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Abstract: In high-energy collisions (E,,, > 50 MeV/nucleon) the eikonal approximation provides a 

transparent description of heavy-ion exchange reactions. The formalism is applied to the reaction 

‘3N(‘3C, 13N)13C at 70 MeV/nucleon. The relative contributions of pion- and rho-exchange are 

determined. It is found that heavy-ion reactions are more sensitive to the one-pion exchange 

component of the interaction than nucleon-induced charge exchange. The cross section for double 

charge exchange are estimated, which could be useful for future experiments. 

1. Introduction 

Charge-exchange reactions, i.e. (p, n), (n, p) reactions, are an important tool in 

nuclear structure physics, providing a measure of the Gamow-Teller strength func- 

tion in the nuclear excitation spectrum [for a review, see, e.g., ref. ‘)I. Experiments 

with heavy-ion charge-exchange reactions like (‘Li, 6He), (“(2, “N) or (“(2, “B) 

are also becoming common7,3), one of the advantages being that both initial and 

final states involve charged particles, so that a better resolution can often be achieved. 

But, apart from this aspect, heavy-ion charge-exchange reactions can help us to 

understand the underlying nature of the exchange mechanism. On microscopic 

grounds charge exchange is accomplished through charged meson exchange, mainly 

n- and p-exchange. It is well known that neutron-proton scattering at backward 

angles results from small angle (low momentum transfer) charge exchange, and is 

one of the main pieces of evidence for the pion-exchange picture of the nuclear 

force. The width of the peak is roughly given by the exchanged pion momentum 

divided by the beam momentum. Therefore, a similar enhancement in the 180” 

elastic scattering of nuclei should be seen in charge exchange between mirror pairs 

of nuclei. 

Charge exchange between mirror nuclei is particularly interesting because at small 

angles the exchange has zero momentum transfer. Looking at forward angles also 
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has the advantage of eliminating competing processes, namely proton-neutron 

transfer. Another important advantage of mirror-nuclei charge exchange over (p, n) 

reactions is that the strong absorption of heavy ions selects large impact parameters 

and therefore emphasizes the longest range part of the charge-exchange force. 

A reasonably good candidate for the investigation of charge exchange between 

mirror nuclei is the reaction ‘3C(‘3N, ‘3C)‘3N since “C targets are now available 

and a relatively intense “N beam can be produced. This reaction has been performed 

recently at the Superconducting Cyclotron of Michigan State University and the 

analysis of the results are under progress “). This pair of mirror nuclei is also suitable 

because the first excited state ($-) lies relatively high in energy (3.51 MeV), so that 

a clear separation can be done between ground-state and excited-state transitions. 

Also, these nuclei have a single nucleon on the lp,,, orbit. Since the reaction is 

very peripheral, one expects that the charge-exchange process is practically deter- 

mined by the participation of these valence nucleons. Therefore, this reaction should 

be a clear probe of charge exchange in a nuclear environment. 

It is the aim of this paper to develop a simple description of charge-exchange 

reactions at intermediate and high energy in terms of what we believe to be the 

most important ingredients, namely the microscopic TF and p-exchange potentials. 

An eikonal approach to the nucleus-nucleus scattering is used. This is done in sect. 

2. Simple expressions are found which can be useful for estimation purposes in the 

planning of future experiments. The dependence of the cross sections on the 

parameters used in this formalism is studied in detail in sect. 3 where an application 

is done for the reaction 13C(13N, ‘3C)‘3N at 70 MeV/nucleon. Our conclusions are 

given in sect. 4. 

2. Amplitudes and cross sections 

2.1. EIKONAL DESCRIPTION OF CHARGE-EXCHANGE REACTIONS 

We will investigate the effect of r- and p-exchange in nucleus-nucleus reactions 

at intermediate energies, and particularly the reaction “C(“N, 13C)13N at 

70 MeV/nucleon. 

In DWBA the matrix element for this reaction is given by 

where !Pks ( ) (*) R is the distorted wavefunction of the nuclei in the center of mass, 

having momentum k, and ~i,F( r) are the intrinsic wavefunctions of the nuclei before 

and after the interaction, respectively. The interaction potential responsible for the 

charge exchange between the nuclei is given by V(R, r), where R is the relative 

coordinates between the centre of mass of the two nuclei, and r denotes the internal 

coordinates of the participant nucleons with respect to the c.m. of nuclei (see fig. 1). 
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P T 
Fig. 1. Coordinates used in the text. R is the distance between the center of mass of the nuclei. rp and 

r, denote the distance of the participant nucleons to the center of the projectile, P, and the target, T, 
respectively. 

Since the reaction occurs at very forward angles, f3 < 1, and small energy transfer, 

AE/ Elab Q 1, we use the eikonal approximation for the cm. scattering, i.e., 

W:;‘*(R)Fj:‘(R)=exp{-iQ.R+ix(b)}, (2) 

where Q=k’-k, b=(Rxil and 

Uopt( z’, b) dz’+ i&(b) 

Uop is the optical potential for the elastic scattering and &(b) is the Coulomb phase, 

&(b)=yln (kb). 

This phase reproduces the Coulomb scattering amplitude when calculated in the 

eikonal approximation. 

At collisions around 50 MeV/nucleon the phase x(b) can be constructed from a 

fitting to the elastic-scattering data. The optical potential obtained from such a fit 

can then be used in eq. (3). At higher energies, above 100 MeV/nucleon, the phase 

x(b) will be predominantly imaginary and can be constructed from the t-matrix for 

nucleon-nucleon scattering ‘). 

Eq. (1) can be written as 

Ti;,= d’R (@F’(rr)@T(~~)1V(r)exp{-iQ. R+ix(b)}(@r(rp)@T(rT)), (5) 
I 

where the indices P and T refer to the intrinsic variables of projectile and target, 

respectively, and 

r=R+r,-r, 

is the relative position of the interacting nucleons. rp (rT) is the coordinate of the 

nucleon with respect to the center of the projectile (target) (see fig. 1). 
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Using the Fourier transform 

V(r) =J-- 
(2?r)’ 

d’q V(q) eiq’r , 

expression (5) becomes 

where 

.A(m, q) =(~ft)(rp)~~(r,)le~‘4”p V(q) e’4’rT1@P(rp)@T(rT)), (8) 

and m = (m,, m+, m,,, m’p) is the set of angular-momentum quantum numbers of 

the projectile and target wavefunction. m is measured along the beam axis and the 

subindices T and P refer to the target and projectile, respectively. 

The z-integral in eq. (7) can be performed immediately, resulting in 

d’q, e’%“JI1(m, (I), 

where q is now given by q = qt+ Qzi. The indices t and z refer to the direction 

perpendicular and parallel to the collision axis, respectively. 

The azimuthal integrals in eq. (9) can be also easily performed, resulting in 

Tir(m)=& _E 
x 

e’“+ J db bJ,( Q,b) efxcb) 
v cc 0 s 271 

X J da q,Ju(qtb) 

0 J o d&em i"'~~A( m, q) . (10) 

For small energy transfers, and in intermediate- or high-energy collisions, the 

momentum transfer Q is predominantly transverse. This simplifies the calculation 

by allowing to put (I = qt in eq. (10). 

The integral (10) is next written as 

Ti,(m) =$ =t e’“’ J 
m 

db bJ,,(Q,b)M(m, v, b) e’x(h), (11) 

v m 0 

where 

I 

u^ 

J 
297 

M(m, v, b) = dqt qtJv(qtb) o d&e- i”dr~ Jd(m, q) . (12) 

0 

The differential cross section is obtained by an average of initial spins and sum 

over final spins (m,,,,; m&, = +$ for the IP,,~ orbital in 13C and 13N), 

2 1 
C I Tdm)12, 

(2j,+1)(2j,+l) ,,, 
(13) 
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where p is the reduced mass of the projectile + target system. The azimuthal integra- 

tion can be done immediately, and we can write 

du k’ P 2 
do =( > k 4rr2+i2 

(2j,+ 1)_‘(2j,+ 1))’ 

15 
cc 

xc db bJ,,(Q,b)M(m, v, b) eixth) ’ . (14) 
u,m 0 

Since in high-energy collisions Qt = k sin 0, dR = 27rQt dQ,/ k2 and, using the 

integral 

I J,,iQ,b)J,(Q,b')Q,dQ,=~fi(b-b'), (15) 

we can write the total cross section as 

a=2rr bP?( b) db , (16) 

where .9 is interpreted as the probability of one-boson exchange at the impact 

parameter b and is given by 

2 

(2j,,+ 1))‘(2j,+ 1))’ exp (-2 Im X(b)} C IM(m, v, b)12, 
!,,I?8 

(17) 

where Im x(b) is the imaginary part of the eikonal phase. 

Eqs. (14) and (17) are the basic results of the eikonal approach to the description 

of heavy-ion charge-exchange reactions at intermediate and high energies. They can 

also be used for the calculation of the excitation of A-particles in nucleus-nucleus 

peripheral collisions. The essential quantity to proceed further is the matrix element 

given by eq. (8) which is needed to calculate the impact-parameter-dependent 

amplitude M(m, v, b) through eq. (12). The magnitude of this amplitude decreases 

with the decreasing overlap between the nuclei, i.e. with the impact parameter b. 

At small impact parameters the strong absorption will reduce the charge-exchange 

probability. Therefore, we expect that the probability given in eq. (17) is peaked at 

the grazing impact parameter. 

2.2 PION- AND RHO-EXCHANGE BETWEEN PROJECTILE AND TARGET NUCLEONS 

In momentum representation the pion+rho-exchange potential is given by 

v(q) = _G (WI . q)(u, .q) (T, . 7 
4 m2,+q2 

2 
) _- (al x 9) . (u2 x 4) (T . T2) ) 

mt mZ+q’ 1 

(18) 

where the pion (rho) coupling constant is f :/4~ = 0.08 (f i/437 =4X5), mnc2 = 

145 MeV and m,c2 = 770 MeV. 
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The central part of the potential above has a zero-range component, which is a 

consequence of the point-like treatment of the meson-nucleon coupling. In reality 

the interaction extends over a finite region of space, so that the zero-range force 

must be replaced by an extended source function. This can be done by adding a 

short-range interaction defined at q = 0 in terms of the Landau-Migdal parameters 

g; and g:. We will use g; = f and gj, = $, which amounts to remove exactly the 

zero-range interaction [for details, see, e.g. ref. ‘)I. 

Since the p-exchange interaction is of very short range, its central part is appreci- 

ably modified by the w-exchange force. The effect of this repulsive correlation is 

approximated by multiplying VT”’ by a factor 5 = 0.4 and leaving VFns unchanged 

since the tensor force is little affected by w-exchange “). 

With these modifications the pion+rho-exchange potential can be written as 

V(q) = V,(q)+ v,,(q) = [v(q)(a, . i)(o2 . i)+ w(q)(o, . o2)1(r, * 72) 7 (19) 

where 

and 

v(q) = ?_y( q) + v;;““(q) ) 

with 

(20) 

(21) 

(22) 

w’,‘“‘(q) = -fJ, 4P-sg; 
m2,+q* 3 

) w;“‘(q) = -SJ, 1 , (23) 
w’,“““(q) = :Jm*, qyq) = _+Jod- 

Ti 
ml,+q” 

(24) 

The values of the coupling constants J, and J,) in nuclear units are given by 

(hc)’ 
p-4OOMeV.fm’, 
(m,c*)’ 

790 MeV . fm3. 

Turning off the terms w:;‘, or nF,y,’ and wF,yPs, allows us to study the contributions 

from the central and the tensor interaction, and from rr- and p-exchange, respectively. 

Using eq. (19), single-particle wavefunctions, +,,,,,, and the representations 
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or, simply 

Li, =&Y,.(i). 

Eq. (26) reduces to 

.M(m, q) = w(q) C (4,h;lvp e’q”l~j~m,)(~,~~~~~l~~ em’q’r14ih,.) 
!J- 

(26) 

(27) 

(29) 

Expanding e lq” into multipoles we can write 

(@i,m~lo, e rq’*14,h) =477 2 i’YThl(q”)(~,,,n,lj,(4r) Yf~(G~l4,hJ. 

Since j, (qr) Y,M (i) is an irreducible tensor, 

(30) 

a,j,(qr)Y,,(i)= C (~~McLII’M’)T~~~,, 
I’M’ 

(31) 

where F,.,. is also an irreducible tensor. Therefore, 

(&?I,l~@j,(qr) Ymr(~)14,1rrJ = ,L, (~~~~l~‘~‘)(~j,,,,l~,,M,I~,,,,,) 

= ,;, (~1~/*l~‘~‘)(j~‘m~‘ljm’)(~,I/~~~lI~,). (32) 

Eqs. (29)-(32) allows one to calculate the charge exchange between single-particle 

orbitals. The quantity needed is the reduced matrix element (4,] I[j,(qr)aO Y,],,l Idi). 

These are calculated in textbooks of nuclear structure [see, e.g., ref. ‘)I. If several 

orbitals contribute to the process, the respective amplitudes can be added and further 

on averaged in the cross sections. Before we apply the above formalism to the 

“C(‘3N, ‘3C)‘3N we shall next discuss the low-momentum-transfer limit of the 

charge-exchange nucleus-nucleus reaction. 
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2.2. LOW-MOMENTUM LIMIT AND GAMOW-TELLER MATRIX ELEMENTS 

From eqs. (18)-(24) we see that the central interaction dent(q) dominates the 

low-momentum scattering q - 0. In this case, the matrix element (26) becomes 

Ju(i+f; q-O)-CC,,inaW ““‘(q)JU(GT: P+ P’).M(GT: T+T’) , (33) 

where 

and J&(GT: A+ A’) = (Al Ipr( IA’) are the Gamow-Teller (GT) matrix elements for 

a particular nuclear transition of the projectile (A = P) and of the target (A = T). 

Inserting (33) into eq. (12) and using the low-momentum limit, we obtain 

M(i+f; b)-C,,i,,W’“‘&(GT; P+P’).d(GT: T+T’)6,0, (35) 

where 

r L, 

W 
(0) = 2r dq qwCrnt(q) , (36) 

JO 

where qcut is a cutoff momentum, up to which value the low-momentum approxima- 

tion can be justified. 

With these approximations, a general expression can be obtained from eq. (14), 

2 [ w”“]~F( O)B(GT: P+ P’) 

where 

x B(GT: T+T’) C [CSpinJ2, (37) 
spins 

B(GT: A+ A’) = /(A’1 ICR IA)/’ (38) 

is the Gamow-Teller transition density for the nucleus A. The sum over spins 

includes an average over initial spins and a sum over the final spins of the nuclei. 

With these approximations the scattering angular distribution is solely determined 

by the function 

F(B)= 
II 

db bJ,,(kb sin 0) eix(‘) ‘. (39) 

In the sharp-cutoff limit (exp [ix(b)] = O(b - R)), this function reduces to the very 

simple result 

F(0) = 
R2 

~ Jf(kR sin 0) , 
k2 sin’ 13 

which displays a characteristic diffraction pattern. 

From the above discussion, we see that the ability to extract information on the 

Gamow-Teller transition densities in a simple way depends on the validity of the 
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low-momentum-transfer assumption. We shall test this assumption, using the 

results obtained above, in the special case of the “C(13N, ‘3C)‘3N reaction at 

70 MeV/nucleon. 

3. Application to the reaction 13C(13N, 13C)13N 

3.1. MATRIX ELEMENTS FOR THE VALENCE NUCLEONS 

We assume that the pion or rho is exchanged between the neutron in the IP,,~ 

orbital of 13C and the proton of the IP,,~ orbital of 13N. Configuration mixing is 

not included for simplicity. 

Using eq. (A.2.24) of ref. ‘) one finds 

(pl,zl I[j,(qr)aO Y,l,,l Ip,J = -& 2tyz%* 

if I = 0, I’ = 1 

if I =2, I’= 1 (41) 

0 otherwise, 

where 

I 

LX 

91 = RfPl12(r)jl(qr)r2 dr. (42) 
0 

The above result means that only transitions with Al=0 and 2 in the lp,,* orbital 

are allowed. We calculate the radial form factors 9” and S2 using harmonic-oscillator 

functions for the lp,,, orbitals in 13N and “C: 

Rlpllz(r) = (&)li2r emr”“, (43) 

where a = (h/m,w)“* is the oscillator parameter. For 13C and “N we take 

a=1.55fm. 

We find 

F0 = (1 -4q2a2) e-Yw4 ) 

and 

s2 = iqza2 e~42uv4. 

The matrix element (32) becomes 

(44) 

(45) 

11, M+p)(tlm, M+pli, m+M+p) S,2Sms,m+M+F. 

(46) 



502 

Eq. (30) is then 
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(4,1,+, e iq#Q,,n)= -&flm, m’-ml$m’) 

x{So(q) S,,,_,,,-4&(21 , m’- m -P, P IL m’- m)%(q)), 

(47) 

where we used (010~.~) 1~) = 1. 

The expression for (4i,,,loF eP’4‘rj~,lm) will be th e same as above, since this 

expression does not change under the substitution q + -4. Therefore, we can write 

in general form 

(4jhrlg~ e i’q’rld,h) = %dm, m’, p)~d4)+ %(m, m’, P, 4)s22(q), 
where 

%Xrn, m’, p) = -L($lm, m’-mJ$m’) 6,._,,, , 
v? 

~,(m,m~,~,~)=4~(~lm,m’-m(~m’) 

X (21, m’- m -p, p) 1, m’- m) Y?,,,_,-,(i). 

Inserting these results in eq. (29), we find 

Jll(m, 4) = w(q) C [Q&L+, m;, p)s0(q)+ %(mT, m+, P, $P2(4)1 
Ir 

(48) 

(49) 

(50) 

(51) 

Finally, the integral (12) is easily performed, and we show it in the appendix. 

3.2. NUMERICAL RESULTS 

Since there are no data available on the elastic scattering of the reaction “C + 13N 

at 70 MeV/nucleon, we use an optical potential which fits the reaction “C + “C at 

85 MeV/nucleon. We use the eikonal approximation for elastic scattering, 

f(O)= ik 
I 

J,,(kb)[l-eix’b’]b db, (52) 

with the phase given by eq. (3). In fig. 2 we show the result of such calculation, 

using UoPt(r) = V(r) + iW(r) with Woods-Saxon form for the real and imaginary 

potentials. The parameters chosen were 

V,, = -80 MeV, Rv = 3.76 fm , a, = 0.74 fm , 

W, = -41 MeV, Rw=4.2fm, aw = 0.73 fm . (53) 
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10-3 I I I ’ 1 J I ’ I I ’ ’ 
0 5 10 15 20 

O,, [degrees] 

Fig. 2. Ratio between the elastic and the Rutherford cross section for the reaction “C+‘*C at 

85 MeV/nucleon. The data are from ref. *). The curve is a theoretical calculation based on the eikonal 

approximation (see text for details). 

We see that the agreement with the experimental data [from ref. “)] is good, especially 

at small scattering angles. Since the charge-exchange reaction is very forward peaked, 

the bad fit at large angles (0 > loo) will not be relevant for our calculations, and 

we will use this eikonal wavefunction in the charge-exchange calculation. 

Fig. 3 shows the contributions from rr- (dashed curve) and from p-exchange 

(dotted curve) to the charge-exchange probability as a function of the impact 

parameter. The solid curve is the total probability. The exchange probability is 

peaked at grazing impact parameters: at low impact parameters the strong absorption 

makes the probability small, whereas at large impact parameters it is small because 

of the short-range of the exchange potentials. The value of the exchange probability 

at the peak is about 1.2 x lo-‘. It is clear from fig. 3 that the process is dominated 

by r-exchange. At small impact parameters the short-range p-exchange contribution 

is large due to a larger overlap between the nuclei. 

In fig. 4 the differential cross section is plotted. One observes that at very forward 

angles the g-exchange contributes to the largest part of the cross section. But 

p-exchange is important at large angles. It has the net effect of smoothing out the 

dips of the angular distribution. Since r-exchange is of longer range than p- 

exchange, the dips caused by the two contributions are displaced; the ones from 

p-exchange alone are located at larger angles, as expected from the relation 8 - l/r. 

If we put 90,2 = 1 and exp [ix(b)] = 1, we obtain that at very small scattering angles 

the n=- and p-exchange contributions to the differential cross sections are approxi- 

mately of the same magnitude. This means that p-exchange is more important when 

distortions are weaker, i.e., in nucleon-nucleon or nucleon-nucleus scattering ‘). 
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0 
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15.0 INI II,, ,I ,I I,,, ,,,,> 

- 13C( 13N, 13C)13N IT\ 
12.5 - E 

- lab =70 MeV/nucl ,’ ‘\ 7~ 
1 

10 0 - i 

] 

7.5 - 

5.0 - 

25- 

0.0 1 I ’ I ’ 
0 2 4 6 6 10 

b [fml 

Fig. 3. Probability for n- (dashed curve) and p-exchange (dotted curve) in the reaction “C(“N, 13C)13N 

at 70 MeV/nucleon, as a function of the impact parameter. The solid curve represents the result of the 
full interaction. 

10-4 I ’ / I ’ I 1 I 1 1 1 1 1 1 1 1 1 - 
0 2 4 6 6 

O,, [degrees] 

Fig. 4. Angular distribution for charge exchange in the reaction ‘3C(‘3N, ‘3C)‘3N at 70 MeV/nucleon. 

The contribution from v- (dotted curve) and p-exchange (dashed curve) are displayed separately. The 
solid curve represents the result of the full interaction. 
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In fig. 5 we show the contributions from the central (dashed) and the tensorial 

(dotted) part of the total exchange potential (n+tp). The probability is dominated 

by the central interaction. Due to the selection rules which are implicit in the sum 

over Clebsch-Gordan coefficients, the matrices LU(m, v, b) are zero if only one of 

the spins (actually, jl) is flipped. That is, transitions like ( rnp = +i, mT = - 4, rn; = 

+ i, rn; = +$) are absent. The percentage contribution of the other transitions to the 

total cross section is shown in table 1. 

The non-spin-flip components are strongly suppressed and the cross section is 

dominated by simultaneous spin-flip components, with Aj = 0 (33%) and 2 (16.8%). 

This can be understood in terms of the contributions of the tensor and the central 

part of the pion+ rho interaction to the heavy-ion charge exchange, as seen in 

fig. 5. The central (tensor) force is responsible for the Aj = 0 (2) transitions. 

In fig. 6 we show the result of using the approximate expression (37) (dashed 

line). This curve has been obtained by calculating eq. (37) and normalizing the 

result to match the total differential cross section at 0”. One sees that the agreement 

with the more elaborate calculation (solid curve) is good at forward angles (0 < 2”). 

At larger angles it fails badly. This result implies that the extraction of Gamow-Teller 

matrix elements from heavy-ion charge-exchange reactions is possible, as soon as 

one can have good resolution in the forward-scattering region. 

The total cross section obtained is 7.6 l.~*b. The peak value of the differential cross 

section at 0” is 3.5 mb/sr. These values are of the order of magnitude of the 

charge-exchange cross sections measured for other systems ‘). 

15.0 I I I I I I I I I , I , I r I I I 

- 13C( 13N, 13C)13N 
12.5 - E 

- lab =70 MeV/nucl 

0 2 4 6 6 10 

b [fml 
Fig. 5. Probability for charge exchange in the reaction 13C(13N, “C)‘3N at 70 MeV/nucleon, as a function 
of the impact parameter. The dashed (dotted) curve represent the contribution of the central (tensor) 

part of the interaction. The solid curve represents the result of the full interaction. 



506 C.A. Bertulani / Charge exchange 

TABLE 1 

Contribution to the total cross 

section of a particular set of 

angular-momentum projections 

_ _ - 0.1% 
_ _ + + 0.1% 
+ + - - 0.1% 
+ + + + 0.1% 
_ + _ + 16.8% 
+ _ + - 16.8% 
_ + + - 33% 
+ _ _ + 33% 

Finally, we make a remark on the double exchange reactions. From the values 

obtained above one sees that the charge-exchange probability as a function of impact 

parameter is small, of order of 10-5. Even for enhanced transitions, one should not 

expect an increase higher than a factor 10 in the probability. An estimate of 

double-charge exchange is obtained from eq. (16), replacing C??‘(6) by 4P2(b). That 

is, the ratio between the single- and the double-charge exchange is of order of 

10m4-10P5. If the single-step total cross section is of order of tens of microbarns, 

the double-step one is of order of nanobarns, in the best cases. Similarly, if the 

peak of the differential cross section at zero degrees is of order of tens of millibarns, 

O,, [degrees] 

Fig. 6. Angular distribution for charge exchange in the reaction ?(r3N, 13C)13N at 70 MeV/nucleon. 

The solid curve represents the result of the full interaction. Also shown is the result of the approximation 
(37) (dashed curve). 
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the corresponding one for double-charge exchange will be of order of microbarns, 

in the best cases. The measurement of double-charge exchange in heavy-ion collisions 

will therefore require intense beams and good detection efficiency. 

4. Conclusions 

It was shown that the eikonal approximation provides a convenient description 

of heavy-ion charge-exchange reactions at intermediate and high energies. Very 

useful and transparent expressions can be obtained in this way. 

These results have been applied to the reaction ‘C(13N, 13C)13N at 

70 MeV/nucleon. The exchange probability is shown to be very peaked at the grazing 

impact parameter. This results in typical diffraction patterns in the angular distribu- 

tions. It was also shown that pion-exchange dominates the process and that the 

characteristics of the angular distributions are understood in terms of the different 

ranges of the x- and p-exchange mechanism. This is manifest in the smoothing of 

the angular distributions. The order of magnitude of the differential cross section 

at 0” and of the total cross section are in reasonably good agreement with the 

experimental results 3), giving support to the microscopic picture of in- and 

p-exchange. 

The connection of the heavy-ion charge-exchange cross sections to the nuclear 

Gamow-Teller matrix elements is straightforward in the eikonal formalism. At very 

forward angles it has been shown that the extraction of Gamow-Teller matrix 

elements is possible. 
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G. Bertsch, Brad Sherrill and M. Steiner. This work was partially supported by the 

National Science Foundation/US under grant 90-17077 and by the CNPq/Brazil. 

Appendix 

CALCULATION OF M(m, v, b) 

Using 

Y,,(QlJ = (_l)(‘+mw zgi ( > "'~(~~m)~(~+m)~l"2ei~~ ifj+m=even 

(I-m)!!(l+m)!! ’ 9 

and 

zz 0, otherwise, (A.11 

I 

2Ti 

e i(m-l”+ Q, =2&j,,, (A.2) 
0 
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and the definitions (12) and (51), we find 

I 

co 
M(m, v, b) = dq qJ,(qb){w(q)[X,,~~(q) + X,&(q 

0 
k%(q) + x22%4 

1) 
2) 

3) 

4) 

5) 
6) 
7) 

8) 

w’ 

(A-7) 

w,,=2rr c Y,~(e=t,,O)Y,,,(8=~~,0) 
PP’ 

x {%(mT, mk, p)%(m,, mL P’, e =b-, 4 =O) ~rj,2P~+P-mb+m, 

+ (k mPy mb) * b’, mTp m+)) , (A.81 

Wz2=2r C Y,,(8=~~,0)Y,,.(e=t~,0)(e2(mT,m;,~,e=~~,,=O) 
I"@' 

x~:Z(mp,m~,EL',e=~7T,~=0)~ “,2/L+2$L’+m~+mp-m;-m~~ (A.9) 

The momentum integral in eq. (A.3) is performed numerically. 
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