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Abstract: The break-up into two pieces of weakly bound nuclei passing by the Coulomb field of a large-2 

nucleus can provide useful information on the inverse fusion reactions which are important for 

the elemental formation in the stars. However, the nuclear interaction complicates considerably 

the extraction of such information. We make a study of the contributions of the Coulomb and 

nuclear interaction to the process, showing when the Coulomb break-up prevails and how a reliable 

separation of multipolarities can be done. 

1. Introduction 

The synthesis of elements in the Universe is characterized by radiative capture 

reactions at extremely low energies, well below the Coulomb barrier. The cross 

sections for these reactions are of relevance for determining the elemental abun- 

dances at various astrophysical sites. Experimentally, the reproduction and measure- 

ment of radiative capture cross sections in the laboratory is extremely difficult, due 

to their low value ‘). In view of this fact, it has been proposed ‘) the experimental 

study of the break-up of a projectile a + b + c into two fragments by the Coulomb 

field of a target nucleus, as a possible way to extract the radiative capture cross 

sections for the inverse process b + c+ a. This idea has been discussed by several 

authors 3-6) and first experimental results along this line are encouraging 7-8). 

Some criticisms to this experimental approach has been raised 539). One of the 

main problems is the contribution of the nuclear interaction to the break-up process 

which complicates the extraction of the photodisintegration cross sections. This 

could be avoided in subbarrier collisions, where the nuclear interaction is unimpor- 

tant. However, at these energies the break-up cross sections are very small and 

hardly provide any advantage over the direct measurements of the astrophysical 

reactions in the laboratory. At high energies the break-up cross sections ‘) are large, 

but one has to be able to separate the nuclear and the Coulomb contribution to the 

process. Previous studies 2Z4) h ave shown that the ideal situation is attained in 

collisions around 100 MeV/nucleon. Also, the break-up process may be resonant 
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(sequential), in which the projectile is excited to resonant states above the break-up 

threshold, or direct to the free continuum states. The sequential break-up is expected 

to be important for fragments with approximate equal “charge-to-mass” ratio, like 

in 6Li+ LY +d. The distinctive features of direct and sequential break-up of 6Li 

projectiles has been investigated in ref. 6), where support to this statement is found. 

As pointed out by those authors, while sequential break-up can be well described, 

such as Coulomb excitation to bound states which live longer than the collision, 

the direct break-up involves energy dependent transition matrix elements into the 

continuum of the fragment states. These continuum states are, moreover, distorted 

by the Coulomb field of the target. Nonetheless, for projectile energies above some 

tens of MeV per nucleon the Coulomb distortion on the final states will be small. 

At such energies it is also expected that the direct break-up will be dominant, 

especially at very forward angles ‘). 

Only a few multipolarities contribute to the radiative capture cross sections, due 

to selection rules. For example, the fusion reaction (Y + 12C + 160 + y is dominated 

by El and E2 matrix elements. The relative importance of each of these two 

multipolarities, as well as their interference, to the total cross section is still controver- 

sial in low energy reactions lo). The advantage of the use of the Coulomb break-up 

to infer the (inverse) matrix elements is that each multipolarity depends differently 

on the projectile energy, as well as on the target charge and mass. Therefore, one 

could separate the different multipolarities by making small modifications in the 

experimental setups. 

At high energies the elastic break-up will only occur in peripheral, or distant, 

collisions. Since there is almost no overlap of the nuclear matter of the nuclei, a 

reliable approximation can be made for the nuclear break-up mechanism in the 

framework of the soft spheres model of Karol ‘l) whose inputs are the nuclear 

densities at the surface and the nucleon-nucleon transition amplitudes at forward 

angles. The Coulomb contribution to the break-up can be handled in the traditional 

fashion with a straightforward multipole expansion. 

As examples of break-up reactions which are related to radiative capture processes 

of interest in astrophysics, we cite 

7Be+a+3He, (la) 

‘60 4. 12c+cr, (lb) 

6Li+a+d, 

‘Li+Lu+t. 

(lc) 

(Id) 

The threshold energies to ignite these reactions are, respectively, 1.58 MeV, 

7.162 MeV, 1.47 MeV and 2.47 MeV. The reaction 3He(4He, y)7Be affects the solar 

neutrino flux at solar temperatures and is closely related to the solar neutrino 

problem. The reaction ‘*C(a, y)160 is important for the stellar helium-burning in 

red giant stars and for the determination of the C/O ratio. The formation of 6Li 
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and 7Li is relevant for testing the standard Big Bang model and the nucleosynthesis 
in the early Universe. All these reactions are needed at very low center-of-mass 
energies, corresponding to the temperatures in the stars ‘). 

By means of the detailed balance theorem the radiative capture reactions can be 
related to the photodisintegration reactions, which are favoured by the phase space 
except in the extreme case very close to the threshold. Furthermore, the copious 
source of virtual photons present in the Coulomb field of a large-2 nucleus offers 
a more promising way to study the photo-dissociation process. 

As shown in ref. “) this encourages the experimental studies of Coulomb break-up 
of loosely bound nuclei incident on heavy targets to have access to the radiative 
capture cross sections of interest in astrophysics. 

In this article we study the interplay of the nuclear and Coulomb intereaction in 
the elastic break-up process. Although some important ingredients of the problem, 
like final-state interactions between the fragments, “post-acceleration” effects 2), 
etc., are not considered here, our results envisage the regions of phase-space where 
experimental efforts should be concentrated. In sect. 2 we develop a calculation of 
the matrix elements for the elastic break-up based on the “soft-spheres” model of 
Karol I’). Since the nucleon-nucleon scattering amplitudes are used as input, it is 
necessary to include “in-medium” corrections, namely the Pauli-blocking effect. 
This is done by means of the “local density approximation”. This allows us to 
obtain an effective optical potential appropriate for collisions at energies around 
100 MeV/nu~leon. After that we perform a multipole expansion of both Coulomb 
and nuclear potentials, what leads to a separation of the center-of-mass and intrinsic 
coordinates of the clusters. In sect. 3 we use model wave functions to deduce the 
center-of-mass scattering amplitudes and the amplitudes for the transition from the 
bound to the continuum states of the clusters. Closed-form expressions are obtained. 
Sect. 4 deals with the applications of the formalism developed in the previous 
sections. Some simple situations are chosen, for which good experimental strategies 
could be accomplished. Our conclusions are given in sect. 5. 

2. Elastic break-up in eikonal approximation 

We consider the reaction 

a+A+b+x+A, (2.1) 

where a is a cluster-like projectile which fragments into two pieces (b + x) when it 
hits a target A. The transition matrix element in DWBA is (see fig. 1) 

Tfi = (X$!~(R)C6$$r)I[ &(r,,4)+ &.,=+(6,) - v,*(R)lIX~~~CR>~I!i(~)), (2.2) 
where the U’s are optical potentials, &, is the wavefunction of relative motion of 
x+b, and Xi+’ is the distorted wave for a. In the final state Xi--’ represents the 
distorted wave in the cm. of x + b. In the way (2.2) is written, the matrix element 
of U,, is zero because (&$(6$._\) = 0. All coordinates are referred to the lab system, 
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Fig. 1. A two-cluster nucleus is dissociated when hitting a heavy target in a peripheral collision. The 

coordinates used in the text are shown. 

with the target as origin. The coordinates rxA and rbA are defined by 

(2.3) 

For the nuclear optical potential, we use the Karol model ‘l), which gives for example 

3 3 

U,A = (~NN(E))~~“‘PA(O)P,(O) (~$;;)3/2 
ZZ 

exp[-r~A/(a:+a:)]+Z (2.4) 
rxA 

where p(r) is the nuclear density parametrized by p(0) e-rz’of, with adjusted p(O) 

and ai in order to reproduce the S-matrix for the elastic scattering in the WKB 

approximation, and (f&E)) is a nuclear matter average of the nucleon-nucleon 

amplitude at 0 = 0. 

Assuming that the actual nuclear matter densities can be described by a Fermi 

distribution 

p(r) = 
PO 

l+exp[(r-R)/d]’ 
(2Sa) 

where 

R = 1.07A”3 , (2.5b) 

d = t/44, t = 2.4 fm , d=OS4fm, (2.k) 

(2.5d) 

and comparing with the gaussian adjust p(0) e-r”ai at r = R, and r = R,++t, one 
finds 

p(0) = ipo eR2’ai, 

4Rt+t2 Rt a2, =_-21- 
4 In 5 -1n5’ 

(2.6a) 

(2.6b) 
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The free nucleon-nucleon amplitude t&E) can be deduced from the experiment. 

It can be written as 

(2.7) 

where a’{; is the total cross section for free nucleon-nucleon collisions, v is the 

relative velocity, Al, is the reduced mass and 

Go = Re [f(e = Wl/Im VI@ =Wl (2.Q 

is determined experimentally 12,13). For ufNDfN we use an average over isospin in the 

form 

(2.9) 

The same average of (Y_ can be made in terms of CQ,,, and CQ,,,. To correct for the 

Pauli-blocking effects in nucleus-nucleus collisions we use the result 14) 

G%(E) = P(J% kr,, b+~%W3, (2.10) 

where P is a reduction factor of the cross section for nucleon-nucleon collisions 

in the nuclear medium. In the local density approximation the Fermi momenta kF, 

and k, are related to the local densities by k,, = ($~~p~)“~. Since the nuclear break-up 

happens at the surface, we use p, and p2 calculated at r = R, and Ra, respectively, 

i.e., pl(r = R,) and p2(r = R2). In this approximation, 

where k, and k2 are the momenta of the nucleons, k is their relative momentum 

and 2q = Ik, - k,-t kl. The function fl(k, k,, k,) is obtained analytically under the 

assumption of energy and momentum conservation of the pair and that they cannot 

scatter into the (filled) local Fermi spheres of radii kF, and k,. Due to the cylindrical 

symmetry in the momentum space distribution, eq. (2.11) can be reduced to a fivefold 

integration I”>. In fig. 2 we present the results of a numerical calculation for P, as 

a function of the variables 5 = k/k,, and 77 = k,,/ kF, , where kF, ( kF<) is the larger 

(smaller) of kF, and k,. For simplicity we use crp; = ;(a,,+ a,,). We observe that 

there will be an appreciable reduction of the free nucleon-nucleon cross section up 

to k/k,> = 4 due to the reduction of the available phase space for scattering. This 

means that Pauli blocking influences the nucleon-nucleon cross section for energies 

of relative motion up to 17 times the Fermi energy, if kF, = 1.35 fm-‘. As an example, 

for I60 + 208Pb at 100 MeV/nucleon, the averaged nucleon-nucleon cross section in 

the surface region is reduced by a factor 0.65 as compared to the free nucleon-nucleon 

cross section. In our calculation, (tNN( E)), as it appears in (2.4), includes the medium 

effect in the way described above. 



C.A. Bertulani, M.S. Hussein / Direct projectile break-up 311 

0.8 t , +“- / 

0.6 

t 

10 

f=k/k,, 

Fig. 2. Reduction factor for the nucleon-nucleon cross section corrected for medium (Pauli) effects. 

k is the nucleon-nucleon relative momentum, and k,, (k,,) is the smaller (larger) of the local Fermi 

momentum at a given point of the overlapping nucleus. 

As a result of the parametrization of the optical potentials in the form (2.4) we 

obtain that 

1 C( ) 

2 

+exp - 2 
d 

= VN(r, R)+ Vc(r, R), (2.12) 

where a2--a~+a~~~~+a~~u~+u~. Now a multipole expansion can be carried 

out, both for the nuclear as for the Coulomb part, resulting in 

VN(r, R)=4n-UFA(R) 2 (i)LYFM(k)YLM(E) 
LM 

x [exp(-[$]‘)jL(i2z$) 

+(-l)Lexp(-[$]2)jL(i2~)]-1), 

(2.13) 
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x(2L+l)-$ Y*LM(3 yLM(;) * (2.14) 

Since the nuclear break-up occurs near the surface, we put R inside the argument 

of j, equal to RT = R, + RA, thus Rr/ a2 is replaced by RTr/ a2. With this approxima- 

tion the matrix element (Xgr,‘(R)4!$,\( r)l VN(r, R)IX$‘4%,\) factorizes and becomes 

7%’ = 47r C (X:;‘(R)1 Y%(i) U,N,(R)IX:;‘(R)) 
L,M 

= C (CY)LM(T,N,JLM, 
LM 

where 

(2.15) 

(2.16) 

with 4 = L for j = x, and rj = 0 for j = b. In (2.15), Tz is the elastic factor of c.m. 

scattering of the projectile by the nuclear field and Tz, is the excitation factor. 

The Coulomb amplitude also factorizes into an elastic and an excitation factor, 

where 

Tz= C ( T~)LM(T&JLM (2.17) 
LM 

with 

(2.18) (T:)LM =4?rZAe2 1 LM & (X$(R)1 y$’ 1X$‘(R)) , 

(CALM =,C, [z~(-~)~+z~(~)'I(~~~:(~)IT~YLM(~)I~~~,~(~)). (2.19) 

It is just the matrix elements in (2.19) which are of interest in nuclear astrophysics. 

In order to extract information on these matrix elements one has to be able to 

perform an accurate measurement of the break-up differential cross sections. When 

the spin orientation is not specified, the break-up cross sections when the center-of- 

mass wave vector of the fragments lies between kf and k,+dkr, and the relative 

motion wave vector lies between q and q + dq, is given by 

2T 
dv=yITcI 

2 d3krd3q 
(2T)6 S(Ei-&) 

{ TFM + T&,} ’ dRF da, dsbx , (2.20) 
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where u(E) is the velocity (energy) of the projectile, 

kf=kb+k,, b, 
ma 

(2.21) 

and p (CL,_) is the reduced mass of the system a+ A(b + x). The relative kinetic 

energy of the fragments after the break-up iS &bx = h2q2/2pbx. Using the energy and 

momentum conservation laws we can also rewrite (2.20) as 

da=-- ’ mxkx 1 {TpM+T&,} ‘d&d3kb. 
h3u (2%-)5 L&f 

(2.22) 

A theoretical calculation of the differential and total cross section from (2.20) or 

(2.22) is far from trivial and involves a large set of numerical integrations to determine 

the matrix elements TLM. However, by using appropriate scattering wave functions 

some analytical results may be carried up to a point where numerical calculations 

are feasible. This is done in the next section. But, already at this point, some simple 

conclusions can be done in terms of the form of the matrix elments TLM. First, the 

amplitude TLM decrease with increasing multipolarity L, exponentially (nuclear 

case), or as a power of R,/ RT = R,/( R,+ R,J (Coulomb case). Therefore, only 

some few multipolarities need to be considered. We only account for the first two 

multipolarities, L = 1 and L = 2. Secondly, depending on the masses, or charge-to- 

mass ratio of the fragments, the contribution of the first multipolarity may be 

identically zero. The L= 1 multipolarity corresponds to the homogeneous part of 

the field. If the masses of fragments are equal (mX= mb), from (2.15) and (2.16) 

one observes that the L = 1 nuclear component is null. This happens because the 

homogeneous part of the nuclear force acts equally on both fragments and does 

not transfer a net relative momentum to them. Therefore, only the tidal (L = 2) 

component of the field is effective in dissociating them. In the case of the Coulomb 

field the same happens for equal charge-to-mass ratio fragments, i.e., for Zx/m,= 

Zb/mb, because although the Coulomb force is proportional to the charge of each 

fragment, the resulting acceleration is proportional to the inverse of their masses. 

This is a well known result in bremmstrahlung of heavy-ion collisions which vanishes 

for equal charge-to-mass ratio partners. 

3. Computation of the matrix elements 

The center-of-mass wavefunctions ,y$’ and ,y$) which enter into the matrix 

elements of eqs. (2.15) and (2.18) are evaluated within the eikonal approximations, 

as done in refs. ‘6*‘7) for the inclusive break-up cross section: 

Udz’, b) dz’+@,(b) (3.la) 
00 
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-/J(R) = e-%R exp 1 I -& 
m 

Udz’, b) dz’+ W,(b) , 
z I (3.lb) 

where 4,(b) = Z,[Z,cu/( U/C)] In (kb) is the Coulomb phase, and (Y = l/ 137. 

The excitation matrix elements for the transition ~xb,i + &-,r are just those that 

one is interested in astrophysical reactions. We shall use simplified model wavefunc- 

tions for this transition in order to obtain the general properties of the elastic 

break-up differential cross sections. 

In the case of a &potential corresponding to the assumption of zero-range nuclear 

forces between the clusters in the projectile, we may use the following wavefunctions 

(3.2a) 

(3.2b) 

with q given by (2.21), and n = (~JA~~E/~~)“~ is determined by the separation energy, 

E, of the clusters b + x. 

Inserting (3.1) and (3.2) into the matrix elements (2.15), (2.18) and (2.19), one 

obtains after some approximations, 

(T:)LM = (X!$(R)I %4(L6 ~,N,(JOIX~‘(~)) 

= -27rC/ILM e-Qsa2’4FM (QJ , (3.3a) 

where 

(3.3b) 

P 
.M Lt M= even 

LM = z (3.3c) 

L+M=odd. 

and 

I 
m 

F~(f?t) = bdbJM(Q,b)e-b2/a2exp iC$e-b’l”2+2i6,(b) 
I 

(3.3d) 
0 

In the above expressions Qe and Q, are the components of Q parallel and 

perpendicular to the z-axis, respectively; and JM(x) is the Bessel function of first 

kind. The integral (3.3d) has to be performed numerically and it governs the amount 

of momentum transferred. 

The nuclear excitation matrix element is, accordingly 

( CJLM = jz b (di&(r)l VFL(r) YLM(W4i3~N 

=fi iLYLM(~){GL(mx)+(--I)LGL(mb)} > (3.4a) 
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where 

I 
co 

GL(mj) = 
0 

(3.4b) 

The Coulomb amplitudes for the center-of-mass scattering are found to be 

( T:)LM P 
= (47r)2Z, ez (2L+ l):y_ I)11 Q>“KM(Q), (3Sa) 

where 

I 

cc --h=/a= 

KM(Q) = KL12(Qeb) exp {iC e-b2’“2+2i&.(6)} (3Sb) 
0 

b dbJ,(Q,b) + 

with K,(x) equal to the modified Bessel function of first kind. 

The Coulomb excitation amplitudes will be 

4. Applications and discussions 

As an application of the formalism developed in the last two sections we take 

the reaction 

at 100 MeV per nucleon. 

‘Li + “‘Pb + (Y + t + “‘Pb (4.1) 

In fig. 3 we show the contour plots of the differential cross section d2a/dky dk\, 

where ki is the (final) transverse momentum of the respective cluster j. This quantity 

is especially useful since it can be measured experimentally without much difficulty. 

5 

4 

-; 3 

Q- 
- 2 
Y 

1 

*01 2 3 4 

k: (fm-‘1 

Fig. 3. Contour plots of the double-differential cross section (in arbitrary units) d*u/dky dk: of tritium 

and alphas as a function of their transverse momentum in the lab system. They originate from the 

break-up of 100 MeV/nucleon ‘Li projectiles incident on “‘Pb. 
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It can be calculated from (2.22) by using da, = 2rrk: dk;/kz, which is a good 

approximation for fastly moving particles. 

One observes from this figure that there is a ridge in the cross section for ky = k\ . 

Such feature is also observed for other break-up reactions and is peculiar to the 

peripheral processes I’). The distribution has a maximum for transverse momentum 

equal to 0.7 fm-‘, which corresponds to a transverse energy of the fragments of 

order of 2.5 MeV. That is, the peak in transverse energy of the fragments is approxi- 

mately of the same magnitude as the binding energy of the clusters. Such feature 

is also common to the peripheral dissociation of loosely bound particles 18). 

In fig. 4 we show da/d&,,, as a function of flc.,,, for the same reaction (4.1), 

where ec.,,. is the scattering angle of the center-of-mass of the clusters, as seen in 

the laboratory. We show separately the Coulomb, nuclear contributions and the 

interference between the two. Except for the very forward scattering angles, the 

Coulomb contribution prevails over the nuclear one. Interference is negative and 

two orders of magnitude smaller than the Coulomb dissociation, and may be 

neglected. The L= 1 terms in Coulomb and nuclear dissociation accounts almost 

entirely of the calculated cross sections. In this particular case, one observes that 

by selecting the angular interval between 1” and 3” one obtains the Coulomb 

contribution to the dissociation with only a 10% influence by the nuclear interaction. 

In table 1 we show the contributions from each multipolarity to da/d&.,. for 

the dissociation of 7Be, 7Li, 160 and 6Li projectiles incident on ‘08Pb at 

10 r 
Coul 

& _;-\\ 
\ 
P ; ‘, 
- l- r-x \_-- N \ 

: 

/.; -1 

-_’ \ 

\ 
nucl I' 

s 
/' 

\ v-c 

i 
\,--, I 

int 

0.1 y . . . . . . . . . . . . . f..h . . . . . . 
_ :.“... . ..’ \ ,:. 

i ,:’ 
(.......’ 

: ..“. : 
i: %. : 

nm. i 1 1 1 I I I 1 IL L.l 1 ’ 1 .: i 
V.” I 

0 1 2 3 

3 (deg) 
Fig. 4. Elastic differential cross section for the dissociation of ‘Li at 100 MeV/nucleon incident on “‘Pb, 
in the lab system. The Coulomb (solid curve), nuclear (dashed) and Coulomb-nuclear interference 

contributions to the break-up are shown separately. 
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TABLE 1 

Differential cross section, da/da, in mb/sr, for the elastic break-up at t&,=30 of 

several loosely bound nuclei incident or ““Pb targets with 100 MeV/nucleon. The 

contribution of several Coulomb and nuclear multipolarities are displayed separately 

317 

L=l L=2 L=3 

C N C N C N 

‘Be 122 45 31 22 4.7 0.3 

I60 0 84 52 48 2.9 3.1 

‘Li 501 41 29 24 2.4 0.2 

6Li 0 23 18 15 1.5 2.0 

100 MeV/nucleon, and for 8,.,. = 3”. We observe that, in those cases where the 

masses (charge-to-mass ratios) of the fragments are equal, or nearly equal, the 

nuclear (Coulomb) L = 1 contribution to the cross section are drastically reduced. 

This occurs due to the selection rules for the dissociation amplitudes, as discussed 

in sect. 2. The final-state interactions between the fragments may modify such results, 

and are not considered here. But, a more exact treatment of the dissociation process 

should not destruct completely the fingerprints of these effects. 

In fig. 5 we plot the differential cross section da/da for the same reaction, as a 

function of the relative kinetic energy E in the final state of fragments. One observes 

15 

z 
E 10 

2 
5 
w 
Y 
b 5 

-0 

0 

+ 7Li+Pb -a+t+Pb 1 

- \ 

100 MeWnucleon 

Fig. 5. Relative energy distribution of the fragments originated from the dissociation of ‘Li incident on 
““Pb at 100 MeV/nucleon. The solid and dashed curves give the Coulomb and nuclear contributions to 

the cross section, respectively. 
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that the Coulomb interaction favours the break-up into low relative kinetic energies, 

while the nuclear interaction develops a long tail for the kinetic energy distribution. 

Also shown is the Coulomb-nuclear interference, which is negative. Again one sees 

that the peak on the relative kinetic energy occurs for kinetic energy of order of the 

binding energy of the clusters. 

In fig. 6 we present the triple-differential cross section d3a/d& don, dE, for the 

emission of a-particles at 3” and tritium at 1” in the lab system, as a function of 

the kinetic energies of the a-particles. The Coulomb (solid curve) and nuclear 

(dashed curve) are shown separately. Again we see that the Coulomb dissociation 

prevails over the nuclear one in a narrow energy region. The width of the Coulomb 

peak is appreciably smaller than the width of the nuclear peak, similarly to what 

was shown for the relative energy distribution of fig. 5. 

From what was shown in figs. 2-6, it seems clear that, only in the very forward 

angular regions, and for a very narrow energy interval, the Coulomb contribution 

to the dissociation process can be reasonably disentangled from the nuclear contribu- 

tion. This means that very dedicated experimental efforts have to be put in order 

to achieve this goal and relate the break-up experiments to the associated fusion 

reaction. Recent experiments on 6Li and 7Li break-up 19-2’) at 26 MeV/nucleon and 

9 MeV/nucleon, respectively, have shown the feasibility of the method. However, 

as was suggested in ref. 2), the ideal situation occurs for beam energies around 

100 MeV/nucleon. At such energies it may be critical to determine the relative energy 

3OOk, , , , , , , , , , ( , , , , , , , ‘_I 

3,=3” 

3t= 1” 

‘Li+Pb - a+t+Pb 

100 MeV/A 

375 400 425 450 

E, (MeV) 

Fig. 6. Triple differential cross section for the break-up of ‘Li at 100 MeV/nucleon incident on *“Pb, 

as a function of the lab energy of the a-particle. The dashed curve results from the nuclear interaction, 
while the solid one is the contribution from the Coulomb interaction. 
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TABLE 2 

Total cross sections, in mb, for the elastic break-up of 

loosely bound nuclei incident on “sPb targets at 

100 MeV/nucleon. The Coulomb and nuclear contribu- 

tions are shown separately and the total cross section 

includes a (negative) contribution of the Coulomb- 

nuclear interference 

‘Be 

I60 

‘Li 

6Li 

C N Total 

252 12 258 

9 52 56 

125 8 131 

11 23 27 

of the fragments from the lab measurements. In relation to this, the so-called 

“magnifying-glass” effect ‘) may be of crucial help to extract precise information 

about the relative energies. 

In any case it seems clear that to have access to the Coulomb matrix elements 

from break-up reactions, one has to either have a good knowledge of the nuclear 

contribution to the dissociation, or to look for these situations where the Coulomb 

interaction is the dominant one. In table 2 we show the total cross sections for the 

dissociation reactions of eqs. (la)-( Id), with *‘*Pb targets and incident energies of 

100 MeV/nucleon. The Coulomb and nuclear parts of the total cross sections are 

given. The sum of the two parts is not equal to the total cross sections due to a 

small contribution from nuclear-Coulomb interference, which is always negative. 

The best results are for 7Be and 7Li break-up reactions, in which cases the L = 1 

Coulomb interaction is by far the most effective one. 

5. Concluding remarks 

Experimental studies of the elastic break-up of loosely bound nuclei have been 

proposed ‘) as a possible way to investigate the nuclear fusion cross sections of 

interest in astrophysics. To this aim it is necessary to determine the break-up cross 

section at low relative energy of the fragments. It is also necessary to disentangle 

the nuclear and Coulomb interaction effects in the cross sections, as well as the 

contributions of the different multipolarities to the process. We have shown in this 

article that, due to its peripheral nature, the nuclear interaction effects may be well 

accounted for in the “soft spheres” model of Karol, which depends on the nucleon- 

nucleon scattering amplitudes at the nuclear surface. 

A multipole expression of the Coulomb, and nuclear, interaction is straightfor- 

ward, and is helpful in order to understand the character of the break-up process. 

In most cases, either the Coulomb or the nuclear L = 1 terms of the expansion 

dominate over the L> 1 terms, largely. This means that, in those cases where the 
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radiative capture cross section have important participation of high multipola~ties 
(L> 2), the determination of such contributions from elastic break-up experiments 
is hopeless. Also, if the nuclear interaction dominates the break-up process, very 
good experimental strategies have to be found in order to eliminate the nuclear 
contribution. 

The best perspectives occur for clusters with unequal charge-mass ratios, like 
(Y + t, (Y + ‘He, etc. In view of the tremendous difficulties to determine the fusion 
reactions at low relative energies, it is unquestionable that such experiments should 
be encouraged. 
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