) of several photons from the pulse of equivalent photons 

generated by the relativistic projectile (target) 16); or it can be also described as 

multiple excitation of a harmonic oscillator with GDR quantum energy “). 

If the multiphonon states exist, they correspond to large-amplitude vibrations of 

neutrons against protons in nuclei. Although the energy deposit is small (multiples 

of the energy of a GDR state), such large collective motion may lead to exotic 

decays of the nuclei. This is a relatively cold fragmentation process, in contrast to 

the violent fragmentation following central collisions of RHI, in which high tem- 

peratures are achieved. 

In this paper we present a study of multiphonon states by means of a hydrodynami- 

cal model for the giant resonance states. The hydrodynamical model consists in a 

superposition of Goldhaber-Teller and Steinwedel-Jensen vibration modes and, as 

shown in ref. I*), it reproduces very well the energy of GDR states along the nuclear 

table, especially for heavy nuclei. Also, the widths of these states are on the average 

described with use of a one-body dissipation mechanism 18). The model is purely 

classical, containing parameters originated from experimental information on 

nuclear densities and masses. Although it is questionable to use this model to 

describe large-amplitude vibrations as the ones we are going to discuss here, it is 

very useful to provide some predictions on the basic excitation and decay mechan- 

isms of the multiphonon states. 

In sect. 2 we present a calculation of the amplitudes of vibrations of GDR states 

in a nucleus by means of a classical description of the coupling of the electromagnetic 

field of a relativistic ion with the hydrodynamical fluid describing the motion of 

protons and neutrons in the nucleus. This permits us to obtain the respective amount 

of energy transferred from the electromagnetic field to the SJ and GT vibration 

modes, respectively. In a quantized oscillator, the excitation of multiphonon states 

can be deduced from the classical approach of sect. 2. The excitation probabilities 

of multiphonon states are obtained in sect. 3.1. An overall analysis of the decay of 

the multiphonon states, together with the cross sections for different decay channels, 

is carried out in sect. 3.2. In sect. 4 we present our summary and conclusions. 

2. Coupling of the electric field with the hydrodynamical fluid 

The electric field generated by a relativistic charged particle, Zpe, passing by a 

nucleus with an impact parameter b, and velocity u, is given at the position of the 
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nucleus by (see fig. 1) 

Z,eyvt 
Ez = -(@+ y2v2t2)3/2 9 

Zpeyb 
Ex = (/,2+ y2v2t2)3/2 (2.1) 

with the z-axis parallel to the particle’s trajectory, and the x-axis perpendicular to 
it. The Lorentz factor y is given by y = (1 - v~/c?-“~. 

For y% 1 these fields are of short duration and act on the protons of the target, 
leading to their collective motion ‘). As in ref. I’), we assume that this motion is 
described in a hydrodynamical model, with an admixture of Goldhaber-Teller (GT) 
and Steinwedel-Jensen (SJ) modes of vibration. 

In a given position r inside the nucleus, with the charge (neutron) number Z(N), 
the velocity of the neutron fluid q,, and of the proton fluid u,, are given by 

(2.2b) 

where the factors N/A and (-Z/A) are used to account for the motion of the 
center-of-mass of the fluid, which is not of interest. 

The velocity u, of the Goldhaber-Teller fluid is, in Cartesian coordinates, given by 

u, = R(cil,ex + &,,e,) (2.3) 

where R is the mean radius of the nucleus, (Y~~(cY~~) represents the amount of the 
Goldhaber-Teller mode in the motion in the x(z)-direction, and eX(ez) are the 
unitary vectors along those axes. 

GT mede SJ mods 

Fig. 1. A relativistic heavy ion with charge & passes by a nucleus with an impact parameter b. Its 

eiectromagnetic field induces giant dipole vibrations in the nucleus, which can be described as a 

combination of Goldhaber-Teller and Steinwedel-Jensen vibrations. The system of axes used in the text 

is also shown. 
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The velocity uz of the Steinwedel-Jensen fluid at a distance r from the centre-of-mass 

of the fluid is, in polar coordinates, given by 

. K 
v2= a2t- 

k 
ji(kr) cos Oer-ijl(kr) sin tie, 1 

+4,,f [ j;(kr) cos Ve:--djl(kr) sin 6’eL 
1 

c& cos O+c& sin 8 sin +)ji(kr)e, 

-C&t sinO+~,,cos~sin~)~jl(kr)eo-&,,cos~~j,(kr)e~ , 
1 

(2.4) 

where 0(C) is the polar angle with respect to the symmetry axis z(x), j,(kr) is the 

spherical Bessel function of first order, (Y~~((Y~~) is the amount of Steinwedel-Jensen 

mode of motion in the x(z)-direction, and 

kR = a = 2.081 . . . , 
2a 

K= j,(a) = 9.93 . (2.5) 

The total kinetic energy of the system is 

where m* = 0.7m,, with mN equal to the nucleon mass, and pZ( p,) is the 

proton(neutron) density. 

We use m* instead of mN for the nucleon mass in order to account for the fact 

that the effective inertia of the collective motion is somewhat smaller than the simple 

addition of the bare masses of protons and neutrons. This arises due to the exchange 

character of the nucleon-nucleon force, which allows for a charge exchange between 

a proton and a neutron without involving an actual displacement of then in space. 

The resealing of the nucleon mass is in fact needed to reproduce the correct strength 

and energy position of the giant resonances “). 

The integral over the nuclear volume can be performed analytically and written 

in matrix form as 

T=;kT. T. & = f C ciiTik& , (2.7a) 
fk 

where g represents a vector whose components are the amounts of GT and SJ 

modes in the x and z directions, and _T is the kinetic energy matrix. One finds 

(2.7b) 
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(2.7~) 

7=m*NZp 
A ’ 

with 

d =;(a’-2) = 1.166. (2.7e) 

The separation of the (sharp) proton and neutron distributions, as well as the 

neutron excess at the surface leads to a restoring force on the relative distance of 

the proton and of the neutron fluid. Following ref. ‘*) the restoring potential energy 

can be calculated in the droplet model and, for the superposed GT and SJ vibrations, 

one obtains 

(2.8a) 

where 

(2.8b) 

with 

u1 = $HA~/~ , v2 = f Pa 2A , 

v3=~Ju2(a2-2)A-;GA2”a4. (2.8~) 

The droplet coefficients J, H, P and G are derived from a fit to nuclear masses 

and the best fit ‘*) corresponds to the values 36.8, 14, 9.74 and 31.63 (in MeV), 

respectively. 

In the droplet model, the work performed by the driving fields (2.1) in displacing 

the proton and neutron fluids is given by W = W,, + WI,+ W,,+ W,,, which can 

be written in compact form as 

W1X ff&X 

WE wiz _R a,A 

0 i 

w2x 

i 

a2xEx ’ 
(2.9) 

w2z a295 

where the dipole charge q = eNZ/A accounts for the elimination of the center-of- 

mass motion. 

To complete the hydrodynamical analysis, the attenuation of the collective vibra- 

tions can be derived by using a one-body dissipation mechanism and comparing 

the viscosity coefficients with the decay widths of the giant resonances, as was done 
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in ref. i8). From that, one can build a Rayleigh dissipation function, which can be 

written as 

where 

(2.10a) 

1 0 1 0 

F=f 
0 1 0 1 

i i 

10 10’ 

0 1 0 1 

with 

NZ 
f=mRC-. 

A 

(2.10b) 

(2.1Oc) 

In this expression 6 is a of the Fermi velocity t+ of the nucleons. 

Using eqs. (2.7)-(2.10) and the Euler-Lagrange equations of motion, one gets 

the equation for the damped oscillator with a driving force 

v*(Y+t.&+T.Cj=Q, (2.11a) 

where 

(2.11b) 

By means of use of the Fourier transform 

&i(w)=& 
5 

_l ai e-‘“‘dt (2.12) 

one can readily solve eq. (2.11), resulting for the motion in the x-direction 

(2.13a) 

(VI-v2) 
~2”(w)=[T41_4-(v2-V3)] ‘1x(w)’ (2.13b) 

where 

Q(w)=m2(2v2-v3-dvl)+(v,vj-v:) 

-~*~~(l-d)+~f~[~~*(l-d)+(v,-2v~+v~)]. (2.13~) 

The equations for CC,, and G2, are similar to (2.13a) and (2.13b), but with &(w) 

replaced by g=(w). 

The Fourier transforms of the fields (2.1) are given analytically by 

(2.14a) 

(2.14b) 
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As a function of o these functions are monotonous up to wmaX- yv/ b. After this 

value, they begin to decrease exponentially with w. A good approximation for gX(w) 

is 

m Z,e/ bv , 
E&)= o 

1 

for wb/yv<l 

for wb/yv> 1. (2.15) 

On the other hand, the function l/Q(w) in eqs. (2.13) has a peak at the resonant 

values o = o*, where (taking f- 0) 

2 o,=2~(~_l){(vld+v,-2v,)~~(v,d+v,-Z4)2+4(d-l)(v:-v,v~)}. (2.16) 

The energy hw, corresponds to an antidipole vibration of the SJ against the GT 

fluids, nearly out of phase and whose dipole moment almost vanishes. It is of little 

physical interest and lies very high in energy. For a nucleus with A = 150, one finds 

w,/w- = 6, where hw_ = 15 MeV. The energy Aw- reproduces quite well the giant 

resonance dipole energies along the nuclear table. In fig. 2 a plot is shown of the 

giant resonance energy hw- as a function of the nuclear mass A. The data are taken 

from refs. 19-22). One sees that a good agreement with the experimentally determined 

position of the giant resonances is obtained. In fact, hw- reproduces correctly the 

experimentally observed transition from a proportionality of EGDR with A-“6 to a 

proportionality with A-“3. 

I 
OO 

I I I I 

50 100 150 200 i 

Mass Number A 

Fig. 2. Experimentally determined energy of the giant dipole resonance as a function of the nuclear 

mass number. The solid curve is the prediction of the droplet model represented by eq. (2.16). 
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From (2.13), (2.15) and (2.16) one observes that the amplitude spectra represented 

by Q(O) for the induced vibrations are sensitive essentially to the info~ation if 

ficrt- < $ic/ b, or not. For a typical relativistic Coulomb collision, with b = 15 fm, 

this condition is easily fulfilled. This means that the Coulomb field of a relativistic 

particle is able to transfer more than sufficient energy to induce giant dipole vibrations 

on a target. The absorption spectra will have a form of an usual lorentzian with the 

strength determined by a coefficient proportional to 2;. 

The total energy transferred from the Coulomb field to a particular vibration 

mode of the hydrodynamical fluid is given by the real part of the integral over 

frequency, i.e. 

(2.17) 

The corresponding expressions for AEl,, AE*, and AEzz are obtained analogously. 

In fig. 3 is shown a numerical calculation of (2.17) for the energy transferred to 

dipole vibrations in uranium in a 238U + 238U collision with impact parameter b = 

16 fm, as a function of the laboratory energy per nucleon. For low energy collisions 

d 
10 -i 10 -’ 1 10 10’ 10s 

ELaL/A [ Gev/nucleon ] 

Fig. 3. Energy transferred by the electromagnetic field to giant dipole vibrations in 23sU as a function 

of the laboratory energy per nucleon for the reaction 238U + 238U at b = 16 fm. The dashed (solid) lines 

correspond to absorption by Steinwedel-Jensen (Goldhaber-Teller) vibration mode. The energies 

absorbed in the beam direction and perpendicularly to it are also displayed. 
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where Coulomb recoil effects are important, we used the recoil correction b+ 

b + ~Z&e2/2y~v2, where p is the reduced mass. This correction approximately 

accounts for the fact that, at the closest approach distance, the ions are somewhat 

more displaced from each other and the action of the electric field is somewhat 

weaker than it would be if the projectile would move in a straight line 13). One 

observes from fig. 3 that the amount of energy transferred to the SJ and GT vibrations 

are approximately the same. Also, the vibration parallel to the beam axis (z-axis) 

only absorbs an appreciable amount of energy in intermediate energy collisions, 

around some hundreds of MeV per nucleon. Going higher in collision energy, the 

absorption goes entirely to the vibrations perpendicular to the beam axis. At very 

high energies, above 1 GeV/nucleon, the energy transferred to the vibration modes 

saturate at a constant value, and are practically independent of the damping factor 

J: That is when the approximation (2.15) is valid. In this case we can put lgjX( o)l’ = 

IEjX(0)12 and t k ‘t a e 1 out of the integrand in (2.17). Then, the energy transferred to 

the vibration modes is factorized into the product of two strengths, one depending 

only on the projectile field, and the other one depending on the giant dipole resonance 

parameters. 

For very high energies, the total amount of energy transferred to the SJ and GT 

vibrations is AE - AE,(SJ) +AE,(GT), where AE, is the energy given to vibrations 

perpendicular to the beam axis. This sum is about 15 MeV for 238U+238U collisions 

at grazing impact parameter. But this is just about the energy of a giant dipole 

resonance state in 238U. In the language of quantum mechanics, this means that the 

probability of exciting a giant resonance state in relativistic Coulomb collisions of 

heavy ions is about one. That is, if the multiphonon states exist, they are accessible 

by means of this excitation mechanism. An estimate of their excitation probabilities 

maybe obtained by extending the classical oscillator model to a quantum one, with 

the same underlying parameters. This naive procedure allows us to make straight- 

forward predictions of the magnitudes of the cross sections for the excitation of 

these states. 

3. Quantized oscillator: multiphonon states 

3.1. EXCITATION PROBABILITIES 

In refs. 16,17) it has been proposed that relativistic Coulomb excitation could be 

a unique mechanism in order to achieve the hitherto unknown states composed by 

multiple excitation of giant dipole states; the so-called multiphonon states. Due to 

their large charges and to Lorentz contraction, relativistic heavy ions are the ideal 

tool to excite and investigate such states. In a simple harmonic vibrator model, the 

first excited state would correspond to a single giant dipole state, the second state 

to a double phonon state, with twice the energy of a single dipole state, and so on. 

In the exact theory of multiple excitation of a quantum harmonic oscillator [see, 
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e.g. ref. 23)] the probability to excite a X-phonon state in a multistep process is 
given by a Poisson distribution 

P,(b) = j+“e”, (3-l) 

where ,x(b) =W/&DR, with EGoR equal to quantum energy and (E) the average 
energy transferred to the oscillator, i.e. (E) = AE,(SJ) + AI?, + * * * . This average 
energy can be taken as the classical energy calculated in sect. 2 within the hydrody- 
namical model. In this way, we can calculate the probability to excite a multiphonon 
state, P,(b), in a collision with impact parameter b. 

In fig. 4, we plot the excitation probabilities of a multiphonon state in 238U 
projectile incident on a 238U target at b = 16 fm and as a function of the laboratory 
energy per nucleon. One observes that, at energies above some GeV per nucleon, 
the excitation probabilities become constant and that the probability to excite a 
two-phonon state in a grazing collision is only a factor 2-3 smaller than the 
probability to excite a one-phonon state. For larger impact parameters this factor 
increases considerably. 

The saturation of AEjk and PN at high energies has a simple origin. The energy 
given to the collective vibrations of the nucleus at high energies is approximately 
propo~ional to the product of the electric field at their distance of closest approach 
and of the time duration of action of this field. The first quantity is proportional to 
y [see. eq. (2.1)], while the second is proportional to l/y. Therefore, the energy 
transferred, and consequently the excitation amplitudes, saturate at high-energy 

0.4 

0.3 

2 0.2 

0.1 

0.0 

Pl 

P2 

P3 

I I I1.1811, I I1111.1, I ,I,, u 
10 lo* los lo+ lo* loo 

E&A [MeV/nucleon] 

Fig. 4. Excitation probabilities of GDR multiphonon states in ‘% for the reaction 238U+238U at 
b = 16 fm and as a function of the laboratory energy per nucleon. 
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collisions. Due to the suddenness of the collisions, this occurs already at moderately 
high energies, above 1 GeV/nucleon. 

If the multiphonon states exist, they correspond to large amplitude vibrations of 
the nuclei and would result in unusual large neutron and proton excess on the 
nuclear surface. Since the average separation of the center of mass of protons and 
neutrons grows proportionally to m, in the SJ mode the local variations of 
the density of protons and neutrons are given by 

sp,=;lM?, BP”= -;,&L (3.2) 

where 

sr) = &!P=iff $*‘Kj,( kr) cos e , (3.3) 

with the coefficients k and K given by eq. (2.5). The quantity ai” corresponds to 
the amplitude of a SJ mode in an usual giant dipole resonance state. The proton 
and neutron densities are taken as Fermi distributions with the same radius and 
diffuseness parameters R = 1.2A”3 fm and Q = 0.65 fm, respectively. 

The GT mode corresponds to the whole displacement of the distribution of protons 
against that of neutrons. The distribution of protons and neutrons as a function of 
the distance to the center-of-mass is a combination of the SJ and GT distributions 
and is given approximately by 

Zpo[l -(~/AR~d~~j,(kr) cos @] 

‘“=A[l+exp((lr+~~iV/Al-R)/o)l’ 

iV&[l +(Z/AR)d;“Kj,(kr) cos 01 

&= A[l+exp((lr-ZdT/Al-R)/a)] ’ 

(3.4a) 

(3.4b) 

where p. = 0.17/fm3, and d$ = m a$R. The coefficients ffI:i are taken from 
the static case, i.e., by solving (2.11a) without the driving and damping forces, as 
was done in ref. I’). 

We assume that we are on the high-energy regime, where only the collective 
vibrations perpendicular to the beam axis are important and we plot in fig. 5, for 
a given X-phonon state in 238U, the local neutron excess along the CDR symmetry 
axis, defined by 

@v) =I f P* - Pz) 
(Pn+Pzl. 

(3.5) 

At the nuclear surface, around r = 7 fm, the neutron excess can be very large for 
high values of X. For example, in the X = 4 state (see fig. 6) the amount of neutron 
excess at the surface for the uranium nucleus is about 70%, while the average value 
in the whole nucleus is 23%. The large separation between proton and neutron 
distributions in a multiphonon state suggests that the multiphonon states will have 
very unusual decays and that the nucleus will fragment into exotic pieces rich in 
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-0.25 

-O&E 1( 

Radial Distance [fm] 

Fig. 5. Relative neutron excess along the symmetry axis of a GDR multiphonon state in ‘% at the 

moment of largest separation between protons and neutrons and as a function of the distance to the 
center-of-mass of the nucleus. 

neutrons, Iike tetraneutrons, ‘He, “Li, etc. In contrast to the violent frontal collisions 
with relativistic heavy ions, such fragmentation modes would prosecute via small 
energy deposits of order of 30,45, or 60 MeV (cold fragmentation). These fragments 
would move at the same velocity as the projectile nucleus and could be used in 
secondary beam experiments. 

A more efficient way of inducing large collective motions in heavy ions is by 
means of channelling in crystals. Channelling occurs due to the coherent action (on 
a projectile) of the electromagnetic field of a string of nuclei in a crystal (see fig. 
7). If the beam axis coincides with that of a periodic row of nuclei, there will be a 
resonant behavior of the energy transferred to the projectile in its own referential. 

0.25 r 

0.20 - 238U density distribution X=4 
7 0.15 - 
E Pn 

ZJ 0.10 - 
P 

radial distance 

Fig. 6. Proton and neutron density distributions at the moment of Iargest separation between them in a 
K = 4 multiphonon state in “*U. 
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t 

i 00000 

+a-4 
Fig. 7. Passage of a projectile nucleus with impact parameter b by a string of atomic sites in a crystal. 
For certain values of the periodic separation between neighboring nuclei a, and of the Lorentz factor 

y, the energy transferred to giant dipole vibrations in the projectile will be resonant. 

This resonant peak occurs when the transit time between neighboring nuclei, separ- 
ated by a lattice spacing Q, coincides with a multiple I of the period of a collective 
dipole motion, that is 

(3.6) 
YC ’ 

, 

with i=O, 1,2,3,. . . The value I = 0 also corresponds to a resonant behavior and 
means y-+ CO, i.e., the projectile is so fast that it gets almost instantaneously the 
Coulomb “kicks” transferred by each of the nucleus in the lattice string. 

The total energy transferred by a lattice string to a projectile passing with impact 
parameter b may be easily calculated in the hydrodynamical model. For a crystal 
axis with M nuclei the electric fields in (2.1) must be replaced by 

ES(t)= F Ej(t+kU/yU)~ 

k=l 

Instead of (2.14) the Fourier transforms of the electric fields will be 

Bl(w)=exp[i(M-l)wa/2yuJ 
sin ~~~~/2~~) - 

sin (wa/2ru) 
Ej(w), 

(3.7) 

(3.8) 

which have resonant peaks when the frequency w matches the condition (3.6). 
Inserting (3.8) into (2.17) we can calculate the total energy transferred to a 

projectile nucleus after passing M target nuclei in the crystal. The most interesting 
situation is of course when the condition (3.6) is fulfilled. For a typical crystal, 
a -2 A, and for y=200 (beam energy available at CERN), the resonant energy 
will be equal to the giant dipole energy for 1= 1. This means that, after passing the 
first nucleus in the periodic string, the projectile is excited to a GDR state, then it 
vibrates once, is excited to a 2-phonon state after passing by the second nucleus in 
the string, vibrates twice, is excited to a 3-phonon state, etc. Such a picture is only 
valid if the width of these collective states are much smaller than their energy 
separation. At a certain point the energy transferred to the projectile is so large that 
it disintegrates before passing by other nuclei in the string. 
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3.2. FRAGMENTATION MODES 

The GDR multiphonon states are very collective, with neutrons and protons 

having a net momentum along the symmetry axis. But the average momentum per 

proton (or neutron) along the symmetry axis is very small compared to the Fermi 

momentum. Even in a X = 4 state, each nucleon would have an average momentum 

of 20 MeV/c, assuming that the energy of the X-phonon state is shared equally to 

all nucleons moving along the same axis. In such case the Goldhaber statistical 

model of fragmentation 24) may give good estimates of the momentum distribution 

of the final fragments. This model assumes that the average momentum of a certain 

fragment is nearly the sum of the individual momenta of the nucleons of a piece 

of the nucleus with the same number of nucleons as the fragment. The momentum 

distribution of the fragments, in the frame of reference of the nucleus, is assumed 

to be a gaussian (except for protons for which an exponential distribution is 

assumed). Using the Thomas-Fermi model for the nucleus, the half-width of the 

gaussian is found to be given by 24) 

(3.9) 

where A(K) is the mass number of the nucleus (fragment) and PF is the Fermi 

momentum of the nucleus, which is about 250 MeV/c for heavy nuclei. The model 

has application in peripheral heavy-ion collisions and is able to fit the experimental 

data over a wide range. For example, for nucleon, deuteron or cr-emission one 

obtains from (3.9) the values 114, 160 and 226 MeV/c, respectively, for the momen- 

tum width of the distribution. It has been shown that Pauli corrections 25) and 

phase-space constraints 26S27) not included in the Goldhaber model would decrease 

the value of A, but not much. Therefore, the values cited above should be essentially 

what one also expects for the fragmentation of multiphonon states. 

In principle, one might think that the decay of the multiphonon states should 

have close resemblance with the decay modes of photo-induced reactions. The decay 

mechanism at high photon energies (-30-100 MeV) develops mostly through two 

distinct steps: (a) the energy is absorbed by a pair of nucleons (quasi-deuteron 

effect) followed by the emission of a fast nucleon in a cascade process; (b) a 

compound nucleus is left behind, and competition between nucleon evaporation 

and fission becomes the dominant mechanism 28). But a multiphonon state represents 

the simultaneous absorption of AX photons with GDR energy. This process is very 

different from the absorption of a single photon with X-times the GDR energy. The 

obvious reason is that such photon can only be absorbed by a pair of nucleons due 

to its small momentum, whereas the multiphonon states are very collective, involving 

all nucleons in the nucleus due to the long wavelength of the photons absorbed. It 

would be necessary a very intense photon beam, up to now inexistent, in order to 

excite such states in photo-induced reactions. The Coulomb field of heavy ions seem 

to be the only available source to achieve such states. 
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It should be pointed out that resonance-like structures have already been observed 

in peripheral heavy-ion collisions at intermediate energies ‘“) and have been inter- 

preted 30) as due to multiple excitation of giant resonances of different multipolarity. 

In contrast to the high energy case, the predominant agent at intermediate energies 

is the nuclear interaction in grazing collisions. Albeit such studies, very little is 

known about the multiphonon states, especially concerning their decay mechanism. 

At the present stage it is presumably much more impo~ant to obtain signatures of 

the existence of such states in high energy collisions, what would complement the 

experimental information from intermediate energy collisions. 

Based on these arguments, we make the basic assumption that the multiphonon 

states couple to the compound nucleus states, which decay statistically. The decay 

modes of the compound states were calculated by using the code ALICE/LIVER- 

MORE/85/3003’). The code has as input parameters the inverse reaction cross 

sections, level densities, etc. established in a global set as in ref. 32). It has been 

developed in order to describe nuclear fusion reactions, but the decay modes of the 

residual compound nucleus are independent of the entrance reaction channel. A 

neutron-induced reaction was simulated in order to reproduce an excited compound 

nucleus with the energy EN = MiwGDR. As the excitation of multiphonon states 

brings in negligible angular momentum - see ref. r7) for a study of the angular 

momentum probabilities in multiphonon excitations - the angular momentum depen- 

dence of the formation process was neglected. 

For each multiphonon state N, this procedure allowed us to determine the decay 

probabilities Cc for a particular channel cy, The reaction probability for a specific 

fragmentation channel in a RHI collision is given by 

P,(b) = c C:PN(b), (3.10) 
x 

where P,(b) is given by (3.1). The total cross section for relativistic Coulomb 

fragmentation of heavy ions into the channel LY is obtained by an integration of 

(3.10) over impact parameters from the minimum grazing value, i.e., 

I 
cc 

o;x=2lr &Pa(b) db. 
%+RT 

(3.11) 

In tables 1 and 2 we present the experimental data from refs. 2*5) on the electro- 

magnetic cross sections for the removal of one and two neutrons in RHI collisions. 

Also shown are the numerical results obtained with the procedure described above. 

We see that the agreement with the experimental data is surprisingly good, despite 

all simplifying assumptions used in the theory. These results are essentially equal 

to the ones obtained with the equivalent photon method I-“), by means of a folding 

of the equivalent photon numbers and the cr( 7, n) and m( y, 2n) photo cross sections. 

Therefore, it is not possible to have a signature from these data of any process 

which cannot be attributed to the well known (single) excitation by means of real 
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TABLE 1 

Cross sections for one-neutron removal reactions due to relativistic Coulomb excitation 

Reaction 
Energy 

(GeV/nucleon) 

Measured Calculated 
cross section cross section 

(b) (b) 

‘9’Au(‘zC, X)‘“Au 2.1 0.075 (14) 0.051 

‘97Au(20Ne, X)‘%Au 2.1 0.153 (18) 0.141 

‘97A~(40Ar, X)‘%Au 1.8 0.348 (34) 0.396 

‘9’Au(56Fe, X)‘96Au 1.7 0.601 (54) 0.625 

197Au(‘39La, X)‘%Au 1.26 1.97 (13) 2.03 

‘97Au(238U, X)lq6Au 0.96 5.3 (5) “) 4.50 

Wo(‘*c, xpzo 2.1 0.006 (9) 0.008 

59Co(20Ne, X)58Co 2.1 0.032 (11) 0.022 

s9Co(56Fe, X)58Co 1.7 0.088 (14) 0.133 

Sqco(‘Ta, Xfssco 1.26 0.28 (4) 0.320 

160(‘9’A~, X)‘“Au 60 0.280 (30) 0.244 

160(‘97A~, Xftg6Au 200 0.440 (40) 0.326 

“) Preliminary results. 

photons. Moreover, the cross section (3.11) is dominated by the single step (X = 1) 

process for the one- or two-neutron emission channels, as can be attested from fig. 

8 where the total cross section for the relativistic Coulomb excitation of multiphonon 

states in r9?Au targets by means of ‘39La projectiles are displayed. These cross 

sections were obtained by adding up the contributions of all decay channels sub- 

sequent to the excitation of a given multiphonon state N, i.e., 

Q3 

cr,- -2TT bP,( b) db . (3.12) 
RP+& 

TABLE 2 

Cross sections for two-neutron removal reactions due to relativistic Coulomb excitation, 
in milibarns 

Reaction 
Energy 

(GeV/nucleon) 

Measured 

cross section 

(mb) 

Calculated 

cross section 

(mb) 

‘s7Au(‘zC X)@‘Au > 2.1 

‘s7Au(*“Ne, X)19’Au 2.1 

‘97Au(40Ar, X)“‘Au 1.8 

‘97Au(56Fe, X)‘q5Au 1.7 

197Au(‘39La, X)‘“Au 1.26 

~%o(‘zc, X)To 2.1 

59Co(ZoNe, X)57Co 2.1 

59Co(56Fe, X)57Co 1.7 

5%0( lx9La, X)s’Co 1.26 

9 (17) 3 
49 (15) 19 

76 (18) 56 

73 (13) 80 
335 (49) 263 

6 (4) 1.2 

3 (5) 3.2 

13 (6) 16 

32 (16) 37 
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Fig. 8. Cross sections for the excitation of multiphonon states in “‘Au for the reaction IT9La+ 19’Au as 
a function of the laboratory energy per nucleon. 

The total cross section for RHI Coulomb excitation, u = CN. uX depends on the 
projectile charge as Zk7-1.9, in contrast to what is expected from the Z’, law, 
chara~e~stic from a single (direct) step process. A clue on the existence of multi- 
phonon states could be obtained by an accurate experimental measurement of this 
dependence. 

Certainly, the most indicative signature of a multiphonon excitation is the emission 
of heavier particles. In experiments with very heavy nuclei, the measurement of 
fission cross sections may be a possible signature. Let us take 232Th as an example. 
The photo-fission cross section a(~, F) has been measured in several experiments 
[see, e.g., ref. 35) for EY = 15-104 MeV]. If the relativistic Coulomb excitation pro- 
ceeds only via a single step, the fission cross sections can be calculated, with a good 
accuracy, in the equivalent photon method (EPM), i.e., 

EPM = 
(+F I F ~&MY, F) , 

Y 

(3.13) 

where a( y, F) is the photo-fission cross section for the photon energy E,, and n( EY) 
is the equivalent photon number given analytically in e.g. ref. *l) [see also ref. I)]. 
On the other hand, if multiple excitation of giant resonances is accessible in RHI 
collisions, the cross sections for the fission channel, cF, may be calculated by means 
of (3.10) and (3.11). In fig. 9 we plot the ratio CT~/&‘~ for the reaction 232Th+232Tb 
as a function of the laboratory energy. The a( ‘y, F) cross sections and the fission 
probabilities Cc in (3.10) were taken from literature 33-35). One observes that both 
calculations give nearly the same results for Etab -C 1 GeV/nucleon but they differ 
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Fig. 9. Ratio of the fission cross sections for ‘%I nuclei in the reaction 232Th + *3zT’h calculated under 

the assumptions of multiple GDR excitation, (TV, and within the equivalent photon method, uEPM, which 

presupposes a direct step process. 

by 10% for very high energies, with the fission cross sections being higher if they 

proceed via multiphonon excitation. This discrepancy should be even larger due to 

the following reasoning. The fission probabilities C$ do not correspond to the 

actual decay probabilities of multiphonon states, but to those induced by real 

photons with energies E, = JVYIW~~~. It is found experimentally that the fission 

probability of 232Th is about 18%) 40% and 60% for E, = 15, 30 and 45 MeV, 

respectively 35). But, due to the large amplitude collective motion of a multiphonon 

state, the fission probability for X = 2,3, . . . is expected to be bigger than the values 

given above. Therefore, the existence of multiphonon states would lead to an 

enhancement of the total fission cross section, not compatible with the equivalent 

photon approximation. 

5. Conclusions 

The hydrodynamical model for collective vibrations of protons against neutrons 

in nuclei is shown to be very appropriate for an investigation of the consequences 

of relativistic Coulomb excitation of heavy ions. There are strong evidences that 

states higher in energy than the usual giant dipole resonances may be reached. By 

means of a simple harmonic model for the giant dipole vibrations it was possible 

to infer the probabilities and cross sections for the excitation of such states. Assuming 

that there will be a complete mixing of the multiphonon states with the underlying 

compound nucleus states, predictions about the decay modes of these states were 

performed. 
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However, it must be borne in mind that our calculations are essentially schematic. 

The obvious reason is that the characteristics of the multiphonon states are com- 

pletely unknown. It is not even clear if they exist at all. In this sense the calculations 

performed in this article may help to plan future experiments. 

The coherent action of the electromagnetic field of a periodic string of nuclei in 

a crystal 36) is a promising tool to investigate the response of nuclei to a very 

collective dipole motion never investigated before, and only accessible by means 

of this mechanism. 
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cussions and to M. Blann for helping us with the ALICE code. This work was 

supported in part by CNPq/Conselho National de Desenvolvimento Cientifico e 

Tecnol6gico and by FAPERJ/Funda$io de Amparo B Pesquisa do Estado do Rio 

de Janeiro. 

References 

1) C.A. Bertulani and G. Baur, Phys. Reports 163 (1988) 299 
2) J.C. Hill, Proc. Int. Workshop on relativistic aspects of nuclear physics, Rio de Janeiro, September 

1989, ed. T. Kodama et al. (World Scientific, Singapore) 

3) H.H. Heckman and P.J. Lindstron, Phys. Rev. Lett. 37 (1976) 56 

4) M.T. Mercier et al., Phys. Rev. Lett. 52 (1984) 898; Phys. Rev. C33 (1986) 1655 

5) J.C. Hill et al., Phys. Rev. Lett. 60 (1988) 999 

6) C. Brechtmann and W. Heinrich, Z. Phys. A331 (1988) 463 
7) C. Brechtmann, W. Heinrich and E.V. Benton, Phys. Rev. C39 (1989) 2222 

8) J. Barrette et al., Phys. Rev. C, submitted 

9) C.A. Bertulani and G. Baur, Nucl. Phys. A458 (1986) 725 

10) J.W. Norbury, Phys. Rev. C41 (1990) 372 

11) J.D. Jackson, Classical electrodynamics (Wiley, New York, 1975); 

C.A. Bertulani and G. Baur, Nucl. Phys. A442 (1985) 739 

12) J.W. Norbury, Phys. Rev. C39 (1989) 2472; C40 (1989) 2621 

13) A. Winther and K. Alder, Nucl. Phys. A319 (1979) 518 

14) C.A. Bertulani and G. Baur, Phys. Rev. C33 (1986) 910 
15) R. Fleischhauer and W. Scheid, Nucl. Phys. A493 (1989) 583 
16) D. Lissauer er al., “Study of extreme peripheral to central collisions in reactions induced by relativistic 

heavy ions, Proposal for AGS experiment 814, Brookhaven National Laboratory, 1985 

17) G. Baur and C.A. Bertulani, Phys. Lett. B174 (1986) 23; Phys. Rev. 04 (1986) 1654 

18) W.D. Myers, W.J. Swiatecki, T. Kodama, L.J. El-Jaick and E.R. Hilf, Phys. Rev. Cl5 (1977) 2032 

19) B.L. Berman, At. Data Nucl. Data Tables 15 (1975) 319 

20) J. Ahrens et aZ., Proc. Int. Conf. on photonuclear reactions and applications, Asilomar, 1973, ed. 

B.L. Berman (LBL, Univ. of California, 1973) 

21) B.L. Berman and S.C. Fultz, Rev. Mod. Phys. 47 (1975) 713 
22) B.L. Berman, B.F. Gibson and J.S. O’Connell, Phys. Lett. I%66 (1976) 405 
23) E. Merzbacher, Quantum mechanics, 2nd ed. (Wiley, New York, 1970) 

24) A.S. Goldhaber, Phys. Lett. B53 (1974) 306 

25) G.F. Bertsch, Phys. Rev. Lett. 46 (1981) 472 

26) M.J. Murphy, Phys. Lett. B135 (1984) 25 

27) H.H. Gan, S.J. Lee, S. Das Gupta and J. Barrete, Phys. Lett. B234 (1990) 4 

28) J.S. Levinger, Phys. Rev. 84 (1951) 43 

29) N. Frascaria et al., Phys. Rev. Lett. 39 (1977) 918 



658 A.C. Vasconcellos Comes, C.A. Bertulani / Relativistic Coulomb excitation 

30) Ph. Chomaz and D. Vautherin, Phys. Lett. B139 (1984) 244, 

Ph. Chomaz, Nguyen Van Giai and D. Vautherin, Nucl. Phys. A476 (1988) 125 

31) M. Blann and J. Bisplinghoff, Lawrence National Laboratory Report UCID-19614 (1982) 

unpublished 

32) M. Blann and H.K. Vonach, Phys. Rev. C28 (1983) 1475 

33) A. Veyssiere et aZ., Nucl. Phys. Al99 (1973) 45 

34) J.T. Caldwell et al., Phys. Rev. CZl (1980) 215 

35) A. Lepetre et al., Nucl. Phys. A472 (1987) 533 

36) Yu.L. Pivovarov, AA. Shirokov and S.A. Vorobiev, Nucl. Phys. AS09 (1990) 800 


