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Abstract: We develop closed-form expressions for the cross section for the electromagnetic excitation
induced by heavy-ion collisions at intermediate and high energies. These expressions directly
relate the excitation cross section to the corresponding photonuclear cross section. The effects
of strong absorption, relativity and retardation are incorporated from the outset and are shown
to be important. We apply our results to several situations of recent interest, including the
excitation and photon decay of giant resonances.

1. Introduction

. There has been considerable interest in recent years in the study of giant resonances
through the excitation induced by heavy-ion collisions !). One important reason for such
studies is that the Coulomb interaction results in very large cross sections for the exci-
tation of giant resonances at bombarding energies around 100 MeV /nucleon and above.
These large cross sections make it feasible to study finer features of the structure of
giant resonances that are not easily accessible by other means. For example, since the
Coulomb interaction couples to isoscalar and isovector states with the same weight, one
gets precise information on the excitation of isovector quadrupole (and higher multipole)
resonances which are difficult to find using other probes. As an example of the useful-
ness of the method, recent studies with pion probes 2*) challenged the assertion that
the giant quadrupole resonance which one sees at low energies (Egor = 63471/% MeV)
is of purely isoscalar nature, as normally thought. However, Coulomb-excitation studies
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performed by Beene et al. °) have shown that the ratio of the neutron to proton matrix
elements, which is sensitive to the isospin character of the state, is equal to the value of
N/Z, as expected for a purely isoscalar excitation.

The large cross section for Coulomb excitation of giant resonances also makes feasible
the investigation of photon decays of giant resonances, despite the small branching ra-
tios. This is potentially a very powerful tool to study the structure of giant resonances,
especially those of low multipolarity. For example, it has long been recognized that the
photon-decay branches of the GDR to low-lying excited states contain valuable informa-
tion about the coupling of the GDR to collective surface modes, such as rotations and
vibrations °). Also, weakly excited modes, such as the isovector giant quadrupole reso-
nance, can be extracted from the dominant electric-dipole background using information
contained in the angular correlation between the scattered projectile and the decay pho-
ton. The pioneering experiments of Beene and collaborators °) have demonstrated both
the power and the feasibility of this technique.

At high energies, around 1 GeV/nucleon, heavy-ion excitation of giant resonances has
been studied for many years [as an example see ref. 7)]. The intriguing possibility of
using the Coulomb field of heavy ions to access the excitation of multiphonon states
of giant resonances, as suggested by Baur and Bertulani ®), has also been the subject of
intense scrutiny *1°). The existence of such states has been tentatively identified in pion-
scattering experiments by Mordechai ez al. '»1?), and one hopes that the use of the strong
electromagnetic field of heavy ions in high-energy collisions can give a deeper insight into
the quantitative features of these states.

These examples demonstrate the utility of heavy-ion-induced Coulomb excitation at
intermediate and high energies in the study of interesting nuclear properties. However,
in all these experiments there exists the difficulty of separating the contribution to the
excitation process of the Coulomb interaction from that of the strong interaction. One
would like to extract with the highest accuracy the contribution of the electromagnetic
interaction to the excitation process, because this contribution is directly linked to the
same matrix elements as in photonuclear processes. These photonuclear processes, which
are often not accessible by means of direct photoabsorption experiments, give us clear
information on the nuclear response function.

It is the aim of this paper to develop a tractable closed-form theory of Coulomb exci-
tation for intermediate- and high-energy collisions based on the eikonal approximation.
The effects of strong absorption, relativity and retardation are included from the outset.
In sect. 2 we derive expressions that directly relate the excitation cross section to the
corresponding photoabsorption cross section. We also show how one obtains from these
expressions the semiclassical limit for Coulomb excitation. In sect. 3 we apply our results
to the analysis of the excitation of giant resonances. We also extend the formalism to the
excitation/photon decay process and propose a new expression that directly relates the
cross section for this process to the photon-scattering cross section. Our conclusions are
given in sect. 4.
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2. Eikonal description of Coulomb excitation

2.1. INELASTIC AMPLITUDES AND VIRTUAL-PHOTON NUMBERS

We consider a situation in which the field of the incident projectile, nucleus 1, excites
the target, nucleus 2, with the projectile remaining in its ground state. The direction of
the projectile is along the z-axis. We define r to be the separation between the centers of
mass of the two nuclei and r' to be the intrinsic coordinate of the target nucleus. Then,
in first-order perturbation theory the inelastic-scattering amplitude is given by

7)== [ar S (@5 (N ee(r) Vi N D (r)g (v
= Snhv ™ e (r') | Vi (r, )| @77 (1) 3 (7)), (1)
where tD‘ff Y(r) and (Dk(” (r) are the incoming and outgoing distorted waves, respectively,
for the scattering of the center of mass of the nuclei, and ¢(r') is the intrinsic nuclear
wave function of the target nucleus.

At intermediate energies, 4E/E,, < 1, and forward angles, § < 1, we can use eikonal

wave functions for the distorted waves; i.e.

(e (r) = exp{-—iq-r— ﬁ/ UP(Z,b) dz' + in//c(b)} , (2)
—x
where ¢ = k' — k, U™ is the nuclear optical potential, and
2 2
ve(b) = 285 {m(kb) + 1E, (I’;—ZG)} : (3)
with
o0 e_t
E](.X):/ I (4)
x t

We have defined the impact parameter b by b = |r x Z]. Rg is related to the “gaussian”
radii of the nuclei: R} = [R§’]2 + [R$]2. For a heavy nucleus, RY’ = v24;R;, where
a; is the diffusivity and R; is the radius of the corresponding Fermi density distribution.
For a light nucleus, Rg ) is equal to the size parameter of the gaussian matter density.

The first term in eq. (3) is the contribution to the Coulomb phase of a point-like
charge distribution. It reproduces the elastic Coulomb amplitude when introduced into
the eikonal expression for the elastic-scattering amplitude (see eq. (34)). The second
term in eq. (3) is a correction due to the extended gaussian charge distribution By 1t
eliminates the divergence of the Coulomb phase at b = 0, so that

2
we(0) = 222 in(kRg) - €1, (5)

where C = 0.577... is the Euler constant.

The interaction potential, assumed to be purely Coulomb, is given by

, pk eixlr—/]
Vi (r, 7)) = F]ﬂ( )m s (6)
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where v* = (c,v), with v equal to the projectile velocity, k = ®/c, and j(r') is the
charge four-current for the intrinsic excitation of nucleus 2 by an energy of 2w. Inserting
egs. (2) and (6) in eq. (1) and following the same steps as in ref. '*), one finds

Zyek x= o fONY S img
J(U)-lyh Zh; \ ) V2¢ + le
x (@) Grem (%) (M M (mt, —m) | LMY , 7)

where nfm denotes the multipolarity, G.m are the Winther—Alder relativistic func-
he electromagnetic tran-

unction £, (q)

tions '*), and (ItMf| M (n£, —m)| ;M) is the matrix ele
sition of multipolarity z£m from |I;M;) to |[{My), with Es— E; = hw. The
is given by

"":

9m<q>=/ dbme(qb)Km(yf)exp{tx(b)} 8)
0

where ¢ = 2k sin( %0) is the momentum transfer, 6 and ¢ are the polar and azimuthal
scattering angles, respectively, and

20) = 5o [ U0 8+ ved), ©
v Jo

For intermediate energies the nuclear optical potential U™ is obtained from fits to
the available elastic-scattering data. For relativistic energies one constructs a “poten-
tial” which gives the expected transparency for a given impact parameter '®) in terms of
the nucleon-nucleon scattering f-matrix. Rasmussen et al. '7) have shown that a good
parameterization is given by

(1) p2) 2
Un(r) = 2%(tan(E)) p1(0) p2(0) [—G—RL} exp{—'—z} : (10)
G R
where fnn 1s the nucleon—nucleon 7-matrix, which can be obtained from nucleon-nucleon
scattering at high energies '¥), and p;(0) = 1poexp(Ri/2a), with py = 0.17 fm™3,
a=065and R; = 1.2 47>,
Using the Wigner-Eckart theorem, one can calculate the inelastic differential cross
section from eq. (7), using techniques similar to those of ref. '*). One obtains

d G'C - dnnl
dQ dE, (Ey) F de

nt

oy (Ey), (11)

where g} X (E,) is the photonuclear cross section for the absorption of a real photon with
energy E, by nucleus 2, and dn,,/dQ is the “equivalent”, or virtual, photon number,
which is given by

dnge o (wk\ 2120 + DN)? 2 2
a0 = Zia (y_v) W};lGnlml |L2m (q)]", (12)

where o = 2 /hc.
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The total cross section for Coulomb excitation can be obtained from egs. (11) and
(12), using the approximation dQ =~ 2zng dq/k", valid for small scattering angles and
small energy losses. Using the closure relation for the Bessel functions, we obtain

BB = 5 3 (B (B (13)
né
where
2 L[ 4+ 1)1)?
nu () = Zia W%jlcnemxlgm(w) (14)
and
2
b

gm(w) =2m (%) /db bKs, (%) exp{-2x1(b)} , (15)

where x1{&) is the imaginary part of y (b), which is obtained from eq. {(9) and the
imaginary part of the optical potential.

Egs. (11)~(15) are the main results of this work. They express the Coulomb-excitation
cross section directly in terms of the photoabsorption cross section. We emphasize that
the relationship between the Coulomb-excitation and photoabsorption cross sections is
not an approximation. Rather it is an exact result which emerges from the fact that the
excitation occurs in a divergence-free field (V - E = 0), so that the Coulomb-excitation
and photoabsorption processes involve precisely the same transverse matrix elements.

Before proceeding further, it is worthwhile to mention that the present calculations
differ from those of refs. '*!*) by the proper inclusion of absorption. To reproduce the
angular distributions of the cross sections, it is essential to include the nuclear trans-
parency. In the limit of a black-disk approximation, the above formulas reproduce the
results presented in ref. '*). One also observes that the Coulomb phase in the distorted
waves, which is necessary for the quantitative reproduction of the experimental angular
distributions, is not important for the total cross section in high-energy collisions. This
fact explains why semiclassical and quantum methods give the same result for the total
cross section for Coulomb excitation at relativistic energies '*). At intermediate energies,
however, it is just this important phase which reproduces the semiclassical limit for the
scattering of large-Z ions, as we shall see next. Using the semiclassical terminology, for
Ein ~ 100 MeV/nucleon or less, the recoil in the Coulomb trajectory is relevant. At
the distance of closest approach, when the Coulomb field is most effective at inducing
the excitation, the ions are displaced farther from each other due to the Coulomb recoil.
Winther and Alder 1°) have shown that one may account for this effect approximately
by using the effective impact parameter by = b + nZ\Zye*/4Ey, in the semiclassical
calculations. This recoil approximation can also be used in eq. (15), replacing b by by in
the Bessel function and the nuclear phase, in order to obtain the total cross section. Since
the modified Bessel function is a rapidly decreasing function of its argument, this modi-
fication leads to sizeable modifications of the total cross section at intermediate-energy
collisions.
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Finally, we point out that for very light heavy-ion partners, the distortion of the scat-
tering wave functions caused by the nuclear field is not important. This distortion is
manifested in the diffraction peaks of the angular distributions, characteristic of strong
absorption processes. If Z; Z,a > 1, one can neglect the diffraction peaks in the inelastic-
scattering cross sections and a purely Coulomb-excitation process emerges. One can gain
insight into the excitation mechanism by looking at how the semiclassical limit of the
excitation amplitudes emerges from the general result (12). We do this next.

2.2. SEMICLASSICAL LIMIT OF THE EXCITATION AMPLITUDES

If we assume that Coulomb scattering is dominant and neglect the nuclear phase in
eq. (9), we get

Lm(q) 'z/ db bJm(gb)Km (%) exp {iyc(b)} . (16)
0

This integral can be done analytically by rewriting it as (an unimportant factor k' is
omitted)

Quiq) =/ db b2 1, (qb) Km (“’—b) , (17)
0 v

where we used the simple form e (b) = 2yIn(kb), withn = Z,Z-e*/hv. Using standard
techniques found in ref, '°), we find

n 1 . .
Qn(q) =2 (L + m + )T (1 + in)

242in
xA'"(%) F(1+m+iml+iml +m—4%) (18)
where
g
A= o (19)

and F is the hypergeometric function *).

The connection with the semiclassical results maybe obtained by using the low mo-

mentum transfer limit
2 cos (¢b — f7m — ix)
7qb 2 3

_ 1 {eiqbe—in(m+l/2)/2 " e—iqbein(m+l/2)/2} ’ (20)

v/ 2rgb

and using the stationary-phase method, i.e.

6 (x) 2mi ' % (x)
id(x ~ tpixg
/G(x)e dx ~ <¢”(xo)) G(xp)e , (21)

Jm(gb)

1

where

d¢ d’¢

3 X0 =0, 9" (xo) = iz (%0) - (22)
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This result is valid for a slowly varying function G (x).
Only the second term in brackets of eq. (20) will have a positive (b = 5, > 0)
stationary point, and

2ni
2m(q) =~ ﬁ(qﬁ,,(bo)) \/EKm< )exp{z¢<bo)+2m<m+2>}

(23)
where
#(b) = —gb + 2nIn(kb). (24)
The condition ¢’ (bg) = 0 implies
2n a0
bg = =+ = , 25
°T 7y sin(%@) (25)

where ay = Z,2Z,¢* /uv? is half the distance of closest approach in a classical head-on
collision.

We observe that the relation (25) is the same [with cotg(16) ~ sin™!(16)] as that be-
tween impact parameter and deflection angle of a particle following a classical Rutherford
trajectory. Also,

" 2y q
¢ (b°)=_b_§ =7 (26)

which implies that in the semiclassical limit

4n? 2
i) = k2 (ﬂ)

q* yvq

1 [do 2 way
= — | — Ky| ———— 1. 27
(i), (et @

Using the above results, eq. (12) becomes
dnge do 2 e+ P ( way )
Afme _ [ 2O 7z Gatm —0
dQ (dQ)Ruth ‘a<yv) Qe+ 1) Z] ol K yvsin(36) (28)
If strong absorption is not relevant, the above formula can be used to calculate the
equivalent photon numbers. The stationary value given by eq. {25) means that the im-

portant values of b which contribute to Q,,(g) are those close to the classical impact
parameter. Dropping the index O from eq. (25), we can also rewrite eq. (28) as

2 2
L dnae _ 2 (@ \ €120+ D] 2 g2 (Wb
' =2 (55) Tt 1y 0! g(5). @

which is equal to the semi-classical expression given in ref. 2°), eq. (A.2).
For very forward scattering angles, such that 4 < 1, a further approximation can be
made by setting the hypergeometric function in eq. (18) equal to unity '*), and we obtain

242in
@m(q) =22"' (T (Lt m o+ i) (1 + i) A™ (’;’:) . (30)
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The main value of # in this case will be m = 0, for which one gets

(@) = 2T+ ipra + i (2)7
= —rranran (2T, G31)
and
@@P = (2) (32)
which, for # > 1, results in
12(q)* = 4n’n’? (%)4 e 2, (33)

This result shows that in the absence of strong absorption and for # > 1, Coulomb
excitation is strongly suppressed at 8 = 0. This also follows from semiclassical arguments,
since & — 0 means large impact parameters, b >> 1, for which the action of the Coulomb
field is weak.

3. Applications and discussions

3.1. SINGLES SPECTRA IN COULOMB EXCITATION OF GDR

In this section, we apply our formalism to the analysis of the data of ref. '), in which
a projectile of 'O with an energy of E,,, = 84 MeV/nucleon excites the target nucleus
208pp to the GDR. We first seek parameters of the optical potential which fits the elastic-
scattering data. We use the eikonal approximation for the elastic amplitude in the form
given by

fal0) = ik/Jomb){l—exp[ix(b)]}bdb, (34)

where Jj is the Bessel function of zeroth-order and the phase y (b) is given by eq. (9). In
fig. 1 we compare our calculated elastic-scattering angular distribution to the data from
ref. 2!). The calculation utilized eq. (34), with x (b) obtained from an optical potential
of a standard Woods—Saxon form with parameters

Vo = 50MeV, W, = 58 MeV,
RV = RW = 8.5fm
ay = aw = 0.85fm. (35)
The data are evidently very well reproduced by the eikonal approximation.
In order to calculate the inelastic cross section for the excitation of the GDR, we use
a lorentzian parameterization for the photoabsorption cross section of 2%Pb [ref. %) ],
assumed to be all El, with Egpg = 13.5MeV and I" = 4.0 MeV. Inserting this form

into eq. (13) and doing the calculations implicit in eq. (12) for dng,/d2, we calculate
the angular distribution and compare it with the data in fig. 2. The agreement with the
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Fig. 1. Ratio to the Rutherford cross section of the elastic cross section for the 170 42%8Pb reaction
at 84 MeV/nucleon, as a function of the center-of-mass scattering angle. Data are from ref, 21).
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Fig. 2. Differential cross section for the excitation of the isovector giant dipole resonance in 208Pb

by means of 7O projectiles at 84 MeV /nucleon, as a function of the center-of-mass scattering angle.
Data are from ref. 21).
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data is excellent, provided we adjust the overall normalization to a value corresponding
to 93 % of the energy-weighted sum rule (EWSR) in the energy interval 7 — 18.9 MeV.
Taking into account the +10% uncertainty in the absolute cross sections quoted in ref. My,
this is consistent with photoabsorption cross section in that energy range, for which
approximately 110% of the EWSR is exhausted.

To unravel the effects of relativistic corrections, we repeat the previous calculations
unplugging the factor y = (1 — v?/c?)~1/2 which appears in the expressions (14) and
(15) and using the non-relativistic limit of the functions Gg,, as described in ref. '*).
These modifications eliminate the relativistic corrections on the interaction potential.
The result of this calculation is shown in fig. 3 (dotted curve). For comparison, we also
show the result of a full calculation, keeping the relativistic corrections (dashed curve).
We observe that the two results have approximately the same pattern, except that the
non-relativistic result is slightly smalier than the relativistic one. This fact may explain
the discrepancy between the fit of ref. 2') and ours as due to relativistic corrections not
properly accounted for in the ECIS code 2*). In fact, if we repeat the calculation for the
excitation of IVGDR using the non-relativistic limit of egs. (14) and (15), we find that
the best fit to the data is obtained by exhausting 113 % of the EWSR. This value is very
close to the 110 % obtained by Barrette et al. 2!).

In fig. 3 we also show the result of a semiclassical calculation (solid curve) for the
IVGDR excitation in lead, using eq. (28) for the virtual-photon numbers. One observes
that the semiclassical curve is not able to fit the experimental data. This is mainly be-

102 ————— : : .
[ 208PK(170, 170°) ]
| 84 MeV/nucl. ]
L, 10t E
i i ;
S | 1
\_‘ ; \ 4
g 100 [\ B .
o Foiy oA RY E
R A 1
I 3 1
\

i 5 ]

10-1 A s

Bcm [degrees]

Fig. 3. Virtual-photon numbers for the electric-dipole multipolarity generated by 84 MeV/nucleon

170 projectiles incident on 2°8Pb, as a function of the center-of-mass scattering angle. The solid

curve is a semiclassical calculation. The dashed and dotted curves are eikonal calculations with and
without relativistic corrections, respectively.
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cause diffraction effects and strong absorption are not included. But the semiclassical
calculation displays the region of relevance for Coulomb excitation. At small angles the
scattering is dominated by large impact parameters, for which the Coulomb field is weak.
Therefore the Coulomb excitation is small and the semiclassical approximation fails. It
also fails in describing the large-angle data (dark side of the rainbow angle), since absorp-
tion is not treated properly. One sees that there is a “window” in the inelastic-scattering
data near ¢ = 2° — 3° in which the semiclassical and full calculations give approximately
the same cross section.

As discussed above, the semiclassical result works for large-Z nuclei and for relativistic
energies where the approximation of eq. (16) is justified. However, angular distributions
are not useful at relativistic energies since the scattering is concentrated at extremely
forward angles. The quantity of interest in this case is the total inelastic cross section. If
we use a sharp-cutoff model for the strong absorption, so that x; () = oo for & < bmin
and 0 otherwise, then eqs. (14) and (15) yield the same result as an integration of the
semiclassical expression, eq. (29), from bmin to oo. In fact, this result has been obtained
earlier in ref. ).

3.2. EXCITATION AND PHOTON DECAY OF THE GDR

We now consider the excitation of the target nucleus to the giant dipole resonance and
the subsequent photon decay of that excited nucleus, leaving the target in the ground state.
Experimentally, one detects the inelastically scattered projectile in coincidence with the
decay photon and demands that the energy lost by the projectile is equal to the energy
of the detected photon. To the extent that the excitation mechanism is dominated by
Coulomb excitation, with the exchange of a single virtual photon, this reaction is very
similar to the photon-scattering reaction, except that in the present case the incident
photon is virtual rather than real. In this section, we investigate whether the connection
between these two reactions can be formalized.

We first review the excitation mechanism. The physical situation is that of a heavy
ion of energy E incident on a target. The projectile loses an energy 4E while scattering
through an angle #. We have shown that, under the conditions 4E/E « 1, the cross
section for excitation of the target nucleus partitions into the following expression (we
assume that the contribution of the E1 multipolarity is dominant):

d_zac_(E)_Lg’fl

dQdE, V7' T E, d@

where g, (E,) is the photonuclear cross section for the absorption of a real photon with

energy E, = AE by the target nucleus, and the remaining terms on the right-hand side

are collectively the number of virtual photons per unit energy with energy Ey. This latter

quantity depends on the kinematics of the scattered heavy ion and on the optical potential

but is otherwise independent of the target degrees of freedom. This partitioning allows
one to relate the excitation cross section to the photoabsorption cross section.

(Ey) oy (Ey), (36)
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Now, the usual way to write the cross section dzacy /dQ dE, for the excitation of the
target followed by photon decay to the ground state is simply to multiply the above
expression by a branching ratio R,, which represents the probability that the nucleus
excited to an energy E, will emit a photon leaving it in the ground state *):

dzd’cy 1 dn,
a0 dE, (Ey) = 5, d—Q(Ey)Gy(Ey)Ry(Ey). (37)
Instead, we propose the following expression, in complete analogy with eq. (36):
d%ac, 1 dn,
dQ dE, (Ey) = _E-y. a0 (Ey) oy (Ey), (38)

where g,y (E,) is the cross section for the elastic scattering of photons with energy E,.
Formally, these expressions are equivalent in that they simply define the quantity R,.
However, if one treats R, literally as a branching ratio, then these expressions are equiv-
alent only if it were true that the photon-scattering cross section is just the product of
the photoabsorption cross section and the branching ratio. In fact, it is well-known from
the theory of photon scattering that the relationship between the photoabsorption cross
section and the photon-scattering cross section is more complicated 2°). In particular, it
is not correct to think of photon scattering as a two-step process consisting of absorption,
in which the target nucleus is excited to an intermediate state of energy E,, followed by
emission, in which the emitted photon has the same energy E,. Since the intermediate
state is not observable, one must sum over all possible intermediate states and not just

500 - . y .
208Pb (170, 170'y)
‘@ 400} -~ B84MeV/nucl. 1
= ,,
- / \
o 300 | // \ 1
& ’ \
=~ 200 .7 \ ]
o s \
S_ r” A
b
£ 100} N ]
~ \
b So
0 - : : o
8 10 12 14 16 18
Ey [MBV]

Fig. 4. Calculated cross section for the excitation followed by y-decay of 2%8Pb induced by 70

projectiles at 84 MeV /nucleon. The photoabsorption cross section was parameterized by a simple

lorentzian representing the GDR, and the statistical component of the photon decay was neglected.

The solid curve uses the formalism described in the text (eq. (38)) while the dashed curve uses a
constant branching ratio for photon decay (eq. (37)).
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those allowed by conservation of energy. Now, if the energy E, happens to coincide with
a narrow level, then that level will completely dominate in the sum over intermediate
states. In that case, it is proper to regard the scattering as a two-step process in the manner
described above, and the two expressions for the cross section will be equal. However,
for E, in the nuclear continuum region (e.g. in the region of the GDR), this will not be
the case, as demonstrated in the following discussion.

We again consider the inelastic scattering of 7O projectiles of energy E, = 84
MeV /nucleon from a 2°*Pb nucleus at an angle of 2.5°. We use eq. (12) to calculate
the E1 virtual-photon number and we use a lorentzian parameterization of the GDR
of 2%%Pb. We calculate R, and o,, according to the prescriptions of ref. °) and ref. %),
respectively; in both cases we neglect the statistical contribution to the photon decay.
The results are compared in fig. 4, where it is very evident that they make very different
predictions for the cross section, especially in the wings of the GDR.

We next use our expression to compare directly with the data of ref. *). For this pur-

500 T T . —
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e 400 ¢ 84 MeV/nucl. |
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0
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o
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Fig. 5. (top panel) Differential cross section for the excitation of 208Pb by 170 projectiles at 84

MeV /nucleon, as a function of the excitation energy. Data are from ref. ). (bottom panel) Cross

section for excitation followed by y-decay of 208Pb in the reaction mentioned in the previous

figures. The solid (dashed) line includes (excludes)sthe Thomson scattering amplitude. Data are
from ref. °).
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pose, we again calculate gy, using the formalism of ref. 2°), which relates a,, to the total
photoabsorption. For the latter, we use the numerically defined data set of ref. 22) rather
than a lorentzian parameterization. The effect of the underlying compound nuclear levels
(i.e. the statistical contribution to the photon scatiering) is also included. The calculation
is compared to the data in fig. 5. The top panel shows the cross section for the excitation of
the GDR without the detection of the decay photon. The agreement with the data is excel-
lent, giving us confidence that our calculation of the virtual-photon number as a function
of E, is correct. The bottom panel shows the cross section for the excitation-decay pro-
cess as a function of E,. Although the qualitative trend of the data are well described, the
calculation systematically overpredicts the cross section on the high-energy side of the
GDR (solid curve). If the Thomson amplitude is not included in o,,, the calculation is
in significantly better agreement with the data (dashed curve). This last point is puzzling
and must be left as an open question.

As a final point, we remark that the relationship of eq. (38) is not new. For relativistic
projectiles, this relationship can be obtained classically (for the E1 multipolarity only)
via the so-called Weizsicker-Williams 2¢) method of virtual quanta or quantum mechan-
ically via the Primakoff formalism 7). A formal derivation for the kinematic regime of
the Coulomb-excitation/photon-decay experiments of ref. 3) is still lacking. Nevertheless,
we suggest that future experiments be analyzed using the expression eq. (38).

4. Conclusions

We have shown that the cross sections for excitation of giant resonances in intermediate-
and relativistic-energy collisions can be well explained in terms of a simple formalism,
based on the eikonal approximation. This formalism includes the effects of strong ab-
sorption, retardation and relativity from the very beginning. These effects are shown to
be of relevance for the determination of the excitation strengths needed to reproduce the
experimental data. The resulting cross section can be factorized into a sum over multi-
poles of products of a density of virtual photons and the photoabsorption cross section
for that multipole. A similar factorization had previously been done only for relativis-
tic collisions '*). The advantage of such a factorization is clear, since the photonuclear
processes can often give us important and unambiguous information on the nuclear re-
sponse function. We have given some examples related to recent experiments »>2!) that
demonstrate both the power of the reaction and the utility of our technique in interpreting
the data. At intermediate energies, the present technique is a distinct improvement over
semiclassical calculations. The latter are not well suited because the effects of diffraction,
which are manifest in the experimental data, are not treated properly in that approach.

For the future, it still remains to obtain a rigorous derivation relating the Coulomb-
excitation/photon-decay cross section to the photon scattering. Using the formalism de-
veloped here, we have obtained good qualitative agreement with the data of ref. *), but
only by neglecting the Thomson contribution to the scattering cross section. This is not
at present understood and further theoretical work along these lines is highly desirable.
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