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Abstract : We develop a semiclassical coupled-channels calculation for the Coulomb break-up of
loosely bound nuclei . The continuum wavefunctions are discretized by meansof two different
sets of strongly peaked functWns: (a) a histogram set, and (b) a continuously derivable one.
Using simple expressions for the bound and continuum wavefunctions, we calculate the break-
up probability to first-order and with the coupled-channels method. First-order perturbation
theory is shown to fail to describe the Coulomb break-up of unstable projectiles, as i I Li
at small impact parameters . It is shown that a non-perturbatioe calculation may reduce the
cross section by 20% in collisions at intermediate energies .

Coulomb excitation of unstable nuclei is a very useful technique to access information
on the structure and excitation response function of such nuclei . This is especially true
for the study of neutron- or proton-rich nuclei with very small binding energies. Such
studies have been performed experimentally during the last years, resulting in the
finding of new and intriguing aspects on their properties',2 ).

Many of the exotic nuclei, like l ' Li do not have a bound state besides the ground
state, i.e., any excitation leads to their fragmentation. The Coulomb fragmentation cross
section is roughly inversely proportional to the separation energy of the fragments 3) .

Therefore, it can be very large for weakly bound projectiles incident on large-Z targets.
Indeed, experimental studies on the break-up of weakly bound nuclei have shown
that the contribution of the Coulomb interaction between the nuclei results in cross
sections of several barns at bombarding energies of some tens of MeV per nucleon,
and higher',2 ) . That is an order of magnitude larger than the nuclear contribution to
the process 3 ) .
One should expect that perturbation theory fails in describing the break-up process

when the cross sections attain very high values . In fact, as we show in sect . 2 of this

I On leave of absence from: Instituto de Fisica, Universidade Federal do Rio (le Janeiro, 21945
Rio de Janeiro, Brazil .



164

	

C.A. Derlulatli. L . F. Capilo / Coulomb breat,-tip

aniclie, dic break-up probability calculated ,,vith first-ordrr perturlhation theory is close
try unity. This can be understood with use of simple arguments. The energy transiferred
by the Coulomb field to the excitation of a prqiectile nucleus, with N neutrons and
Z protons, incident with velocity v on a target nucleus with charge eZT at an impact
parameter b is approximately given by3 ) E* = 2(NZIA) (ZTe2)2MIN

b2712, where inN is
the nucleon mass. For 11 Li projectiles (N = 8, Z = 3) incident on lead at b = 15 fm
and v ~ c, one gets E* ti 0.3 MeV. This energy is more than sufficient to break
' Li apart, since the separation energy of two neutrons from this nucleus is about')
0.25 MeV. This means that, at small impact parameters the break-up probability is
oC order of unity and a non-perturbative treatment of the break-up process should be
carried out.

Non-perturbative techniques like semiclassical coupled-channels calculations can be
used in this case . 1-lowever, there are not many experimental data which justify a
complicated calculation, with many details about the structure of the unstable nuclei .
Since this is the final information that one wants to obtain, a clearer understanding of
the reaction mechanism is more useful at this stage. The cluster model' ) seems to be
very appropriate to achieve this goal. It has been used with success for the determination

Iof th: main charactcristics of reactions ir ;Uovdi by " Li projec'.. ..!'-s"

	

'U"Ving to .ts
simplicity the matrix elements or Coulomb break-up can be easily calculated .

This article is organized as follows: In sect . 2 we present a calculation of the Coulomb
break-up of loosely bound clusters based on first-order time-dependent perturbation
theory . We show that it fails to describe the Coulomb break-up probability at small
impact parameters. In sect . 3 we present a coupled-channels calculation of Coulomb
break-up, using discrete states built on continuum wavefunctions. The discretization
procedure deserves special attention and we use two different sets of basis functions; a
smooth and a step-wise one. In sect 4 we compare the results of a numerical calculation
of the coupled-channels equations with the first-order results. Our conclusions are given
in sect . 5.

,'ZTe2

AM

2. C® l® b break-up of loosely bound clusters

Let us consider a projectile nucleus composed of two clusters with charges eZb and
eZ,, and masses 111b and in, respectively, incident on a target with charge eZT. We
assume that the projectile follows a straight-line trajectory with velocity v and impact
parameter b. The interaction potential (neglecting magnetic interactions and nuclear
forces) responsible for the break-up of the projectile, is given by
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where ,, =
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represent the transverse and longitudinal
coordinates of the particles, respectively .
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In the dipole approximation, the expression (2.1) becomes
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(2.2)

where r is the vector from b to c and rna = mb + m, . The first (second) term inside
the curly brackets represents the transverse (longitudinal) part of the interaction.

In first-order time-dependent perturbation theory, the probability amplitude for the
projectile break-up, i.e., the transition from the ground state (0) to a state Iq) in the
continuum is given by

a(1) = ib1

	

1-

	

e

	

(qlVW) JO) dt .

	

(2.3)

FV.^r!cc.scly boun.~ &:. .éc e:, ;ä'eû the ground stag; can be reprcscnted by an Yukawa wavc-WJv
function 00(r) = Ne-n'/r, where N is the normalization factor, and q =

	

2lib~B/b,
with Ybc equal to the reduced mass of the (b+c) system and B the binding en-
ergy . Neglecting final-state interactions, the states 1q) are given by 'l'q (r) = (rlq) =
e`q-r + e'q'/r (rl + iq ), where the wavenumber q is related to the energy Eq as
Eq = h2q2 /2Jc bc . The second term of (rlq) guarantees the orthogonality and com-
pleteness of the initial and final states .
The dipole matrix elements are given by3)

(ql rY,,,,(p)IO) = i4
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, Yp»(q) .

	

(2.4)
(q2 + 1-)-

To first order, the break-up probability is obtained by integrating the square modulus
of (2.3) over the density of final states, i.e.,

p(11 (b t) = 2p(1)

	

+ p(I )

	

=

	

) 2

	

d3q
m- I

	

~rt-0

	

la('(q 1 I

	

3

	

'(27r )
(2 .5)

summed over the beam-axis components of the angular momentum carried by the
Coulomb field, m = 0, f 1 . The integral over q is easily accomplished if one uses the
sudden approximation, which is valid for

b(Eq -} 3) < 1 .

	

(2.6)
777

For weakly bound nuclei, as 11 Li, Eq + B ;:t 1 1VleV, and at bombarding energies

Elab ' 1 GeV, the above relation shows tbat the sudden approximation is valid for
impact parameters b < 300 fm.
Within the sudden approximation we can omit the exponential factor in (2.3) and

the integrals can be evaluated analytically as (a is the fine-structure constant)
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(1) (b,t) = 1 ( ZT(kc6 11bly )
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Using the completeness relation
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Th.- i-irst ksucond) term niside the curly brackets arises fnazn i'u, transverse (lon-
gitudinal) part of the interaction potential (2.2). It is clear that only the transverse
contribution survives at I = oc. The longitudinal contribution cancels since the compo-
nent of the electric field along the beam axis is an odd function of time. The break-up
probability at t = ctc is given by

b
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For grazing collisions with heavy targets at high energies the break-up probabilities
of eq. (2.8) are close to (or even exceeds) unity. Therefore, first-order perturbation
theory cannot be used . However, if the sudden approximation holds a non-perturbative
closed expression can still be derived. The amplitude can then be written as [neglecting
the longitudinal component of the interaction potential (2.2) ]

a(Q; _ (qjexpj
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(2.9)ih
3C

result (2 .8) . If. on the other hand, Clil is large, one gets to lowest order in q1C,

(2.7)
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The above integral can be easily evaluated and the result is

P(s) (b) = I - ~e
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I (large impact parameters) the above relation reproduces the first-order

A comparison between the sudden approximation and the first order break-up proba-
bilities for the reaction "Li + Pb -- 9 Li + 2n + Pb at 100 MeV/nucleon, is shown in
fig. I as a function of b . The failu-re of the first-order approximation (dashed line) at
small impact parameters is clearly seen .
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Fig. 1 . Coulomb break-up probabilities of I I Li projectiles incident on lead at 100 MeV/nucleon,
as a function of the impact parameter b.

iscretization of the continuum and semiclassical treatment of the coupled-channels
problem

Our basis of time-dependent discrete states are defined as

Ioo) = e-'Eoll
hl

( ) ,

b (fm)

The results of eqs. (2.7), (2.8) and (2.13) were obtained on the basis of the sudden
approximation. In the example considered, the "Li break-up probability is appreciable
even for large relative energies in the projectile frame (Eq - 2 MeV), where the sudden
approximation starts to break-down . In addition, the treatment of this section cannot
account for the energy distribution of the break-up cross section. A more powerful
coupled-channels treatment is therefore desirable. However, one faces the difficulty
that the final states are in the continuum (one would have to consider a continuous
channel label) and the coupling matrix elements present divergency problems, caused by
the non-localized behavior of the continuum wavefunctions. This difficulty is avoided
by a discretization of the continuum along the lines proposed by Bdr and Soff4 ) in
their non-perturbative calculations of atomic ionization by heavy ions. In the next
section we use a similar treatment of the continuum and develop a set of semiclassical
coupled-channels equations.

with

	

Eo = -B,

10,,im) = e- iEjllfi / Ej (E) JE, lm) dE,

	

(3.1)

where JE, lin) are continuum wavefunctions of the projectile fragments (without the in-
teraction with the target), with good energy and angular momentum quantum numbers
E,1,m. The functions T (E) are assumed to be strongly peaked around an energy Ej
in the continuum. Therefor .., the discrete character of the states I¢jl,n) (together with
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lot))) allows an easy implementation of the coupled-states calculations. We assume that
the projectile has no bound excited states. This assumption is often the rule for very
loosely bound systems. The orthogonality of the discrete states (3.1) is guaranteed if

J
dEr(E)I;(E) = J;;,

	

(3.2)

For the continuum set IEI#fz) we use, for the sake of simplicity, the plane-wave basis

(r1~11~1) = ul.E (r) IInt (r) _
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(3.3)
~3`

which obey the normalization condition (E = fr'q- /2,u )

(ElfnIE ® 1 ®1n ' ) = 6ll'anin,'6(E - E') .

	

(3.4)

These states arise from the partial wave expansion of the plane wave exp(iq - r) . Writing
the time-dependent Schrödinger equation for P (t) _ taking the scalar
product with the basis states and using orthonormality relations, we ~- t the equations

if, da,,,,
,

dt

The normalization constant

Naa,

-i(E'-E, )r/h
(3.5)

We use the index j = 0 for the ground state 10) and j = 1, 2. . . . for the discrete
continuum states . 1 ,lna;are the matrix elements (0j ln,I V I0j'/ß �
For 17,(E) we consider two different sets of functions. Firstly the set

r; (E), . . . rN(E) :

T (E) =

	

l
a

,

	

for

	

(j - 1)a(E(ja

= 0,

	

otherwise.

	

(3.6)

This set corresponds to histograms of constant height 1 /V"a- and width a. The states
T, (E) trivially satisfy the orthonormalization condition of eq . (3.2). They present the
advantage of leading to simple analytical expressions for the coupling matrix elements.
®n the other hand they have discontinuities at the edges, which lead to numerical
difficulties . The second set consists of the functions

;< j (E) = N� ~
(E)n,-,_,,,

	

_(Ela) .

	

(3.7a)
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] 1/2
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=

[
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(2nj
)~ , (3.7b)

guarantees that f Xj (E )X , (E)dE = 1 . The functions X j are peaked at E = n;a
and have width -- a . The integer n, = Kj is proportional to the index-j and the
proportionality constant, a small integer K, is a parameter of the set which determines
the overlap of two consecutive functions Xj and X;+, . Three consecutive functions
X4 , X ; and X 6 are shown in fig. 2a for K = 3 and a = a° keV. With this choice x 5 is
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Fig. 2. A set of functions given by the expression (3.7a) of text, before (a) and after (b)

orthogonabization.

peaked at the maximum of the experimental break-up cross section (E -,z:: 200 keV) of
"Li projectiles (see fig. 5) . However, this set fails to satisfy the orthogonality condition
of eq. (3.2) . This shortcoming can be fixed by the definition of a new set T(E) of
linear combinations

Fj(E) = E CjkXk(E),

	

(3.8)
k-1

with the coefficients C;j determined so that the resulting combinations be orthogonal .
These coefficients can be found by means of an orthogonalization procedure as, e.g .,
the Gram-Schmidt method 5 ) . The result of the application of this method to the
functions of fig. 2a is shown in fig. 2b. The set of eq. (3.g) has the advantages of being
continuously ,derivable and of leading to reasonably simple coupling matrix elements .

A comparison between basis states Oj/,n (r) generated with each orthese sets [through
eq. (3.1) ] is made in figs . 3a and 3b. We chose for convenience the parameters
Q = 40 keV, j = 5 for the first set (eq. (3.6)) and K = 3, j = 5, a = 13.3 keV for
the second set (eq. (3 .7) ) . With this choice one of the E, is equal to 200 keV for both
sets . We take 1 = 1, m = l, as example. One observes that the discrete wavefunctions

¢j!�, decrease rapidly enough with r, so that the matrix elements (0j/ .-. ;, JrY, MJ0JI,I,n, ) are
finite . The use of the histograms (3.6) for T, (E) leads to beats in Oj l,n as displayed
in fig. 3a . These beats are the result: of the discontinuous nature of T (E) and arise
from the interference from the borders of the histograms . Due to this behaviour, the
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Fig. 3. Radial `vavefunctions for the discretized continuum using the histogram set (a) and the
continuous set (b). We used E, = 200 key, and l = 1 .

numerical evaluation of (0,1� , I r'

	

6E~ I~,, 1 ,� ,' ) is more involved than with the second set
of 1; functions, eq. (3.8) . Indeed, as we see from fig . 3b the beats disappear with the
use of the basis set (3.8) . Although the use of plane-wave basis allows the derivation
of simple results with both sets, this fact is of relevance for future improvement of the
calculations.

sing (3.1) and the properties of the spherical harmonics one finds
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(3.9b)

From (3.9a) one deduces that the interaction potential is different from zero only
if 11 - l' I -_ 1, as expected . A discussion of the use of the dipole approximation is
presented in the next section .



The use of the plane-wave basis is especially useful because, exploiting the recursion
and closure relations of the spherical Bessel functions, one obtains the general result

where

Fjj,

Gjj ,

1 + P +2
2

	

FJj , + 61, 1 , + 1 Gj .j , + 6l+ j j, Gj',

	

,

	

(3.10)

Fjj , =

	

dgr,(E)T,,(E),

	

Gjj, =

	

dggl,(E)dr,, (E),

	

(3.l1)
dq

with E = h2g2 /2 IU. Explicit forms can be found for each basis set:
(a) Histogram. Applying this relation to the histogram set (3.6), one can show that

for j, j' 94- 0

Iii-j'11 = h
V JUQ
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For j = 0 or j' = 0, only the integral with l, or l' = 1 is necessary, and the result is
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(Eo -f- Ej)
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where Ej = (j - 1/2)Q.
(b) Continuous basis. For the set of continuous energy functions (3.8) one finds,

for j, j' :~ 0
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where F (z) is the gamma function and we simplified the notation using n - nj . For
j = 0, or j' = 0, one finds
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In the next section we will make use of eqs. (3.9)-(3.15) to solve numerically the
coupled-channels eqs. (3.5) . As we have seen above, the use of the plane-wave basis
(3 .3) results in the elegant derivation of Ij/ ;, ,,, presented by eqs. (3.10) and (3.11) .
Nonetheless, the s-wave ( l = 0) state of eq. (3.3) is not orthogonal to the bound-state
wave function . To restore orthogonality one has to add an extra piece to this function .
e expect however that this approximation does not affect our results appreciably

since to access this state one needs at least two transitions: the 0 --; j 1 followed by the
j' l - j'0. But the later transition competes with the transition to the ground state,
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j I - 00, which is the dominant one. A more severe restriction is the use of plane
waves to describe the continuum. A realistic calculation would have to use outgoing
waves for &00 which would carry information about the final-state interactions ofIE

the (b+0 system .

In this section we use the theory delineated in the last section to study the break-up
of "Li projectiles incident on heavy targets at energies around 100 MeV/nucleon. In
fig. 4 we show the integrals for the continuum-continuuty, coupling (jJ :i6 0).
In particular we choose I = 0 and I = 1 . The coupling jO , f = j, 1, shown in fig. 4a
(solid line), is a reorientation effect in which the transition involves only a change in
the angular momentum (I = 0 to I = I in this case) of the state. In the fig. 4a (dashed
line) we plot ljo j, 1 for a transition between states with different energies. In particular
we take the transition between neighboring states, with f = j + 1 . We use the results
obtained with the continuous energy set, eqs. (3.14) and (3.15) . One observes that
while the integral for the jj coupling decreases with energy, the one for the j, j + I
coupling increases steadily. These results reproduce the trend shown by eq. (3.12) . In
fig . 4b it is shown how Ijo .,j , I varies as a function of Ej , for a fixed E. = 0.2 MeV.
ne observes that it is maximum for neighbouring energy states and has an oscillatory

behaviour. This has as a consequence that the j, f :p4- j coupling will practically not
contribute to the total break-up probability, P(BFu since its contribution will be washed
out.

esults and discussions

E (MeV)

	

E (MeV)
Fig. A (a) Radial matrix elements, eq . (3.9b), for the transition j , j + I (dashed line), and
for the j - j one (solid line). We used / = 0 and P = 1 . (b) Radial matrix elements for the

transition j - j', keeping E, = 200 keV and varying E,, .
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The break-up probability per unit energy interval, PBP, is given by

Fl = J:rj(E)r,(E)Qi,,

	

(4.1 a)

where

In fig. 5 we show the break-up probability per unit energy interval for the reaction
"Li -f. Pb at 100 MeV/nucleon and b = 15fm, calculated from eq. (4.1) by solving
the coupled differential equations (3.5) for ail ,,, . We see that the energy distribution
of the fragments is peaked at E - 0.2 MeV. Therefore, the most relevant momentum
transfer to the "Li nucleus occurs at q = V2_1t bcB1'h ti 20fm -1 . The validity of the
dipole approximation for the interaction potential (3 .9) to calculate the continuum-
continuum coupling can only be justified for qr « 1 . But, as shown in fig. 3, the
discretized wavefunctions extend up to 400 fm . Thus, unless the matrix elements
for the continuum-continuum coupling, eq . (35 .9b), have its main contribution from
r « 20 fm, the dipole approximation is not valid. The j_% coupt:ng do satisfy this
requirement. In this case the wavefunctions have equal energies, but different angular
momenta. This causes an asymptotically (r » 1 /q) constant phase difference between
the wavefunctions entering in Ij,, j/ , . This leads to cancellations in the integrand of
eq. (3 .9b) for large r. The situation is different for the (j, j' 94 j) coupling . In this
case the integrand has contributions from larger values of r and these contributions
increase with the energy . With a correct treatment of the multipole expansion of the
interaction potential (2.1) the integrals I,i.,,:,,,., : would decrease with E. We expect

0.020
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0.030

0 010

Qij = Re
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-
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G oo

0000
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E j
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K1b)

Fig. 5. Coulomb break-up probability, per unit energy interval (MeV - ' ), of 11 1-i projectiles
incident on lead at 100 MeV/nucleon and b = 15 fm, as a function of the final total kinetic

energy of the fragments .
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that the transitions between 00 - f, I = I and f, I = I , 00 domi~- - ate the excitation
races, so that the matrix elements between states with j :p 4- f :7 0 do not play

an important role. Also, to minimize the consequence of the breaking down the
ipole approximation in the continuum-continuum coupling at j 4 f, we use in. our

calculation a large parameter K (we take K = 4) . This !eads to small firj, .
In fig . 6 the solid line represents P3u', the total break-up probability seq. (4.1)

integrated over energy], as a function of the adimensional parameter T = mtlb, for
b = 15 A. This is obtained by solviag the coupled-channels equations (3.5) for a time
i and calculating the sum PB" (1) = la,,,,, 1 2 . The dashed line corresponds to the
neglect of all transitions, except for the 0 --+ fl ones. In the low-energy limit, eq. (2.6),
this gives the same result as eq. (2.7). The solid line includes all possible transitions.
The break-up probability occur s in a time scale of A I - blv. As t --+ oc the break-up
probability is 40% smaller than that calculated by first-order perturbation theory .

he total cross section is given by

JMn

The value of bmw is chosen, according to Winther and Alder 6 ), as

bmin = Rp + Rr +
7L-

	

2

4%
where Rp (Rd is the projectile (target) radius . For I I Li we use RP = 3.14 fm, while
for the target we use RT = 1 .2.x'/3 fm. The above formula includes a recoil correction
on the Coulomb excitation cross section, given by the last term which depends on the
bombarding energy 6 ), Elab- Our results are shown in table 1 . In the second column we
give the cross sections within our non-perturbative approach, while in the first column
we give the prediction of first-order perturbation . The experimental values for the

oc
ODU = 21r f bdbPBu(-,.) .

	

(12)

rat® / Coulomb break-up
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Fig. 6. Coulomb break-up probabilities of "Li projectiles incident on lead at 100 MeV per
nucleon, as a function of -r = bli) .
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TABLE 1

Comparison among the cross sections for the Coulomb
break-up of I I Li incident on lead, obtained within
the first-order perturbation, RM, and with the cou
pled-channels calculation, a. The last column gives the

experimental values of refs. 2 "7 ) .
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electromagnetic dissociation cross section of I I Li projectiles incident on Pb at several
bombarding energies are shown in the third column 2,7) . It is not clear from the experi-
i yntal data of ref. 2 ) which fraction ofthese cross sections go into the 91rî + 2n channel,
but due to its binding energy the break-up probability into this channel is dominant and
a direct comparison with our results is possible. We see that, while for high bombarding
energies the results of the two theoretical approaches are practically the same, at low
energies their differ by about 20%. This is due to the large break-up probabilities which
occur for reactions around some tens of MeV per nucleon a ). The coupled-channels
calculation result gives a better value of the cross section at this energy.

S. Conclusions

We have developed a non-perturbative coupled-channels calculation for the break-
up of weakly bound nuclei . Since we wanted to access the qualitative aspects of a
non-perturbative approach to the break-up, the simple cluster model was used for the
purpose. We studied the particular case of the Coulomb break-up of I

I Li projectiles.
The general features of our results should also apply to the break-up of other weakly
b:untl nuclei . The continuum was discretized in order to obtain r.on-divergent matrix
elements for the continuum-continuum coupling . Our calculations were not intended
to give an accurate description of the break-up process, but to serve as a support for
more fundamental ones, where a more realistic treatment of the ground and final state
of the projectile is accomplished as, e.g., that of ref. 9 ) . Our main conclusions is that a
non-perturbatioe treatment ofthe Coulomb break-up of loosely bound nuclei as, e.g .,
I
I Li is needed at low-energy collisions (10-100 MeV/nucleon ) . The non-perturbative

cross section gives a total cross section 20% lower than the predictions of first-order
perturbation theory .
We also have found that the continuum-continularn coupling can be fairly weii

treated by means of a discretization with help of strongly peaked functions. In order

Elab
[MeV/nucleon]

a (l)
[b]

a

[b]
Qexp
[b]

790 1 .01 0.94 0.89f0. 11
86.2 3.5 2.8 1.37± 1 .43
69.9 3.8 3.1 2.96f0.83
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04.

to avoid spurious oscillations in the discretized wavefunctions which can lead to
slowly convergent integrals for. thc raati -ix elements, a set of continuous functions was
introduced for the discretization procedure . The final relative motion energy of the
fragments is found to be very small, of order of their binding energy . Thus, it is expected
that the interactions between the fragments distort their final states appreciably. The
continuum-continuum coupling may therefore be much more relevant than what we
obtained with our calculations . The results presented in this article will certainly help
to understand these and other related questions in the future.
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