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1. Introduction
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Abstract: We study the effects of higher-order electromagnetic interactions in the dissociation of fast
particles, especially "Li. First, we use a classical approach, where a "breakup radius" is introduced .
This is contrasted to a quantal approach, where higher-order effects are summed up using the
sudden approximation.

Peripheral nuclear reactions have been of great interest. If first-order electromag-
netic interaction is responsible for the reaction, one can directly relate the cross
section for dissociation to the corresponding photodisintegration process [see e.g .
refs . 1,2)]. In this way, one can study giant resonances of stable and unstable nuclei,
by using the equivalent photon method. Of course, the presence of higher-order
electromagnetic interaction will change this simple picture. These higher-ordereffects
can be considered as useful, e.g . one can try to populate new nuclear states, like
multiphonon giant resonances 3 ). On the other hand, the presence of higher-order
effects can cause a complication, when one wants to apply a first-order analysis and
extract electromagnetic matrix elements for transitions from the ground state. This
is of relevance e.g . for the determination of electromagnetic strength distribution in
"Li or for the application of electromagnetic dissociation to radiative-capture
processes relevant for nuclear astrophysics Z). This effect (sometimes also called
"post acceleration" or "Coulomb final-state interaction") could be especially
troublesome in the transition to continuum states . The relative energy between the
fragments could be distorted by this long-range final-state interaction. On the other
hand, the transient Coulomb field might be used as a clock to study the time
dependence of excited states .
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Since higher-order effects can involve the whole spectrum of intermediate states,
they are not so easily studied in general. A tremendous simplification occurs for
cases where the collision time T,n� is much smaller than the typical nuclear excitation
times Tnnc, = ht/ (En - Ea), where E� - Ea are typical excitation energies, i .e . we can
apply the sudden approximation, or Glauber theory. In sect. 2, we study the effects
of post acceleration in a rather classical model. This can be useful for order of
magnitude estimates. In sect . 3, the sadden approximation is used to calculate the
effects of higher-order electromagnetic interactions . Our conclusions are given in
sect. 4.

2. Coulomb break-up of cluster projectiles . Classical considerations

Let us consider the Coulomb break-up of a projectile a in a collision with a target
A. Assuming that the projectile is formed by fragments b and x, this process can
be represented as

a+A~b+x+A .

	

(2.1)

In the break-up of "Li, b='Li and x=n+n. The Coulomb excitation probability
per unit energy for the process (2.1) in a collision with impact parameter b is given
by') (we consider here only the leading multipolarities)
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where NE,(Ex , b) are the number ofvirtual photons') with energy E. for a collision,
with impact parameter b, and aEA are the cross sections for the excitation induced
by real photons. The functions NEA(E., b) are given analytically for high-energy
collisions . At intermediate-energy (some tens of MeV/nucleon) collisions the same
expressions can be used by inclusion of a recoil correction °), with a 5-20% accuracy .

In termsof the reduced matrix elements B(EI) and B(E2), the photo-dissociation-
cross sections are given by

trE'(E )- 16a' %_E,~ dB(El ; E�)
9 \fic) dEx '

aE2(EJ-_121r3 (_Ex 3 dB(E2;E.) .
225 \hc)

	

dE,
In the cluster model s) one gets

dB(El;E.) _ 362e2 ZbAx_

	

-Z.Ah 2 %I_S2JE.- S2n)3/2
dEx ,r21î Aa

	

Ex '

dB(E2;Ex) _ 40fii ae2 ZbAx+ZxAb 2~(E._	S2n)5~2

dEx

	

a21t,2 (

	

Aa

	

)

	

E.

(2.3)

(2.4)



where IA =2X9MN/11 is the reduced mass of the 9Li+2n system, (Zb,Ab) is the
charge and mass number of 9Li, i.e . Zb =3, Ab=8 and (Z., Ax) is the same for the
two-neutron system, i.e . Zx= 0 and Ax = 2.

In fig. 1 we plot the photo-disintegration cross section for "Li based on the
formulas above. We observe that its value for the El multipolarity is larger than
for the E2 case (by a factor 105). Also, while the trF' cross section peaks strongly
at low values of Ex, ae2 is more sensitive to larger values of E. . This fact arises
from the extra factor E.-SZ� which appears in eq. (2.4) for dB(E2; E,)/dE, .

It has been argued 6) that the contributions from E2 multipolarity could be
important for the break-up of "Li projectiles in intermediate-energy collisions . The
reason is that although the E2 photo-dissociation cross section is small, the virtual-
photon numbers for the E2 multipolarity are larger than that for the El multipolarity
in intermediate-energy collisions') . The folding ofthe two factors could then yield
a reasonable contribution for the dissociation cross sections . We have checked this
hypothesis by integrating eq. (2.2) over impact parameters and we obtained that for
collisions at 30 McV/nucleon the E2 cross section is less than the El by a factor
300. This can be seen in fig. 2 where the differential cross sections for the two
multipolarities are shown for the collision "Li+Ph at 30 McV/nucleon. However,
this does not rule out the hypothesis that E2 excitations could play a role in the
dissociation of "Li projectiles . The excitation of electric quadrupole modes in the
9Li core could be an important mechanism for the absorption of virtual photons
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Fig . 1 . Photo-dissociation cross section of "Li, as a function of the energy ofthe photon . Solid (dashed)
line corresponds to the electric dipole (quadrupole) contribution.
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Fig. 2. Coulomb-dissociation cross section of "Li projectiles incident on lead targets at 30 MeV/nucleon,
as a function of the energy transferred to the "Li .

with sequential fragmentation of "Li. This needs an extra study which is beyond
the present approach.
An important quantity, to be used later, is the average energy transfer to the

projectile defined as

_dP __NE,
dEx Ex

trr

(we neglect the E2 contribution) . The average kinetic energy of relative motion
between the fragments after the break-up is then given by (T)=(Ex)-S2� .

In fig. 3 we show the value of (Ex) as a function of the bombarding energy per
nucleon. We observe that this result is in good agreement with the calculations of
Esbensen and Bertsch 7) using a more elaborate model for the response function of
"Li . This is remarkable in view of the simplicity of the cluster model. Also, a
high-energy limit (y=(1-v2/c2) -tn ~oc) is readily workable from eq. (2.5), using
eq . (2.3), and the high-energy limit of the virtual-photon numbers (basically, that
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Fig . 3. Average energy transferred to "Li projectiles incident on lead targets, as a function of the lab
energy per nucleon .

x2K2(x)=1 for x <C 1, where K, is the modified Bessel function). One obtains

(Ex)=J
m

dEx (Ex-S2n)
3/2 / fm

dEx (Ex-S2n)3/2

Es,� Ex s_~ Ex3

	

4

=6S2�= 1 .5 MeV .

	

(2.6)

Let us consider thebreak-up of "Li projectiles as displayed in fig. 4. For simplicity
we consider the center-of-mass motion of the incident particles and the fragments
to move along a straight line . This is nearly the truth for the bombarding energy
considered. Neglecting the recoil of the target, at the break-up point we have the

Fig . 4 . Schematic representation of the break-up of "Li projectiles.
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following considerations:

where Q is the energy transfer to "Li and V(R) is the Coulomb potential at
R = (6 2+ aôt2)In. The time variable is chosen so that t =0 indicates the distance of
closest approach (which is b in the approximation considered here).

Let us assume that Q is small compared to the lab energies of 'Li and the two
neutrons, 2n, just after the break-up . Then v9(t)=v2(t) and one obtains

P11 = P9(t)+P2(t) ,

Elafi- V[R(i)] -Q= Po/2m11 ,

	

(2.%)

Since the potential is conservative, this will be the kinetic energy of 11 Li as it
reaches the detector. The extra energy that the nucleus 9Li will have relatively to
its initial share of the projectile energy is then

AE9=E9(t) - 191 Elan=- Q+ 121 V[R(t) ] .

	

(2.11)

Repeating the same arguments for calculating the extra-energy for the two neutrons
we get

AE,=_2Q_2 V[R(l)] .11 1-1 (2.12)

In other words 9Li gets post accelerated and acquires an extra energy dictated by
eq. (2.11) in a collision for which the break-up occurs at time t, while the 9Li nuclei
will be faster than the beam after the break-up, the two neutrons will be slower by
conservation of energy. A quite similar effect is well known in the break-up of light
ions at lower energies, see e.g . ref. R), especially p. 354. This fact really seems to be
implicit in the data of recent experiments') of II Li break-up .
The post-acceleration energy, weighted over time is

(JE9)(b) = f

	

dtAE9(b, t)dt P(b, t)
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_m dt[P(b,oo)]'

where P(b, t) is the break-up probability as a function of the impact parameter, b,
and time, t.

P11=9P9/2m9=z 2/2m2 (2.8)

This implies

Eian - V[R(t)]-Q=9P9/2m9 . (2.9)

This means that the energy of 'Li just after the break-up is

E9(t) = [Ehh-Q] +IiV[R(t)] (2.10)



The quantity P(b,t)/P(b,oo) does not depend on the nuclear model for the
response function of the projectile, since the excitation probabilities at any time are
a product of a kinematical factor (virtual-photon number) and the reduced matrix
elements for the electromagnetic excitation') . The ratio therefore factors out the
matrix elements, which depend on the response function . For a straight-line motion,
one gets 1° )

The energy transfer Q to the excitation of ' 1 Li is practically constant over the
relevant impact parameters. We can associate it to the average energy transfer of
eq. (2.5) which is approximately Q=1 MeV for bombarding energies in the range
30-100 McV/nucleon .
The results eq. (2.16) imply that the post-acceleration energy in a single collision

with impact parameter b is energy dependent, as long as we can approximate the
trajectory by a straight line . Eq. (2.16) can also be averaged over impact parameters,

This quantity is again model independent and is given by

where
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In the equations above Xmin=Qbmin/bv, where bmin is the minimum impact
parameter for pure Coulomb processes. We shall use burin= 1.2AT'+

	

where
(r2)11L;=3.2 fm. F(X.;n) is a monotonically increasing function ofXmin, attaining

values close to 1 for Xmin greater than unity.
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2 1
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Inserting this in eq. (2.11) and doing the time integral we find

(AE9(b)) = - Q+i27r(ZTZae2)/b,

(AE2n(b)- 1Q Air(ZTZae2)/b . (2.16)
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Fig. 5. Post-acceleration energy of 'Li fragments (solid line) and the two neutrons (dashed line) in the
reaction "Li+ 213Ph as a function of the bombarding energy.

Numerical results for (AE9,2) are given in fig. 5. We observe that post-acceleration
energies are many times larger than the separation energy of "Li.

3. Higher-order electromagnetic effects in the sudden approximation

In high-energy scattering, higher-order interaction effects are conveniently taken
into account using Glauber theory . In a semiclassical approach, the time-dependent
coupled equations can be solved conveniently in this limit (sudden approximation).
The relation betweenthequantal and semiclassical methodswas discussed recently

in ref. ") . We now retain the concept of a classical motion of the projectile (on a
straight-line path), this is a very good approximation for the processes considered
here . On the other hand, we now treat the projectile in a completely quantal way,
thus avoiding the hard to define concept of a break-up radius, as it was used in the
previous section.

As explained in the previous section, we can use the dipole approximation. First
we recall the dipole term of the Coulomb interaction between the projectile and
the target ")

Vdipole = YZZ(.Ne2 (b2+Y2Vt 2)3/21

where r=(x, y, z) is the relative distance between the two clusters b=(0, b, 0), and
v = (0, 0, v) are respectively the impact parameter and the velocity of the projectile .
Z is the electric charge of the target and Zeff the effective charge of the two clusters.
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For the dipole interaction it is given by

Zce>t-tt _Z.
m
n_Zb

mx
-.	(3 .2)Ma ma

The excitation amplitude in the sudden approximation from the ground state 10) to
a (continuum) state 1q) is given by

aa,=(gl exp(1
J
. di Vd;P.,e(t)> I O>=

(q1 exp (ta h. Z) I0~'

	

(3.3)

where Ap=2ZrZé ez/bv. This corresponds to the classical momentum transfer in
a Coulomb collision, with impact parameter b and velocity v (the monopole term
d°p=2Zr(Zb+Zx)e2lbv determines the trajectory of the centre of mass of the
projectile, i.e . the relation of the impact prameter b to the cm. scattering angle B) .
The term containing the z-component vanishes by antisymmetry in eq. (3.1). This

is a special property of the sudden approximation, and it will be lost when deviations
from the sudden approximation have to be considered. E.g. forthe case of 30 MeV/A
incident ions, the adiabaticity condition is hw =50MeV - fm/b. Thus the sudden
approximation is well applicable to the bulk part of the Coulomb dissociation of
"Li at this energy. A shift of the 9Li fragments to higher velocities in the beam
direction (the two neutrons, correspondingly, get slower) was recently observed at
MSU `9). This effect does not show up in the present model. It was also absent in
model calculations using the post-form DWBA approach '2). Thus, deviations from
the sudden approximation will have to be considered in the future.

Let us now calculate explicitly the transition probability for the case of "Lip
9Li+2n . We assume a very simple dineutron cluster model with a zero-range
interaction. The ground-state wave function is given by

10)=
là:T

e
r

	

(3.4)

and the continuum wave function is given by a plane wave with relative momentum
q plus an S-wave scattering part corresponding to the zero-range potential. We
obtain explicitly

With these model wave functions we calculate the transition amplitude using three
different approximations: (i) the first-order time-dependent perturbation theory,

qC

	

l
a,(q)= 32ar1 97+C7)2 X K, (X) sin B sin -Y1 !Co(X) cos B

J
,

	

(3.6)

(ii) in the limit X~ 0, which corresponds to the case of vanishing energy loss, we
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obtain from eq. (3.6)

(iii) in all-orders sudden approximation

a, (q) = /_8-7r71 j

	

2+(
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In (q- C)-t~}
tq ..qr-C)-+q~+rl- 2C q+irl

	

(q+C)-i,l

with the following constants: B is the binding energy of the two neutrons; rl =
2I'; C = dp/ It are the binding-energy and momentum-transfer corresponding

wave numbers; firw = h2q2/21.t,�X + B is the transition energy and X = fior/ yv the
adiabaticity parameter. For small enough C = dp/ It we recover eq. (3.7) from eq.
(3.8), as it should be.

In figs . 6-9 we show the case of tt Li EMD ("electromagnetic dissociation") on
20sPb for the twobeam energies, E/A = 30 MeV/A and 800 MeV/A (the calculations
are done in the relativistic framework) . Especially for the lower energy, the strong
El peak is greatly distorted by higher-order effects, also for the high energy, the
effect is quite noticeable. This has to be taken into account in an analysis of (future)
experiments, where one wishes to extract B(EI) distribution [for a theoretical
calculation see e.g. ref.'), especially fig. 1] . Especially, an asymmetry is introduced
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a~(q)= 32aro1 2
qC

Z sin 0 sin ¢,

	

(3.7)
q +7

0 1000 2000 3000
Erel [keV]

(3.8)

Fig.6 . Squared transition amplitude in +y-direction (parallel to b) in first-order time-dependent perturba-
tion theory (dotted), first-order sudden approximation (dashed) and all-orders sudden approximation
(solid line) for the reaction ° Li+ 2"Pb-'Li+2n + 208Ph at 30 MeV/nucleon lab en, -gy and 15 fm impact

parameter, as a function of the relative energy between 'Li and the dineutron .
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Fig. 7. The same as fig . 6, but with "l.i in -y-direction (antiparallel to 6).
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Fig. 8. Dependence of the squared transition amplitude on the polar angle t~ in the x, y-plane perpen-
dicular to the projectile motion for 300 keV relative energy.
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Fig. 9. The same as fig. 7, at 800 MeV/nucleon lab energy.

4. Conclusions

1500

with respect to the emission in +y and -y-directions. However, the symmetry with
respect to the x, y-plane is still preserved (this is a characteristic of the sudden
approximation, as already noted) .

Higher-order effects in electromagnetic dissociation can be important. They can
spoil the simple relation of EMD cross sections and photodisintegration . It is
important to study them carefully. We have presented two limiting cases in this
paper, a rather classical calculation, and a quantal one, usinga high-energy approxi-
mation. Both models are useful in order to assess under which experimental
conditions higher-order effects are important.

The quantal calculation was done explicitly for a simple model of "Li (dineutron
cluster model, with zero-range wave functions), where the higher-order effects could
be calculated analytically. We continue now our study to treat more difficult situ-
ations . Of special interest is the EMD for applications to radiative-capture processes
for nuclear astrophysics Z). In these cases, more elaborate calculations using partial
wave expansion are necessary . We mention the reaction 8B+ Za8Pb ~'Be+p+ Za8Pb,
which is presently investigated at RIKEN ") at E-B=50 MeV/A. This is of relevance
for the solar-neutrino problem. The sudden approximation as used in this paper,
should be well applicable in this case . Finally, we mention the "post-breakup
Coulomb acceleration of the 9Li fragment" as it was recently observed 9) in the
longitudinal direction. This is qualitatively understood in our classical model of
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sect . 2, however this effect is absent in our high-energy quantal model of sect. 3.
Thus, deviations from the sudden approximation will have to be considered .
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