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Abstract: We develop closed-form expressions for the cross section for the electromagnetic excitation 
induced by heavy-ion collisions at intermediate and high energies. These expressions directly 
relate the excitation cross section to the corresponding photonuclear cross section. The effects 
of strong absorption, relativity and retardation are incorporated from the outset and are shown 
to be important. We apply our results to several situations of recent interest, including the 
excitation and photon decay of giant resonances. 

1. Introduction 

There has been considerable interest in recent years in the study of giant resonances 

through the excitation induced by heavy-ion collisions ’ ). One important reason for such 

studies is that the Coulomb interaction results in very large cross sections for the exci- 

tation of giant resonances at bombarding energies around 100 MeV/nucleon and above. 

These large cross sections make it feasible to study finer features of the structure of 

giant resonances that are not easily accessible by other means. For example, since the 

Coulomb interaction couples to isoscalar and isovector states with the same weight, one 

gets precise information on the excitation of isovector quadrupole (and higher multipole) 

resonances which are difftcult to find using other probes. As an example of the useful- 

ness of the method, recent studies with pion probes 2-4) challenged the assertion that 

the giant quadrupole resonance which one sees at low energies ( EGQR = 63A-‘13 MeV) 

is of purely isoscalar nature, as normally thought. However, Coulomb-excitation studies 
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performed by Beene et al. 5, have shown that the ratio of the neutron to proton matrix 

elements, which is sensitive to the isospin character of the state, is equal to the value of 

N/Z, as expected for a purely isoscalar excitation. 

The large cross section for Coulomb excitation of giant resonances also makes feasible 

the investigation of photon decays of giant resonances, despite the small branching ra- 

tios. This is potentially a very powerful tool to study the structure of giant resonances, 

especially those of low multipolarity. For example, it has long been recognized that the 

photon-decay branches of the GDR to low-lying excited states contain valuable informa- 

tion about the coupling of the GDR to collective surface modes, such as rotations and 

vibrations 6). Also, weakly excited modes, such as the isovector giant quadrupole reso- 

nance, can be extracted from the dominant electric-dipole background using information 

contained in the angular correlation between the scattered projectile and the decay pho- 

ton. The pioneering experiments of Beene and collaborators 5 ) have demonstrated both 

the power and the feasibility of this technique. 

At high energies, around 1 GeV/nucleon, heavy-ion excitation of giant resonances has 

been studied for many years [as an example see ref. ’ ) 1. The intriguing possibility of 

using the Coulomb field of heavy ions to access the excitation of multiphonon states 

of giant resonances, as suggested by Baur and Bertulani * 1, has also been the subject of 

intense scrutiny 9*‘o). The existence of such states has been tentatively identified in pion- 

scattering experiments by Mordechai et al. “J* ), and one hopes that the use of the strong 

electromagnetic field of heavy ions in high-energy collisions can give a deeper insight into 

the quantitative features of these states. 

These examples demonstrate the utility of heavy-ion-induced Coulomb excitation at 

intermediate and high energies in the study of interesting nuclear properties. However, 

in all these experiments there exists the difficulty of separating the contribution to the 

excitation process of the Coulomb interaction from that of the strong interaction. One 

would like to extract with the highest accuracy the contribution of the electromagnetic 

interaction to the excitation process, because this contribution is directly linked to the 

same matrix elements as in photonuclear processes. These photonuclear processes, which 

are often not accessible by means of direct photoabsorption experiments, give us clear 

information on the nuclear response function. 

It is the aim of this paper to develop a tractable closed-form theory of Coulomb exci- 

tation for intermediate- and high-energy collisions based on the eikonal approximation. 

The effects of strong absorption, relativity and retardation are included from the outset. 

In sect. 2 we derive expressions that directly relate the excitation cross section to the 

corresponding photoabsorption cross section. We also show how one obtains from these 

expressions the semiclassical limit for Coulomb excitation. In sect. 3 we apply our results 

to the analysis of the excitation of giant resonances. We also extend the formalism to the 

excitation/photon decay process and propose a new expression that directly relates the 

cross section for this process to the photon-scattering cross section. Our conclusions are 

given in sect. 4. 
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2. Eikonal description of Coulomb excitation 

2.1. INELASTIC AMPLITUDES AND VIRTUAL-PHOTON NUMBERS 

We consider a situation in which the field of the incident projectile, nucleus 1, excites 

the target, nucleus 2, with the projectile remaining in its ground state. The direction of 

the projectile is along the z-axis. We define r to be the separation between the centers of 

mass of the two nuclei and r’ to be the intrinsic coordinate of the target nucleus. Then, 

in first-order perturbation theory the inelastic-scattering amplitude is given by 

f(0) = &J d3r d3r’(~:,-‘(r)~f(r’)l~~nt(r,r’)I @Li:+’ (r)$i (r’)), (1) 

where @L,-’ (r) and 0:+) (r) are the incoming and outgoing distorted waves, respectively, 

for the scattering of the center of mass of the nuclei, and d(d) is the intrinsic nuclear 

wave function of the target nucleus. 

At intermediate energies, AEfElab < 1, and forward angles, 19 < 1, we can use eikonal 

wave functions for the distorted waves; i.e. 

( 

cc 
@:,Y’* (r)@:+‘(r) = exp -iq.r-& _-oo 

J 
L$p’(~‘,b) dz’ + ivc(b) (2) 

where q = k’ - k, Ugp’ is the nuclear optical potential, and 

V/c(b) = 2% , (3) 

with 

El(x) = 
J 

00 e-’ 
T dt. (4) 

x 

We have defined the impact parameter b by b = 1 r x PI. RG is related to the “gaussian” 

radii of the nuclei: R& = [ Rg’12 + [ R$‘12. For a heavy nucleus, Rg’ = m, where 

ai is the diffusivity and Ri is the radius of the corresponding Fermi density distribution. 

For a light nucleus, Rg’ . IS equal to the size parameter of the gaussian matter density. 

The first term in eq. (3) is the contribution to the Coulomb phase of a point-like 

charge distribution. It reproduces the elastic Coulomb amplitude when introduced into 

the eikonal expression for the elastic-scattering amplitude (see eq. (34) ). The second 

term in eq. (3) is a correction due to the extended gaussian charge distribution 13). It 

eliminates the divergence of the Coulomb phase at b = 0, so that 

WC(O) = 2 hv = [ln(k&) - C] , 

where C = 0.577... is the Euler constant. 

The interaction potential, assumed to be purely Coulomb, is given by 

(5) 

eitflr-r’ 1 

%(r,r’) = $j,(i)lr_r,l, (6) 
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where wp = (c, v), with u equal to the projectile velocity, K = w/c, and j Jr’) is the 

charge four-current for the intrinsic excitation of nucleus 2 by an energy of ZNB. Inserting 

eqs. (2) and (6) in eq. ( 1) and following the same steps as in ref. i4), one finds 

x Qm(q)Gnem ; 0 (Zf~fIM(~~,-m)lZiM), (7) 

where nem denotes the multipolarity, GM are the Winther-Alder relativistic func- 

tions I5 ), and (ZfMfJM (ne, -m ) (ZiMi) is the matrix element for the electromagnetic tran- 

sition of multipolarity ne m from IZiMi) to II M ), f f withEr-& = hw.ThefunctionQ,(q) 

is given by 

Qm(q) = db bJm (qb)Kn 

where q = 2k sin( $0) is the momentum transfer, 19 and 4 are the polar and azimuthal 

scattering angles, respectively, and 

x(b) = -; s cc 

Uipt(z’, b) dz’ + w(b). 
0 

For intermediate energies the nuclear optical potential ZJip’ is obtained from fits to 

the available elastic-scattering data. For relativistic energies one constructs a “poten- 

tial” which gives the expected transparency for a given impact parameter 16) in terms of 

the nucleon-nucleon scattering t-matrix. Rasmussen et al. 17) have shown that a good 

parameterization is given by 

where tm is the nucleon-nucleon f-matrix, which can be obtained from nucleon-nucleon 

scattering at high energies Is), and pi(O) = fPoexp(Ri/2a), with po = 0.17 fme3, 

a = 0.65 and Ri = 1.2 A;“3. 

Using the Wigner-Eckart theorem, one can calculate the inelastic differential cross 

section from eq. (7), using techniques similar to those of ref. r4). One obtains 

(11) 

where oy”” ( EY) is the photonuclear cross section for the absorption of a real photon with 

energy Ey by nucleus 2, and dn,l/dQ is the “equivalent”, or virtual, photon number, 

which is given by 

dnne 
2 

e [(2e + i)!!j2 
dS2= c IGtm121Qm W2, 

(2dve + 1) m 
(12) 

where (Y = e2/Zic. 
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The total cross section for Coulomb excitation can be obtained from eqs. (11) and 

(12), using the approximation dQ N 2nqdq/k2, valid for small scattering angles and 

small energy losses. Using the closure relation for the Bessel functions, we obtain 

where 

nne (0) =: Z:* 
e [ (2l + 1 )!!I2 

x IGnrm12gmW 
t2n)3fe + 1) m 

and 

(13) 

where x1(b) is the imaginary part of x (b ), which is obtained from eq. (9) and the 

imaginary part of the optical potential. 

Eqs. ( 1 1 )-( 15) are the main results of this work. They express the Coulomb-excitation 

cross section directly in terms of the photoabsorption cross section. We emphasize that 

the relationship between the Coulomb~xcitation and photoabso~tion cross sections is 

not an approximation. Rather it is an exact result which emerges from the fact that the 

excitation occurs in a divergence-free field (V . E = 0), so that the Coulomb-excitation 

and photoabsorption processes involve precisely the same transverse matrix elements. 

Before proceeding further, it is worthwhile to mention that the present calculations 

differ from those of refs. 14*‘5) by the proper inclusion of absorption. To reproduce the 

angular distributions of the cross sections, it is essential to include the nuclear trans- 

parency. In the limit of a black-disk approximation, the above formulas reproduce the 

results presented in ref. 14). One also observes that the Coulomb phase in the distorted 

waves, which is necessary for the quantitative reproduction of the experimental angular 

distributions, is not important for the total cross section in high-energy collisions. This 

fact explains why semiclassical and quantum methods give the same result for the total 

cross section for Coulomb excitation at relativistic energies 14). At intermediate energies, 

however, it is just this important phase which reproduces the semiclassical limit for the 

scattering of large-Z ions, as we shall see next. Using the semiclassical terminology, for 

E;lab = 100 MeV/nucleon or less, the recoil in the Coulomb trajectory is relevant. At 

the distance of closest approach, when the Coulomb field is most effective at inducing 

the excitation, the ions are displaced farther from each other due to the Coulomb recoil. 

Winther and Alder “1 have shown that one may account for this effect approximately 

by using the effective impact parameter b,s = b + ~ZIZF?~/~E~,~ in the semiclassical 

calculations. This recoil approximation can also be used in eq. ( 15 1, replacing b by b,s in 

the Bessel function and the nuclear phase, in order to obtain the total cross section. Since 

the modified Bessel function is a rapidly decreasing function of its argument, this modi- 

fication leads to sizeable modifications of the total cross section at intermediate-energy 

collisions. 
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Finally, we point out that for very light heavy-ion partners, the distortion of the scat- 

tering wave functions caused by the nuclear field is not important. This distortion is 

manifested in the diffraction peaks of the angular distributions, characteristic of strong 

absorption processes. If 21 Z~(Y >> 1, one can neglect the diffraction peaks in the inelastic- 

scattering cross sections and a purely Coulomb-excitation process emerges. One can gain 

insight into the excitation mechanism by looking at how the semiclassical limit of the 

excitation amplitudes emerges from the general result (12). We do this next. 

2.2. SEMICLASSICAL LIMIT OF THE EXCITATION AMPLITUDES 

If we assume that Coulomb scattering is dominant and neglect the nuclear phase in 

eq. (9), we get 

J 

cc 
fiRI = db bJm(qb)Km (16) 

0 

This integral can be done analytically by rewriting it as (an unimportant factor k’*” is 

omitted) 

Q?l(q) = db b’+‘*“J,,,(qb)K,,j (17) 

where we used the simple form vc (b) = 2r] In (kb), with q = ZiZze*/hv. Using standard 

techniques found in ref. 19), we find 

Q,(q) =2”“-$r(l + m + iq)T(l + iff) 

x~m(~)2’2i”F(1 +m+iq;l+iq;l+m;-A*), (18) 

where 

/&Bz! 
w ’ (19) 

and F is the hypergeometric function 19). 

The connection with the semiclassical results maybe obtained by using the low mo- 

mentum transfer limit 

Jm(qb) = 

1 =--- 
&s 

erqbe-rn(m+l/2)/2 + e-iqbein(m+L/2)/2 , 
> 

(20) 

and using the stationary-phase method, i.e. 

J 
112 

G(x)e G(xo)eidcxo), 

where 

d*d #‘(x0) = ---(x0). 
dx* 

(21) 

(22) 
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This result is valid for a slowly varying function G(X). 

Only the second term in brackets of eq. (20) will have a positive (b = ba > 0) 

stationary point, and 

where 

4(b) = -qb + 2qln(kb). 

The condition 4’ (bs) = 0 implies 

(24) 

b=z!= ao 
0 

9 iq$ (25) 

where a0 = Z~Zze*/pv* is half the distance of closest approach in a classical head-on 

collision. 

We observe that the relation (25 ) is the same [with cotg ( f 0 ) N sin-’ ( f0) ] as that be- 

tween impact parameter and deflection angle of a particle following a classical Rutherford 

trajectory. Also, 

which implies that in the semiclassical limit 

(27) 

Using the above results, eq. ( 12) becomes 

If strong absorption is not relevant, the above formula can be used to calculate the 

equivalent photon numbers. The stationary value given by eq. (25) means that the im- 

portant values of b which contribute to 0, (q) are those close to the classical impact 

parameter. Dropping the index 0 from eq. (25 ), we can also rewrite eq. (28) as 

IGneml* Kft (g) . (29) 

which is equal to the semi-classical expression given in ref. *’ ), eq. (A.2). 

For very forward scattering angles, such that n << 1, a further approximation can be 

made by setting the hypergeometric function in eq. ( 18 ) equal to unity I9 ), and we obtain 

52,(q) = 2*‘“$f(l + m + iq)T(l + iq)/i” (5) 
2+2iq 

. (30) 
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The main value of m in this case will be m = 0, for which one gets 

L&(q) E 2’$r(l + iq)T(l + iv) (E)2+2” 

= -q222’“T(iq)r(iq) (~)2+2’v, (31) 

and 

POW2 = 114 (g4 v2sin;~(~~) , 
which, for q >> 1, results in 

IQo(q)12 = 4n2q2 (5)’ e-2nq. 

(32) 

(33) 

This result shows that in the absence of strong absorption and for q >> 1, Coulomb 

excitation is strongly suppressed at 8 = 0. This also follows from semiclassical arguments, 

since 13 + 0 means large impact parameters, b B 1, for which the action of the Coulomb 

field is weak. 

3. Applications and discussions 

3.1. SINGLES SPECTRA IN COULOMB EXCITATION OF GDR 

In this section, we apply our formalism to the analysis of the data of ref. ’ ), in which 

a projectile of “0 with an energy of E lab = 84 MeV/nucleon excites the target nucleus 

“‘Pb to the GDR. We first seek parameters of the optical potential which fits the elastic- 

scattering data. We use the eikonal approximation for the elastic amplitude in the form 

given by 

h(O) = ik 
s 

Jo(qb){l-exp[iX(b)l}bdb, (34) 

where JO is the Bessel function of zeroth-order and the phase x (b ) is given by eq. (9 ). In 

fig. 1 we compare our calculated elastic-scattering angular distribution to the data from 

ref. 2’ ). The calculation utilized eq. (34), with x (b) obtained from an optical potential 

of a standard Woods-Saxon form with parameters 

& = 50MeV, WO= 

RV = Rw = 8.5 fm 

uv = aw = 0.85fm. 

The data are evidently very well reproduced by the 

58 MeV, 

(35) 

eikonal approximation. 

In order to calculate the inelastic cross section for the excitation of the GDR, we use 

a lorentzian parameterization for the photoabsorption cross section of 208Pb [ref. 22) 1, 

assumed to be all El, with EGDR = 13.5 MeV and r = 4.0 MeV. Inserting this form 

into eq. ( 13) and doing the calculations implicit in eq. ( 12) for dnEt/dS2, we calculate 

the angular distribution and compare it with the data in fig. 2. The agreement with the 
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*’ 

- 170 + 208Pb 

_ El& = 64 MeV/nucl. 

0 12 3 4 5 6 

Ocm [degrees] 

Fig. 1. Ratio to the Rutherford cross section of the elastic cross section for the ‘70+208Pb reaction 
at 84 MeV/nucleon, as a function of the center-of-mass scattering angle. Data are from ref. 2’ ). 

1 2ogPb(170, 170’) 

10-l 
0 1 2 3 4 5 6 

CIcrn [degrees] 

Fig. 2, Differential cross section for the excitation of the isovector giant dipole resonance in ‘**Pb 
by means of I70 projectiles at 84 MeV/nucleon, as a function of the center-of-mass scattering angle. 

Data are from ref. 21 1. 
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data is excellent, provided we adjust the overall normalization to a value corresponding 

to 93 % of the energy-weighted sum rule (EWSR) in the energy interval 7 - 18.9 MeV. 

Taking into account the f 10% uncertainty in the absolute cross sections quoted in ref. *’ ), 

this is consistent with photoabsorption cross section in that energy range, for which 

approximately 110 % of the EWSR is exhausted. 

To unravel the effects of relativistic corrections, we repeat the previous calculations 

unplugging the factor y = (1 - v*/c*)-‘/* which appears in the expressions ( 14) and 

(15) and using the non-relativistic limit of the functions GELS, as described in ref. 15). 

These modifications eliminate the relativistic corrections on the interaction potential. 

The result of this calculation is shown in fig. 3 (dotted curve). For comparison, we also 

show the result of a full calculation, keeping the relativistic corrections (dashed curve). 

We observe that the two results have approximately the same pattern, except that the 

non-relativistic result is slightly smaller than the relativistic one. This fact may explain 

the discrepancy between the fit of ref. *’ ) and ours as due to relativistic corrections not 

properly accounted for in the ECIS code 23). In fact, if we repeat the calculation for the 

excitation of IVGDR using the non-relativistic limit of eqs. ( 14) and ( 15), we find that 

the best fit to the data is obtained by exhausting 113 % of the EWSR. This value is very 

close to the 110 % obtained by Barrette et al. *’ ). 

In fig. 3 we also show the result of a semiclassical calculation (solid curve) for the 

IVGDR excitation in lead, using eq. (28 ) for the virtual-photon numbers. One observes 

that the semiclassical curve is not able to fit the experimental data. This is mainly be- 

20’3Pb( 170, 170') 1 

_ 84 MeV/nucl. 

0 1 2 3 4 5 6 

ecrn [degrees] 

Fig. 3. Virtual-photon numbers for the electric-dipole multipolarity generated by 84 MeV/nucleon 
“0 projectiles incident on *OsPb, as a function of the center-of-mass scattering angle. The solid 
curve is a semiclassical calculation. The dashed and dotted curves are eikonal calculations with and 

without relativistic corrections, respectively. 
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cause diffraction effects and strong absorption are not included. But the semiclassical 

calculation displays the region of relevance for Coulomb excitation. At small angles the 

scattering is dominated by large impact parameters, for which the Coulomb field is weak. 

Therefore the Coulomb excitation is small and the semiclassical approximation fails. It 

also fails in describing the large-angle data (dark side of the rainbow angle), since absorp- 

tion is not treated properly. One sees that there is a “window” in the inelastic-scattering 

data near 8 = 2” - 3” in which the semiclassical and full calculations give approximately 

the same cross section. 

As discussed above, the semiclassical result works for large-2 nuclei and for relativistic 

energies where the approximation of eq. ( 16) is justified. However, angular distributions 

are not useful at relativistic energies since the scattering is concentrated at extremely 

forward angles. The quantity of interest in this case is the total inelastic cross section. If 

we use a sharp-cutoff model for the strong absorption, so that xl(b) = cx) for b < bmin 

and 0 otherwise, then eqs. ( 14) and ( 15 1 yield the same result as an integration of the 

semiclassical expression, eq. (29), from bmin to 00. In fact, this result has been obtained 

earlier in ref. 14). 

3.2. EXCITATION AND PHOTON DECAY OF THE GDR 

We now consider the excitation of the target nucleus to the giant dipole resonance and 

the subsequent photon decay of that excited nucleus, leaving the target in the ground state. 

Experimentally, one detects the inelastically scattered projectile in coincidence with the 

decay photon and demands that the energy lost by the projectile is equal to the energy 

of the detected photon. To the extent that the excitation mechanism is dominated by 

Coulomb excitation, with the exchange of a single virtual photon, this reaction is very 

similar to the photon-scattering reaction, except that in the present case the incident 

photon is virtual rather than real. In this section, we investigate whether the connection 

between these two reactions can be formalized. 

We first review the excitation mechanism. The physical situation is that of a heavy 

ion of energy E incident on a target. The projectile loses an energy AE while scattering 

through an angle 0. We have shown that, under the conditions AEIE <( 1, the cross 

section for excitation of the target nucleus partitions into the following expression (we 

assume that the contribution of the El multipolarity is dominant): 

(36) 

where o, (E,) is the photonuclear cross section for the absorption of a real photon with 

energy Ey = AE by the target nucleus, and the remaining terms on the right-hand side 

are collectively the number of virtual photons per unit energy with energy EY. This latter 

quantity depends on the kinematics of the scattered heavy ion and on the optical potential 

but is otherwise independent of the target degrees of freedom. This partitioning allows 

one to relate the excitation cross section to the photoabso~tion cross section. 
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Now, the usual way to write the cross section d2acy/dQ dE, for the excitation of the 

target followed by photon decay to the ground state is simply to multiply the above 

expression by a branching ratio R,, which represents the probability that the nucleus 

excited to an energy E, will emit a photon leaving it in the ground state ‘): 

Instead, we propose the following expression, in complete analogy with eq. (36): 

& (Ey) = k $$ (Ey)ayy (Ey), 
Y Y 

(37) 

(38) 

where a,, (EY) is the cross section for the elastic scattering of photons with energy E,. 

Formally, these expressions are equivalent in that they simply define the quantity R,. 

However, if one treats R, literally as a branching ratio, then these expressions are equiv- 

alent only if it were true that the photon-scattering cross section is just the product of 

the photoabsorption cross section and the branching ratio. In fact, it is well-known from 

the theory of photon scattering that the relationship between the photoabsorption cross 

section and the photon-scattering cross section is more complicated 25 ). In particular, it 

is not correct to think of photon scattering as a two-step process consisting of absorption, 

in which the target nucleus is excited to an intermediate state of energy Ey, followed by 

emission, in which the emitted photon has the same energy Ey. Since the intermediate 

state is not observable, one must sum over all possible intermediate states and not just 

zoaPb(t70, ‘70’~) 

.\ 04 MeV/nucl. 

10 12 14 16 18 

EY W=Vl 

Fig. 4. Calculated cross section for the excitation followed by y-decay of 208Pb induced by 170 
projectiles at 84 MeV/nucleon. The photoabsorption cross section was parameterized by a simple 
lorentzian representing the GDR, and the statistical component of the photon decay was neglected. 
The solid curve uses the formalism described in the text (eq. (38) ) while the dashed curve uses a 

constant branching ratio for photon decay (eq. (37) ). 
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those allowed by conservation of energy. Now, if the energy E, happens to coincide with 

a narrow level, then that level will completely dominate in the sum over intermediate 

states. In that case, it is proper to regard the scattering as a two-step process in the manner 

described above, and the two expressions for the cross section will be equal. However, 

for Ey in the nuclear continuum region (e.g. in the region of the GDR), this will not be 

the case, as demonstrated in the following discussion. 

We again consider the inelastic scattering of 170 projectiles of energy Elab = 84 

MeV/nucleon from a *‘*Pb nucleus at an angle of 2.5”. We use eq. (12) to calculate 

the El virtual-photon number and we use a lorentzian parameterization of the GDR 

of *‘*Pb. We calculate R, and a,, according to the prescriptions of ref. ‘) and ref. *‘), 

respectively; in both cases we neglect the statistical contribution to the photon decay. 

The results are compared in fig. 4, where it is very evident that they make very different 

predictions for the cross section, especially in the wings of the GDR. 

We next use our expression to compare directly with the data of ref. ’ ). For this pur- 

zoePb(l70, 170’) 

8 10 12 14 16 18 

‘m’ L 

5 7- 208Pb(170, 1709) - 

a 10 12 14 16 18 

5 [Levi 

Fig. 5. (top panel) Differential cross section for the excitation of *O*Pb by I70 projectiles at 84 
MeV/nucleon, as a function of the excitation energy. Data are from ref. 5). (bottom panel) Cross 
section for excitation followed by y-decay of 208Pb in the reaction mentioned in the previous 
figures. The solid (dashed) line includes (excludes) the Thomson scattering amplitude. Data are 

from ref. s ). 
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pose, we again calculate a,, using the formalism of ref. 25), which relates aY, to the total 

photoabsorption. For the latter, we use the numerically defined data set of ref. 22 ) rather 

than a lorentzian parameterization. The effect of the underlying compound nuclear levels 

(i.e. the statistical contribution to the photon scattering) is also included. The calculation 

is compared to the data in fig. 5. The top panel shows the cross section for the excitation of 

the GDR without the detection of the decay photon. The agreement with the data is excel- 

lent, giving us confidence that our calculation of the virtual-photon number as a function 

of Ey is correct. The bottom panel shows the cross section for the excitation-decay pro- 

cess as a function of Ey. Although the qualitative trend of the data are well described, the 

calculation systematically overpredicts the cross section on the high-energy side of the 

GDR (solid curve). If the Thomson amplitude is not included in a,,, the calculation is 

in significantly better agreement with the data (dashed curve). This last point is puzzling 

and must be left as an open question. 

As a final point, we remark that the relationship of eq. (38) is not new. For relativistic 

projectiles, this relationship can be obtained classically (for the El multipolarity only) 

via the so-called Weizslcker-Williams 26 ) method of virtual quanta or quantum mechan- 

ically via the Primakoff formalism 27). A formal derivation for the kinematic regime of 

the Coulomb-excitation/photon-decay experiments of ref. 5 ) is still lacking. Nevertheless, 

we suggest that future experiments be analyzed using the expression eq. (38). 

4. Conclusions 

We have shown that the cross sections for excitation of giant resonances in intermediate- 

and relativistic-energy collisions can be well explained in terms of a simple formalism, 

based on the eikonal approximation. This formalism includes the effects of strong ab- 

sorption, retardation and relativity from the very beginning. These effects are shown to 

be of relevance for the determination of the excitation strengths needed to reproduce the 

experimental data. The resulting cross section can be factorized into a sum over multi- 

poles of products of a density of virtual photons and the photoabsorption cross section 

for that multipole. A similar factorization had previously been done only for relativis- 

tic collisions 14). The advantage of such a factorization is clear, since the photonuclear 

processes can often give us important and unambiguous information on the nuclear re- 

sponse function. We have given some examples related to recent experiments ‘,5,2’ ) that 

demonstrate both the power of the reaction and the utility of our technique in interpreting 

the data. At intermediate energies, the present technique is a distinct improvement over 

semiclassical calculations. The latter are not well suited because the effects of diffraction, 

which are manifest in the experimental data, are not treated properly in that approach. 

For the future, it still remains to obtain a rigorous derivation relating the Coulomb- 

excitation/photon-decay cross section to the photon scattering. Using the formalism de- 

veloped here, we have obtained good qualitative agreement with the data of ref. 5), but 

only by neglecting the Thomson contribution to the scattering cross section. This is not 

at present understood and further theoretical work along these lines is highly desirable. 



172 C.A. Bertulani, A.M. Nathan / Giant resonances 

We thank Dr. Jim Beene for providing us with computer files of some of his cross 

sections. This work was supported in part by the US Department of Energy, the US 

National Science Foundation under grant PHT-90 17077, and CNPq/Brazil. 

References 

1) F.E. Bertrand and J.R. Beene, Nucl. Phys. AS20 (1990) 627~ 
2) J.L. Ullmann et al., Phys. Rev. C31 (1985) 177 
3) S.J. Seestrom-Morris et al., Phys. Rev. C33 ( 1986) 1847 
4) J.L. Ullmann et al., Phys. Rev. C35 (1987) 1099 
5) J.R. Beene et al., Phys. Rev. C41 ( 1990) 920 
6) T.J. Bowles et al., Phys. Rev. C24 ( 198 1) 1940 
7) D.L. Olson et al., Phys. Rev. C44 ( 199 1) 1862 
8) G. Baur and C.A. Bertulani, Phys. Lett. B174 (1986) 23; Phys. Rev. C34 (1986) 1654; in The 

response of nuclei under extreme conditions, ed. R.A. Broglia and G.F. Bertsch (Plenum, New 
York, 1988) 

9) H. Emling et al., GSI Nachrichten 09-9 1 and contribution to the Workshop on giant resonances, 
Notre Dame, USA, October 1991 

10) W. Kuhn, private communication; in Proc. Workshop on nuclear dynamics, Jackson Hole, 
USA, 1992, ed. W. Bauer and B. Beck (World Scientific, Singapore) to be published 

11) S. Mordechai et al., Phys. Rev. Lett. 61 (1988) 531 
12) S. Mordechai et al., Phys. Rev. C41 ( 1990) 202 
13) G. Faldt, Phys. Rev. D2 ( 1970) 846 
14) CA. Bertulani and G. Baur, Phys. Reports 163 (1988) 299 
15) A. Winther and K. Alder, Nucl. Phys. A319 (1979) 518 
16) P.J. Karol, Phys. Rev. Cl1 (1975) 1203 
17) J.O. Rasmussen, L.F. Canto and X.-J. Qiu, Phys. Rev. C33 (1986) 2033 
18) L. Ray, Phys. Rev. Cl1 (1975) 1203 
19) I.S. Gradshteyn and I.M. Ryzhik, Table of integrals, series and products (Academic Press, 

New York, 1980) 
20) A.N.F. Aleixo and C.A. Bertulani, Nucl. Phys. A505 (1989) 448 
21) J. Barrette et al., Phys. Lett. B209 (1988) 182 
22) A. Veyssiere, H. Beil, R. Berg&e, P. Carlos and A. Lepretre, Nucl. Phys. Al59 ( 1970) 561 
23) J. Raynal, Phys. Rev. C23 (1981) 2571 
24) A. Bohr and B. Mottelson, Nuclear structure, vol. I (Benjamin, New York, 1975) 
25) A.M. Nathan, Phys. Rev. C43 (1991) 2479 
26) J.D. Jackson, Classical electrodynamics (Wiley, New York, 1962) pp. 520-526 
27) LYa. Pomeranchuck and I.M. Shmushkevich, Nucl. Phys. 23 ( 1961) 452 


