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Abstract: We develop a Glauber-type formalism to study the excitation of giant resonances in heavy-ion 
collisions at intermediate energies. Contributions from the nuclear and the Coulomb interaction 

as well as their interference are easily accomplished within this approach. Application is done for 

the excitation of isovector giant dipole and isoscalar giant quadrupole resonances in ‘08Pb by 

means of I70 projectiles at 84 MeV/nucleon laboratory energy. A good agreement with the 

experimental data is found. The formalism is parameter-free, having as inputs the free nucleon- 

nucleon cross sections, the ground-state densities and the transition densities of the nuclei. 

1. Introduction 

The Coulomb excitation of giant resonances in heavy-ion collisions at high 

energies opens new possibilities for the study of multipolarity content, relative 

strength, decay branching-ratios, and other aspects of giant resonances in nuclei. 

As compared to electron scattering there is the advantage of the coherent action of 

the field of the 2 protons in the projectile. This increases the cross section up to a 

factor lo4 for very heavy ions, as compared to electron scattering. Increasing the 

beam energy also increases the Coulomb excitation cross section since the ratio 

between the interaction time and the nuclear transition time is of order unity (or 

less) even for large impact parameters, b > R1 + R2. A drawback is that the process 

is accompanied by contributions from the nuclear interaction. 

The experimental investigation of the excitation of giant resonances with inter- 

mediate energy heavy ions is only at its beginning. The analysis of the data of 170 

(84 MeV/nucleon) + “‘Pb performed at GANIL ‘) has shown the usefulness of the 

method and encourages further measurements. In that experiment the excitation of 

giant resonant states in “*Pb was identified by a measurement of the energy loss 

and the scattering angle of 170 is the collision. The energy transfer in the reaction 

is restricted to small values (ho 6 20 MeV) and the scattering angles are very small 

(0 =S 59, in order to avoid the projectile or target direct breakup. These inelastic 

data can be explained within a DWBA prescription with optical model parameters 

used to fit the elastic scattering data ‘). 
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In this article we show that the excitation of giant resonances in intermediate- 
energy collisions (-100 MeV/nucleon), as in the experiment cited above, can be 
well described in a Giauber model ‘). There is practically no adjustable parameters 
needed, except for the deformation parameters & which characterizes the strength 
of the collective excitation. Amazingly, the agreement with the experimental data 
is very good. Due to its simplicity, this approach allows a clearer understanding of 
the reaction mechanism than the more time consuming DWBA recipe. Similar 
approaches have been successfully applied by several authors 3*4) to the study of 
heavy ion excitation in inte~ediate-ener~ collisions. 

In the semiclassical theory of Coulomb excitation at low energies ‘) the inelastic 
cross section can be expressed as 

where Pit’ is the probability amplitude for exciting a nuclear state f, from an initial 
prescribed state i, in first-order perturbation theory; (da/da),, is the Rutherford 
cross section; S: = Wa/ v is the adiabaticity parameter, where a = Z,Z,e2/2pv2 is half 
the distance of closest approach in a head-on collision. The strength function Ixfi[’ 
expresses the response of the nucleus to the energy transfer hw in the collision, and 
F( 6,e) is a kinematical function depending on the scattering angle ‘). For Coulomb 
excitation of ‘**Pb in the collision 170f208Pb at 84 MeV/nucleon, one can show 
that the maximum values attained by these functions are /xfij*-O.9 and F(t?, 5) - 
10e3, if we consider the excitation of a nuclear state with Rm - 10 MeV. This ensures 
the validity of first order pe~urbation theory for the semiclassical calculation 6). 
Based on these values, the semiclassical formalism was used by some authors [e.g. 
ref. “)I to study Coulomb excitation in intermediate-energy collisions with heavy ions. 

The above argument is based on Coulomb excitation alone. But, for large scattering 
angles inelastic processes must have participation from the nuclear interaction. In 
this case, Coulomb-nuclear interference should also be important. Moreover, if the 
Coulomb excitation calculated semiclassically decreases strongly with decreasing 
angle, the cross sections at small scattering angles should be dominated by diffraction 
patterns, characteristic of strong absorption. As we show in the next sections this 
is indeed the situation for I70 + *08Pb at X4 MeV/nucleon. Therefore, a theoretical 
analysis of the excitation of giant resonances in inte~ediate-energy collisions can 
be successfully achieved only with inclusion of the effects of the strong interaction. 
Exception occurs if the ions involved are very heavy (Z1 ) Z2& 50), or if the beam 
energy is very large (E,,,/nucleon b 1 GeV). In such situations the semiclassical 
calculations of Coulomb excitation alone give reasonable descriptions of the inelastic 
reactions (due to the Lorentz-contraction effect “)). 

Even when the strong interaction plays a dominant role, the reaction occurs in 
such a way that the nuclei keep their identities and the energy transfer to the target 
is small in a single collision. Therefore, the process is gentle and can be described 
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as a first-order perturbation. Moreover, the scattering angle is very small and this 
enables the use of eikonal wavefunctions for the distorted waves ‘). We follow this 
procedure in sect. 2 where the inelastic scattering inputs are calculated using the 
Tassie model ‘) for the transition density of the target. In sect. 3 we present the 
result of numerical calculations and discussion. Our conclusions are given in sect. 4. 

2. Inelastic amplitude 

In the disto~ed-wave-impulse approximation the amplitude for the transition of 
nucleus 2 from the ground state [O} to the excited state lh~) is given by 

(2.1) 

where k( k’) is the initial (final) momentum of the projectile (nucleus 1) and Ui”,( r) 
is the interaction potential. 

Using eikonal wavefunctions for the distorted waves, we obtain 

f”“(@> =fi?(@~-t”G”(~) , (2.2a) 

where 

J eipr+iX@) (r> h&I UN,c(r)lr, 0) d3r, 

=xc(b)+xdb), (2.3) 

and x&o) represents the phase induced by the nuclear (Coulomb) interaction 
I_&( U,). For the m&ear interaction we use the tpp formalism ‘), which relates the 
nucleon-nucleon potential to the nucleon-nucleon cross section by means of a 
double-folding 

u,(r) = J %&(P, 8) d3r’=(fNN) J ~~(~-~‘)~~(~‘) d3r’, (2.4) 

where r’ is the intrinsic coordinate of the target nucleus. 
The free nucleon-nucleon t-matrix t&E) can be deduced from experiment. At 

intermediate and high energies, it can be written as 

&J(E) = -$ihV(TNN(E)[l -M&E)], (2.5) 

where O-~&E) and (Y&E) are the total nucleon-nucleon cross section and the 
ratio of real to imaginary part of the forward nucleon-nucleon scattering amplitude. 
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To correct for Pauli blocking we use the effective nucleon-nucleon cross section 
in the nuclear medium 

G&N(E) = PC& J%I, &J&W , (2.7) 

where EF, and EFz are the Fermi energies of the nuclei at the point where the 
nucleons collide (local density approximation). The reduction factor P[ E, E,, , E&j 

was calculated anal~ically in ref. ‘1. For I70 + “* Pb at 84 ~eV/nucleon, the averaged 
nucleon-nucleon cross section is reduced by a factor 0.62 as compared to the free 
nucleon-nucleon cross section 9). 

To avoid lengthy numerical calculations we parametrize the nuclear densities as 
gaussians and determine the central densities and widths by the condition that they 
will be a good approximation for the densities at the nuclear surfaces. This amounts 
to write lo) 

pfi)(y) = pg) e-r’/a: 
, CW 

where ai = m and p$’ =$-pa eRifZa, with i = 1,2; p. = 0.17 fmm3, a = 0.65 fm and 
Ri = 1.2Af’3 fm. 

Inserting (2.8) in (2.4) and expanding into multipoles to separate the projectile 
coordinate and the intrinsic coordinate of the target, we obtain 

As a next step we calculate (F, &..c/ f.&(r>/r, 0) by means of the hydrody~amical 
model of Bohr-Tassie ‘) for the transition density (A,uIp2(r’)10). In this model, the 
transition density of the target nucleus is reIated to the derivative of its ground-state 
density by 11) 

(2.10) 

where @A is adjusted to reproduce the strength of the excitation. 
Using (2.4)-(2.10) the matrix element (r, @I U,(r)lr, 0), which appears in (2.2) 

can be straightfo~ardly evaluated. After integrating over tlie intrinsic coordinate 
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of nucleus 2, using the integral 

J 
m 

rA+'jA (pr) eeq2rz dr = -P=/w 
0 

we obtain 

(r,~~~~~(r)~r,O)=4.irp~'(tNN)e-r*'n*~~(-i)'Y,,(r^) 

= Chrh e-r2’az Y:,(G) , (2.11a) 

where a2 = CY;+ a: and 

(2.11b) 

Inserting (2.11) in (2.2) and integrating over the azimuthal angle, the nuclear 

amplitude becomes 

f$(~) =G CA O” dbbJ,(q,b) eix@) J dz r* e(ioz’u-rz’a2) Y,+(&, 0) , (2.12) 
--oo 

where r= b +z and cos 8,=z/r. 7 

In the above expression we used qz = ki - kf cos 8 = w/v, where ho is the energy 

transfer in the reaction. This approximation is well justified for small scattering 

angles and large relative motion energies. The transverse momentum qt is equal to 

2k sin $0 where 0 is the scattering angle. We shall consider the giant resonance as 

a single level above the ground state, with hw equal to the giant resonance energy. 

The nuclear phase shift xN(b) which enters eq. (2.3) can be obtained in a closed 

form if one uses a gaussian parametrization of the densities, as given by eq. (2.8). 

It results in lo) 

(2.13) 

The Coulomb phase xc(b), in the case of a gaussian distribution of charge for 

both nuclei, was derived by Flldt 12) as 

xc(b) = 2z;$ao In (kb)+$E,[b2/R&] , 1 (2.14) 

where a0 is the fine structure constant, and the exponential integral E,(x) is defined 

by 

E,(x) = (2.15) 
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The Coulomb phase xc(b) is finite for b = 0, yielding 

xc(O) = 2z~~~ao [In (/CR,) - C] , 

where C = 0.577. . . is the Euler constant. For RG we use a, introduced in eq. (2.11). 

The first term of the Coulomb phase in eq. (2.14) is the contribution of a point-like 

charge distribution and agrees with the result obtained from the angular momentum 

expansion of the elastic Coulomb amplitude. This term is of crucial relevance to 

determine the appropriate dependence of the inelastic differential cross section. The 

second term inside the parentheses of eq. (2.14) is a correction for the consideration 

of a gaussian distribution of charge “). As we verified above, it eliminates the 

divergence of the Coulomb phase for a point charge distribution at b = 0. 
In the case of the Coulomb interaction the transition matrix in (2.2b) becomes 

(r,h~lIUc(r)lr,0)=Z,e2 (r,hp~f$,lr,O)d’r. I 
Y,m(~)~W, ml, (2.16) 

where 

&(EZ, m) = r”YT,(i’)(hp/p2(r’)10) d3y’, (2.17) 

are the electric multipole moments of nucleus 2. We only consider monopole- 

multipole interaction, assuming the projectile to be a point charge distribution. 

Using the Bohr-Tassie model to infer &(Eh, ,u) in eq. (2.2b) and performing the 

integral in the azimuthal angle, we obtain 

f;“(0) =G Dh /m db bJ,(q,b) eixcbt irn dz eiwr/‘--& YhP(&, 0) , 
0 --co r 

(2.18a) 

where 

DA = v3,zz 
1 

e2pgj AR;-* W - 1) !! 8+’ 
2”-VZGi - 

(2.18b) 

The integrals in eqs. (2.12) and (2.18) are performed numerically. The differential 

cross section of the excitation of a A-pole state is given by 

(2.19) 

Due to the prescription which we used to construct the nuclear potential and 

excitation amplitude, we foresee that the Ph values which appear in eq. (2.10) are 

not equal for the nuclear and for the Coulomb excitation amplitudes. For example, 
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the nuclear excitation of isovector giant dipole resonances (IVGD) are dependent 

on the neutron (or proton) excess of the target. If 2, = N2 and the proton and 

nuclear radii are equal, the excitation of IVGD states in the target can be accom- 

plished only if the coupling of the projectile to neutron and proton are different. 

This is always the case for the Coulomb interaction but not for the nuclear one, at 

least in the way that we postulated it. On the other hand, the excitation of isoscalar 

giant quadrupole states (ISGQ) can result from both Coulomb or nuclear interaction. 

In the applications of the next section we shall use py = 0 and p,” =L p:. 

The deformation parameters /3: can be related to the reduced matrix elements 

for electromagnetic transitions. Using sum rules for the reduced matrix elements, 

one finds 

PFR= $=$, 
J--- 

P;R= f$$, 
lr- 

(2.20) 

where R is the mean radius of the target nucleus; m is the nucleon mass and E is 

the excitation energy. 

3. Results and discussion 

We can write the integrals (2.12) and (2.18) as 

(3.1) 

where r$Jb) are interpreted as the Coulomb (nuclear) excitation strength for a 

given impact parameter b. They are given in terms of integrals over the variable z, 

exhibited in eqs. (2.12) and (2.18). 

The main contribution to these integrals comes from the region around z = 0. If 

we use the approximation Yhp( 0,, 0) = YA,($, 0), the excitation strength functions 

T&(b) may be calculated analytically. The results are 

J;;a 
C?(b)= hv 

_ i”C,y,,(4~, O)bA e[ix(b)-(o~12~)2-(bl~)*l , (3.2) 

r&p(b) =k 
hv rr;cy; 1>, Y&F WW-(h+1)'2 ’ 0 

(h--1)/2 
elix(b)-wb/ul , (3.3) 

V 

The validity of these approximations was checked numerically comparing them 

to the solution of eqs. (2.12) and (2.18) for 170+20xPb at 84 MeV/nucleon. The 

error in the differential cross sections was found to be less than 5%. Therefore, the 

calculation of the differential cross section for the excitation of giant resonances in 

intermediate-energy collisions can be reduced to the evaluation of a single integral 

over impact parameters. 
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In fig. 1 we show the differential cross section for the excitation of the isovector 
electric dipole resonance with energy EcnR = fiw = 13.5 MeV in “‘Pb by means of 
I70 projectiles at 84 MeV/nucleon laboratory energy. In these calculations we used 
( cNN) = 60 mb and (ty NN) = 1. The experimental data, represented by black dots, are 
taken from ref. ‘). We see that the Coulomb amplitude alone is capable to reproduce 
the data quite well. Since the Coulomb interaction is known very well, this exhibits 
the fact that the excitation of IVGDR in heavy-ion collisions at intermediate energies 
is a powerful tool to investigate the properties of such states “)_ A deformation length 
of PIR = 0.42 fm was used, which corresponds to 113% of the energy weighted sum 
rule result given by eq. (2.20). It must be borne in mind that when we use fN = 0, 
it does not mean that the nuclear interaction does not participate in the excitation 
process, since it always contributes appreciably to the phase x(b). It causes the 
distortion of the elastic scattered wave which is essential for the correct calculation 
of the excitation amplitude (DWBA). Also, the Coulomb phase is very important 
since it is responsible for the broad peak of the differential cross section, just in the 
region where the experimental data are available. The peaks at low scattering angles 
and the wiggling of the cross section at large angles are caused by nuclear diffraction. 

Fig. 2 shows the same differential cross section, but for the excitation of a giant 
quadrupole state with energy of 10.6 MeV in “‘Pb by means of 170 projectiles at 
incident energy of 84 MeV/nucleon. The experimental data represented by bIack 
dots are taken from ref. ‘). A deformation length of P,R = 0.55 fm was used, which 
corresponds to 87% depletion of the energy weighted sum rule result of eq. (2.20). 
The short dashed line corresponds to the contribution of the nuclear amplitude, 

01234567 

Gil (deg) 
Fig. 1. Differential cross section for the excitation of isovector giant dipole resonance in “‘Pb by means 

of 170 projectiles at 84 MeV/nucleon. Full dots represent the experimental data which were taken from 

ref. ‘). The solid line is the result of numerical calculations of eqs. (2.18) and (2.19). We used the values 

fi?R, = 0 and /3FR, = 0.42 fm. 
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c E I L,,b= 84 MeV/A 
I I I I I I 

01234567 

ecm (deg) 

Fig. 2. Same as in fig. 1, but for the excitation of the isoscalar giant quadrupole resonance. Full dots 

represent the experimental data which were taken from ref. ‘). Also are shown the nuclear (dotted line), 

Coulomb (dashed line) and total (solid line) contributions to the differential cross section based on 

numerical calculations of eqs. (2.12), (2.18) and (2.19), respectively. We used the values PFR,= PTR, = 

0.55 fm. 

while the long dashed line corresponds to the contribution of the Coulomb interac- 

tion. The solid line results from both contributions, plus the interference between 

them. We observe that for the excitation of ISGQ states the nuclear contribution 

to the excitation is large, and may be viewed as the result of a tidal pull which the 

nuclear force acts on the target as the projectile passes by it. 

The agreement between the numerical calculations and the experimental results 

are remarkably good, in spite of the simplicity of our approach. The deformation 

parameters used to fit the data are in very close agreement to the theoretical analysis 

of Bertrand and collaborators ‘,13), using a DWBA calculation. 

The origin of the broad peaks (on a wiggly background) in figs. 1 and 2 are better 

understood if one compares the results of the quantum calculation as performed 

here with the semiclassical calculation of Coulomb excitation. Such calculations 

were carried out in ref. 6), where retardation and relativistic effects on Coulomb 

excitation at intermediate energies were taken into account. The semiclassical 

calculations depend strongly on the adiabaticity parameter [( 13) = (ma/v) cot if% 

For too small 0, [( 13) % 1, and the semiclassical cross section (dcT/dKJ),, is negli- 

gible “). Only when ((0) becomes appreciable as compared to unity, does the 

differential cross section have a large value. Therefore, as a function of 8 the 

semiclassical cross section (dr/dfi),, increases rapidly, until it reaches an approxi- 

mately constant value, just at the angular region of the broad peak from the quantum 

calculation. In other words, the semiclassical calculations point to the relevant 

angular interval of the differential cross section, where the Coulomb excitation 
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becomes dominant. It is clear from figs. 1 and 2 that diffraction, which is not included 
in the semiclassical calculations, plays a fundamental role for the correct desc~ption 
of the differential cross section. 

The integrands in eq. (3.1) are strongly oscillating and the main contributions to 
the integrals comes from the b-values satisfying the stationary phase condition 

qr=Re 9 , r 1 (3.4a) 

where the right-hand side means the absolute value of the real part of the derivative 
of the eikonal phase with respect to b. 

A semiclassical calculation of the momentum 
parameter b results in 

.ZrZ,e2 
s:= fivb * 

transfer in a collision with impact 

(3.4b) 

If we interpret qt given by eq. (3.4a) as the most probable momentum transfer for 
a given impact parameter and compare it to the classical value (3.4b) we obtain the 
result displayed in fig. 3, with the solid [dashed] line resulting from the use of eq. 
(3.4a) [(3.4b)]. We observe that qt is equal to the classical value only for b greater 
than 15 fm. At lower impact parameters, qt passes through a minimum around 
b = 12.8 fm, where the Coulomb repulsion and nuclear attraction equilibrate each 
other. Interference appears from impact parameters on different sides of this point 
contributing to the same value of qt. Thus, for qt G 2 fm-‘, corresponding to B s 3.2”, 
the cross section should show accentuated interference effects. Larger values of qt 

= 84 MeVIA L 

10 12 14 I6 

b ffm) 

I8 20 

Fig. 3. Momentum transfer resulting from the stationary phase condition on the eikonal integrals as 
expressed by eq. (3.4a). The momentum transfer due to the Coulomb repulsion alone is exhibited by 

the dashed line (eq. (3.4b)). 
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should be suppressed by a strong attenuation manifested through the imagina~ 

part of x(b). These arguments explain the behaviour of the cross section, and 

practically all physics behind the reaction mechanism. 

5. Conclusions 

We have developed a simple approach to excitation of giant resonances in 

heavy-ion collisions at intermediate energies, based on the distorted-wave impulse 

approximation, eikonal wavefunctions, and the Tassie model for calculation of the 

transition density of the excited nucleus. In such approach, questions like the spatial 

origin of nuclear plus Coulomb interference, or the connection to semiclassical 

calculations are easily understood. 

This procedure has shown that the main ingredients of the reaction mechanism 

are of geometrical origin and presents an advantage over the more complicated 

DWBA calculations, ususally referred to in the analysis of the experimental data ‘*13). 

The Coulomb excitation of giant resonances with heavy-ion collisions in inter- 

mediate and relativistic energies is a rapidly growing field to obtain useful informa- 

tion on the nuclear structure. From the theoretical point of view there remain 

questions like the effects of retardation and relativistic kinematics in intermediate- 

energy collisions. Such effects were shown to be of relevance in ref. “). The Glauber 

approach to the inelastic process as described above provides a natural basis for 

the incorporation of such effects in the inelastic cross sections. Work in this direction 

is in progress. 

We are grateful to Prof. A. Winther for useful suggestions and critical reading of 
the manuscript. This work was supported partially by the Conselho National de 
Desenvolvimento Cientifico e Tecnol6gico, CNPq/Brazil. 
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