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Coulomb reacceleration as a clock for nuclear reactions 
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Abstract: A possible measure of the time scale for projectile break-up reactions is the acceleration 
in the target Coulomb field following the excitation process. We model this by solving the 
time-dependent Schrodinger equation in one dimension, comparing with simple arguments 
based on the uncertainty principle. We find that momentum shifts are generally much larger 
than given by simple arguments based on classical mechanics and the uncertainty principle. 

1. Introduction 

Recently, there has been a rapid development of techniques to study properties of 

radioactive nuclei, probing them by their reactions as projectiles on nuclear targets ’ ). 
These nuclei are so short-lived that the standard technique of using them as targets to 

study their properties is not often possible. Examples of such nuclei are “Li, “Be and 

14B. 

In particular, we cite the case of *rLi. Much of what we know about this nucleus was 

obtained in reactions with secondary beams. It is an unusually large nucleus, which is 

due to loosely-bound neutrons orbiting around a ‘Li-core. The weak binding also gives 

rise to an enormously enhanced break-up cross section in a Coulomb field. 

The motivation of this paper is a recent experiment at the Superconducting Cyclotron of 

the Michigan State University 2), measuring the velocities of the fragments in reactions 

of “Li projectiles. An intriguing effect was observed, that ‘Li fragments have on the 

average a higher velocity than the beam velocity. This was qualitatively explained as an 

effect of the Coulomb field of the target. Up to the break-up point, “Li is decelerated 

by the Coulomb field. After the break-up, 9Li is accelerated by the same field. Since it is 

lighter than “Li ‘Li will be detected with a higher velocity than the incoming projectile. 

For the same reason, the neutrons will be observed slower than the projectiles. This was 

also observed in the experiment 2 ). 

In order for this mechanism to be effective, the break-up must occur close to the target. 

One could imagine using the reacceleration as a clock to measure the time it takes for the 
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system to break up. For the “Li break-up, the dipole excitation strength function is rather 

narrow, and if the excited state were treated as a resonance, a quite long time would be 

required for it to break up*. It seems that the experimentally observed reacceleration is 

incompatible with the resonance interpretation. 

We therefore thought it would be interesting to analyze the process in a completely 

quantum-mechanical way, using the time-dependent Schrodinger equation. By varying 

conditions of the hamiltonian, we hope to understand when classical arguments can 

be used, treating the steps of deceleration, excitation, reacceleration and break-up as 

independent processes. Of course in principle one must calculate amplitudes at each 

step, which can cause differences from the classical picture 3 ). 

Before proceeding to our model, we mention that Coulomb reacceleration is an impor- 

tant issue in another context as well. Measuring Coulomb dissociation of a fast projectile 

has been proposed to determine the radiative capture cross section of interest for astro- 

physics 4). Using first-order perturbation theory the coincidence measurements of differ- 

ential cross sections for a given relative energy of the fragments can be directly related to 

the radiative capture cross sections. However, if the fragments are much reaccelerated by 

the Coulomb field of the target after the break-up this method does not work. Recently 5 ), 

this method has been used to study the reaction Pb (8B, p + 7Be) which hopefully can give 

information about the radiative capture cross section for the reaction ‘Be(p, Y)B useful 

to the solar neutrino problem. In the Coulomb break-up process ‘6 is excited to a state 

in the continuum, decaying by a proton tunnelling through the Coulomb barrier. In this 

case it is important to know if the time delay for the tunnelling allows the Coulomb field 

of the target to be neglected. 

In this paper we address the Coulomb reacceleration problem. Since the problem is 

rather complicated in three dimensions we simulate it as a one-dimensional problem 

with characteristics which are of quite general nature. The aim of this work is to assess 

the relevance of Coulomb reacceleration and compare the solution of the time-dependent 

Schrodinger equation with the predictions of classical theory. If the classical theory were 

reliable, the features of Coulomb reacceleration might be easily understood and used in 

the planning of future experiments. 

2. A Schriidinger model for break-up and reacceleration 

We shall discuss the projectile break-up physics in terms of a particle bound to a 

potential well which represents the projectile core. The particle is initially bound and is 

then excited into the continuum by the interaction with the target. We treat the dynamics 

in the frame of the projectile, so the potential well of the projectile is fixed in space. We 

consider only the dipole component of the Coulomb interaction with the target, which 

produces a linear field acting on the particle. The coordinate frame undergoes acceleration 

* The width of the excitation in 1 1 Li is about 0.5 MeV, and beam velocity in this experiment was 
about 0.25~. In the resonance interpretation, this implies that the projection travels on the average 
a distance vdt = hv/r - 100 fm before breaking up. 
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due to the Coulomb force on the projectile core, and this gives rise effectively to an 

additional linear potential 6). The hamiltonian equation to be solved is then given by 

ihdlv = _h2V2 
dt 

2mv + V,V + (z, - -CIA)r~Ev, 

where V, is the core potential and E is the electric field from the target. For our purposes, 

we can assume that the the projectile moves almost undeflected in the target Coulomb 

field. In this case the Coulomb field of the target acting on the projectile has two com- 

ponents: (a) one perpendicular and (b) another parallel to the projectile direction of 

motion. The time-dependent interaction potentials of a unit charge with these fields are 

given by 

I/i,(f) = uot 
Zre2 

(b2 + v,+2)312 2, (1) 

where b is the impact parameter and vo is the projectile velocity, and we have used the 

dipole approximation. In these equations the time t is measured from the point when the 

projectile and target are closest to each other. The longitudinal potential l$ (t) changes 

sign during the collision and is much less effective in the Coulomb break-up than the 

transverse one. 

The above posed problem, solving the three-dimensional Schrodinger equation in a 

time-dependent external field, is computationally rather involved for the simple qual- 

itative physics that we want to extract. We therefore made a rather drastic additional 

simplification and use the one-dimensional Schrodinger equation. Physically, this corre- 

sponds most closely to the transverse dynamics. The transverse field is most important 

for the break-up, and transverse accelerations give rise to the angular deflection of the 

fragments from the beam axis. 

We solve the time-dependent Schrodinger equation by a finite difference method, cal- 

culating the wave function at time t + At in terms of the wave function at time t, according 

to the following algorithm ’ ), 

[6(t) + VN] u(t). 
> 

(2) 

In this equation, Vc = VL (t) is time-varying Coulomb field, l$ is the nuclear potential 

responsible for the binding, r = hAt/4m (Ax)~ and m is the nucleon mass. The second- 

difference operator A (2) is defined 

Ac2’U,(t) = uj+l(t) + uj_l(t) -2u,(t), (3) 

with u, (t ) E u (x,, t ) the value of the wave function on the mesh point x,. This method 

has the advantages that it is accurate to fourth order in Ax, is explicitly unitary and is 

easily programmed. 
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In the “Li break-up, the charges are Z, = 0 and Z,/A = 318. However, for our model 

study it is convenient to think about a proton in a nonaccelerated potential, i.e. Z, = 1 

and Zt/A = 0, and we shall discuss the momentum distributions for this situation. 

The break-up probabilities for a given impact parameter and as a function of time t 

are calculated from the relation 

P(b,ll = 1 - I(W)lm)12 > (41 

where us = u (-x) is the initial bound-state wave function. The expectation of momen- 

tum in the state is given by 

(P(t)) = @(t)lPju(t)) = hx(u, + u,+,)(u,+, - u,)/2iAx. 

Physically, we are only interested in the momentum of the unbound particle, so we will 

consider also the projected wave function that has the bound-state component removed. 

This is defined 

UC = N u(+x) - (u(+x)luo) uo ) ( > (6) 

where N normalizes the continuum wave function, uc, to unity. The reason for renormal- 

izing the wave function is the following. If we calculated the total momentum in our wave 

function u(t), this would average over the momentum of both parts of the final state, 

with the particle bound and in the continuum. The experiment however only measures 

the momentum associated with the continuum particle, and its result may be expressed 

as the momentum per continuum particle. Thus the calculated number should be the 

total momentum divided by the continuum emission probability, which is the same as 

the momentum of uc. 

In first-order perturbation theory the continuum wave functions have an average mo- 

mentum zero, (p) = 0, although the root-mean-square momentum m is nonvanish- 

ing. This can be easily seen in the dipole approximation, as a consequence of the symmetry 

of the initial wave function and the dipole excitation operator. In the nonperturbative 

treatment, the Coulomb potential acts to all orders, and the continuum wave function 

can have nonzero (p). 

We want to compare the quantum predictions with simple classical models. Let us 

assume that the particle is fixed to the projectile until the projectile reaches the point z 

along its trajectory, with z = 0 being the closest approach point. The particle is assumed 

to be freely accelerated after that. The total momentum given to the emitted particle is 

P(Z) = q$ (1 - z+/~) . 

For a free particle, the starting point is z = -~cj and the momentum transfer is 

Pfree = p(-x) = 2ZTe2/bv (71 

As a first break-up model, let us assume that the particle gets no momentum until the point 

of closest approach. There it goes to a continuum state immediately and is accelerated 
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Fig. 1. Transition probability for a bound particle in a square-well continuum states due to a per- 
turbing Coulomb potential, as a function of the collision time. The solid(dashed) curve corresponds 

to impact parameter b = 15( 50) fm. 

by the target Coulomb field for the entire time afterwards. We thus take z = 0 in the 

above formula, 

Pinstantaneous = Z-re2/bv (8) 

The other classical model is the resonance decay model. Here the excited state decays 

exponentially with a mean life 7 and the average acceleration is given by 

Pres = dt dP(t)ldt co $ 
J 

exp(-(t’ - t)/r)p(vt’). (9) 
I 

3. Numerical results 

We first define a one-dimensional potential VN that simulates the conditions of the 

“Li bound state. We take a square-well potential with a depth of 1.43 MeV and a width 

of 3.2 fm. This potential supports a single bound state of energy E = -0.2 MeV and 

root-mean-square extension of 7 fm. For the Coulomb excitation, we assume a projectile 

velocity of v = kc, corresponding to a laboratory energy Elab _ 30 MeV/nucleon, and 

a target charge corresponding to Pb, ZT = 82. A grid adequate for our purpose has 500 

spatial mesh points separated by 0.4 fm and 1000 time mesh points separated by 1 fm/c. 

In fig. 1 we show the transition probability calculated from eq. (4) for a collision with 

impact parameter b = 15 fm (solid line) and b = 50 fm (dashed line). The transition 

occurs over a time interval At N b/u. The result for b = 50 fm is close to the perturbative 

Coulomb excitation calculation, but the probability at b = 15 fm approaches unity and 

the perturbative calculation is inaccurate. Note that at z = 0 the probability only reaches 

i of its asymptotic value, making the extreme instantaneous model doubtful. 
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Fig. 2. Particle density distribution for the ground-state (solid line) and continuum states at several 
time instants and as function of the position. The impact parameter in this collision is b = 15 fm. 

In fig. 2 we plot the particle probability density as a function of position at several 

instants of time. The impact parameter here is b = 15 fm. The solid line corresponds 

to the ground state, normalized to unity. The dashed lines were obtained by projecting 

out the continuum part of the time-dependent wave function and renormalizing to unit 

probability. One observes that as time evolves the particle moves to the right. There 

is also a small probability that it moves to the left due to reflection on the borders of 

the square-well potential. As the particle moves, its wave packet gets more dispersed in 

position, as expected. At t = 600 fm/c the transition probability reaches its asymptotic 

value and the wave packet is far from the well. With further time evolution, the particle 

would eventually be reflected from the far end of the spatial grid. 

We next calculate the asymptotic momentum from eq. (5 ). We expected either the 

instantaneous model or the resonance model to apply. Much to our surprise, neither 

describes the results from the time-dependent SchrGdinger equation. Instead, the mo- 

mentum transfer is close to the free-particle model. This is shown in fig. 3. Obviously, 

coherence effects in the wave function are very important for this observable. 

Lest the reader doubt our numerics, we present an analytic demonstration in second- 

order perturbation theory that the excited particle can have the full recoil momentum. 

Consider a particle bound to a harmonic-oscillator potential. To second order, we need 

only consider the ground and the first two excited states. The perturbing potential will 

be V (t ) = x f (t) with f (t ) nonzero only over a time short compared to the oscillator 

period. Then the second-order wave function is 

y = (1 pz2/4mw) IO) - iI~l)(11x10) - ~r2l2)(2lxll)(llxlo), 

where I = J”= dt f(t). The expectation of the momentum operator to first order in I 
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Fig. 3. Momentum of the particle excited to the continuum as a function of impact parameter. 
Solid curve is the result from the time-dependent Schrodinger equation with a potential giving 
weak binding. The dashed curve is corresponding momentum imparted to a free particle in the 
same time interval. These numbers differ slightly from eq. (7) due to the finite integration time. 

is given by 

(P) = 2~Z(Ol4l)(ll~lO). (101 

We put in the harmonic-oscillator matrix elements, (01x11) = ,,/m and (01~1 1) = 

-i 
r 

irno and find for small t the result (p) = I as expected from classical physics. Let 

us now project out the excited state. The wave function is 

Vc = 11) - ;izl2)(21x/l), 

and the expectation of the momentum is 

(p)C = ~~(ll~l2)~1lW. (11) 
If the matrix elements of p and x were the same as in eq. (9), the expectation of p would 

be half the free-particle value, in agreement with the instantaneous break-up model. 

However, the matrix elements are actually larger by factors of a, so the excited state 

also has the free-particle momentum. Note that if we did not renormalize the projected 

wave function the momentum expectation would be of order of Z3, much smaller than 

with renormalization for small I. This is because, for small I, the particle tends to remain 

in its ground state for which (p) = 0. But since the particle reaching the detector is in a 

continuum state, a renormalization is necessary to compare with the experiment. 

This shows that the classical intuition fails for weakly-bound particles. However, the 

behavior of a particle excited to a true resonance should be closer to the classical. In a 

resonance, the particle is held in by a barrier and the momentum it acquires is quickly 

exchanged with the potential barrier. 
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Fig. 4. Square well plus square-barrier potential used to study resonance decay. The potential 
parameters are: Vc = -5 MeV, a0 = 8 fm, Vi = 5 MeV and at = 3 fm. The bound-state wave 

function is shown by the dashed line. Its binding energy is 3.3 MeV. 

To see what happens in this case we consider a potential with a barrier to make a reso- 

nant state. We chose a form for the potential using a square-barrier form, shown together 

with the ground-state wave function in fig. 4. The resonance is at an energy of 1.1 MeV 

and has a width of 0.3-0.4 MeV. These properties may be deduced from the decompo- 

sition of the time-dependent wave function into energy eigenstates or by examining the 

decay in time of the resonant state, as shown in figs. 5 and 6. The 0.4 MeV width of 

the resonance translates into a mean life-time of 500 fm/c, allowing to the projectile to 

travel 100 fm beyond the point of excitation under our conditions for excitation. Clearly 

for impact parameters of the order of 15 fm, the reacceleration following break-up will 

:::i 

I l . 
L 

3 
0.10 - 

. . 

. 
. 

0.05 - . . 
. . . 

. - . 0 0 0 0 0 .’ - Dooo 0 
-$oD o 

0.006..,““““‘~“,‘,““““‘,’ 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

E [MeV] 

Fig. 5. Amplitudes of energy eigenstates in the asymptotic time-dependent wave function, 
lail = i(u, lu(t 1) 1 for the excitation at b = 15 fm. The states are discrete because of the finite 
size of the spatial domain. The resonance only appears in states with i odd (tilled circles), because 

the resonance has odd parity. The amplitudes with i even are shown with open circles. 
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t [f&cl 
Fig. 6. Formation and decay of the resonant state for a collision with b = 15 fm. Plot- 
ted is the square of the overlap of the time dependent wave function with the state xlu,$, 
PR = i(u(t)lxluo)l’ /(u~lx21u~). The dashed line shows exponential decay with a time constant 

T = 500 fm/c. 

be quite small and we expect the momentum of the emitted particle to be nearly zero. 

The results of the time-dependent Schrodinger calculation belie our naive expectations. 

Fig. 7 shows the net momentum of particles emitted from the square-barrier potential 

together with the free-particle momentum and the prediction of the classical resonance 

model. Although there is some reduction as compared to the case with the weak bind- 

ing potential, the momentum is far larger than in the resonance model. Obviously, the 

barrier penetration is strongly connected with the excitation process. In our model, the 

resonance is penetrated preferentially on one side where the barrier is lower. The qual- 

itative behaviour of this result is independent of the strength of the exciting field, and 

is essentially reproducible in second-order perturbation theory. The net momentum per 

emitted particle is linear in the external field in second-order perturbation theory, just as 

the classical momentum. 

4. ConcIusion 

Our results suggest that Coulomb acceleration is intrinsically quantum-mechanical for 

conditions typical in light nuclei. One cannot approximate its effects by assuming that it 

only acts in the post-break-up phase of the reaction. The accelerations can be much larger, 

and experiments that use Coulomb break-up to measure properties of the nucleus may 

be more problematic as a consequence of the more persistent acceleration. For example, 

this technique was used to infer the dipole excitation strength for the 6Li --+ 4He + d 

break-up in ref. * ). 
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Fig. 7. Momentum shift of the continuum particle excited from the square-barrier potential, as a 
function of the impact parameter in the collision (solid curve). The dashed curve is the momentum 
transfer in the instantaneous emission model, eq. (8) and the dotted curve is the prediction from 

classical resonance decay, eq. (9). 

In the break-up reaction l1 Li -+ 9Li + neutrons, the neutrons were observed in a very 

narrow cone about the beam axis 9). In our model, there would be essentially no transverse 

momentum transfer associated with the Coulomb trajectory of the Li projectile. This 

would help preserve the narrowness of the angular distribution in the laboratory frame, 

given a neutron momentum distribution predicted by first-order perturbation theory. 

Qualitatively, we did find a suppression of the postacceleration when the particle was 

excited to a narrow resonance. This clearly shows that the time delay in emitting the 

particle can play an important role, although one that does not seem to be easy to estimate. 

However, we must emphasize again that these results were obtained for a greatly over- 

simplified model, putting all of the physics into one dimension. It would be much more 

realistic to study the three-dimensional Schrodinger equation. Then one can separately 

treat the excitation, which occurs dominantly in the transverse direction, and the reaccel- 

eration, which is observed in the longitudinal direction. It seems to us to be worthwhile 

to pursue this, in view of the potential importance of reacceleration both as a measuring 

tool and as an obscuring agent in the application of Coulomb break-up. 
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