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Abstract 
We investigate the excitation of multiphonon states in relativistic heavy-ion collisions. A 

semiclassical formalism is used to determine the one-step and two-step Coulomb excitation of 
the double-phonon GDR x GDR excitation. The excitation cross sections of the f, = 0 and I.. = 2 
states are determined separately with the use of sum rules for estimating corresponding matrix 
elements. Tbe nuclear contributions to the excitation process are also calculated and shown to 
be small. The widths of final and intermediate states are taken into account; physical problems 
related to the spreading width of the double-phonon states are discussed in detail. The recent 
experimental data are discussed and compared to our calculations. 

1. Introduction 

The excitation of giant resonances (GR) in collisions with heavy ions was first 
investigated in cosmic-ray experiments by Balasubrahmanyan et al. El]. An analysis 
of the experiment concluded that Coulomb excitation was responsible for the 
dramatic increase of the total fragmentation cross section, as suggested by Artru 
and Yodh [2]. This occurs due to an increase of the strength of the electromagnetic 
field of a fast charged particle as its kinetic energy increases (for a review, see ref. 
[3] and references therein). Laboratory experiments to investigate this process 
began with the pioneer work of Heckman and Lindstrom [4]. Since then several 
experiments have aimed at the investigation of this process. 

Due to the huge excitation cross sections for large-2 nuclei, the possibility of 
excitation of multiphonon states of GR was suggested by Baur and Bertulani [5]. 
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But, while the cross sections for the Coulomb excitation of GR in high energy 
heavy-ion collisions can be as large as several barns, it was shown [5] that the cross 
sections for the excitation of double-phonon states, i.e. states formed by two GR, 
are smaller by a factor 10-100. The identification of these states by gamma-decay 
techniques was also shown to be feasible [5], but the cross sections would be even 
smaller by another factor 10-100. Thus, very elaborate measurements would be 
required to obtain a signature of the existence of these states. 

Successful experiments on the Coulomb excitation of multiphonon states have 
been reported recently by Schmidt et al. 161 and Ritman et al. [7]. In the 
experiment of ref. [6] the excitation spectra of usual GR, e.g. the isovector giant 
dipole resonance (IVGDR), the isoscalar giant quadrupole resonance (ISGQR) 
and the isovector giant quadrupole resonance (IVGQR), were obtained. At about 
twice the energy of the IVGDR, a clear resonance was observed and identified as 
the double excitation of the IVGDR (a double phonon state, in our terminology). 
This state was also identified in the experiment of ref. [7]. 

The theory of Coulomb excitation of GR is well understood and has been 
studied extensively in the past (see, e.g. refs. [3,5,8-101). However, some points for 
investigation are still open. For example, in refs. [6,7] it was found that the values 
of the experimental cross sections for the excitation of double phonon resonances 
are about a factor 2 larger than expected from theory [5]. The experimentally 
determined widths of the double resonances are close to fi times the width of a 
one-phonon state. This is also smaller than the prediction of ref. [5], namely 
r, = 2r, (see the last article of ref. [5]). 

In this article we address these and other problems related to the experimental 
measurements. We investigate possible mechanisms to explain the apparent dis- 
crepancy between experiment and theory. In sect. 2 we derive basic formulas for 
the excitation amplitudes of one-phonon and two-phonon states. Nuclear matrix 
elements are estimated (sect. 3) under the assumption that the corresponding 
multipole sum rules are exhausted by the collective GR. The simple approach is 
developed to take into account the influence of the widths of GR onto the 
excitation cross sections. 

One possibility of explaining the missing part of the theoretical cross section is 
by adding the nuclear contribution to the process. An eikonal calculation of the 
total cross sections for nuclear excitation of GR in high-energy collisions is 
performed in sect. 4. Explicit formulas are derived which can be useful for future 
studies. In sect. 5 we perform the calculations for the double GDR states with 
angular momenta L = 0 and L = 2 and a comparison is done with the experiments 
of Schmidt et al. [6] and of Ritman et al. [7]. 

In sect. 6 we discuss the origin of the width of the double-phonon state and how 
one can relate it to the width of a one-phonon state. This issue can shed light on 
some aspects of the more general problem of damping of collective motion and 
onset of chaos in quantum many-body systems. 
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2. Coulomb excitation of one- or multiphonon states 

The formalism for the excitation of GR in relativistic heavy-ion collisions was 
developed in ref. [lo] with semiclassical methods and in ref. [ll] quantum-mecha- 
nically (see also ref. [12]). We shall here derive simple formulas for relativistic 
Coulomb excitation including a calculation of higher-order processes. We use the 
semiclassical formalism. As shown in ref. 131, the total cross sections are the same 
if one uses a quantum-mechanical or a semiclassical approach (see also [12]). This 
is basically due to the very short wavelength of the relativistic heavy ions and to the 
weakness of the electromagnetic interaction. 

Let us consider the excitation of a projectile in a collision with a target with 
charge 2, at an impact parameter b. In first-order time-dependent perturbation 
theory, the excitation amplitude for the transition i --) f; wfi = o, is given by 

where pfi and j, are the charge transition density and current matrix elements, 
respectively. &r, t) in the Lienard-Wiechert potential, given by 

$(r, t) =ZTey[(b-X)2+y2+y2(Z-Ut)2]-1’2, 

where y = (1 - u~/c~)-‘/~, and Z.J is the projectile velocity. 
At relativistic energies, in contrast with Coulomb excitation at low energies, it is 

very important to include the magnetic interaction in Eq. (1). In the particular case 
of the long-wavelength approximation, wr/c +z 1 (i.e. r/b -=c l>, an easy derivation 
of the excitation amplitudes is possible. For example, in the dipole approximation 

4(r, t) -$(r=O, t) =Z,ey 
(xb + y2utz) 

(b2 + y2u2t2)3’2 
+ 0( r2/b2). (3) 

Inserting the above result in Eq. (11, the integrals over time are obtained in terms 
of the modified Bessel functions K,. Using the continuity equation V . j, = - iop,, 
we obtain for the electric dipole excitations 

(4) 
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where 5 = wb/yv, and 

DLm) = 
/ 

rY,,( i)p,,( r) d3r (5) 

is the dipole matrix element for the nuclear excitation. 
The magnetic interaction [second term of Eq. (2)] is responsible for the factor 

l/y in the term proportional to K, in Eq. (4), see e.g. ref. [lo]. Due to this factor, 
at ultra-relativistic energies the second term inside brackets of Eq. (4), m = 0, is 
considerably reduced compared to the first. In such a situation only the transverse 
(m = _+ 1) components of the interaction are important. 

Using higher-order terms of the expansion in Eq. (3) and the continuity 
equation we can derive the amplitudes for the excitation of other multipolarities. 
For the electric quadrupole interaction one obtains 

where 

Q$r’=/r2Y2,(i)p,(r) d3r (7) 

is the quadrupole matrix element for the nuclear excitation. 
The formulas above have been derived under the assumption of the long-wave- 

length approximation. When this approximation is not valid, the matrix elements 
given by Eqs. (5) and (7) are to be replaced by the non-approximated matrix-ele- 
ments for electromagnetic excitations [13]. However, the other factors do not 
change (see, e.g., ref. [lo]). 

The amplitude for a two-step excitation to a state 12) via intermediate states 11) 
is given by 

dt e’“2i’V21( t)/’ dt’ e’“~O”V,,( t’), 
--m 

where V2Jt) is a short notation for the interaction potential inside the brackets of 
the integrand of Eq. (1) for the transition 11) + 12). 
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Using the integral representation of the step function 

m e-iq(r-l’) 

@(t-t’)= -,S&j_ q+is dq 
m 

= 1 
( 

ift>t’ 
0 ift<t’, 

one finds [13] 

(9) 

where P stands for the principal value of the integral. For numerical evaluation it 
is more appropriate to rewrite the principal value integral in Eq. (10) as 

(11) 

To calculate u’Yw) for negative values of W, we note that the interaction potential 
can be written as a sum of an even and an odd part. This, together with Eq. (11, 
implies that &Y-w) = -[ul”‘(w)]*. 

For three-phonon excitation we use the third term of the time-dependent 
perturbation expansion, and the same procedure as above [Eqs. (9)~(ll)]. 

The total cross sections for Coulomb excitation are obtained by integrating over 
impact parameters, from a minimum value b,i,, consistent with pure Coulomb 
interaction, i.e. 

uc = 2a[ db blu, I*. 
ml” 

(12) 

Usually the minimum impact parameter is taken as a sum of the nuclear matter 
radii 7 b = 1 2(A:/” +Ai13) fm. But, due to some uncertainty for the minimum mm * 
impact parameter at which the strong interaction sets in, small changes in this 
value might be appropriate for a given system depending on the systematics of the 
experimental data. In the literature [6,7,9] the parameterization proposed by Kox 
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et al. [14] is most frequently used. This parameterization yields a minimum impact 
parameter slightly higher than the value given above. The Coulomb excitation 
cross sections vary strongly with the choice of this parameter, and these parameter- 
izations can lead to rather different results, as we shall see. 

For the excitation of single GR, the integration in Eq. (12) can be done 
analytically as shown in ref. [lo]. For the excitation of double and triple reso- 
nances, however, a numerical calculation has to be performed, using Eqs. (8)-(12). 

3. Sum rules and spreading widths 

The simplest way to determine the matrix elements of Eqs. (5) and (7) is by 
means of sum rules under the assumption that those sum rules are exhausted by 
collective states. The conventional sum rules for the dipole and quadrupole 
transitions, derived without exchange- and velocity-dependent corrections, are 
(h = 1): 

(13) 

We explain our procedure on the example of the dipole sum rule (13). The 
right-hand side S, of (13) being calculated for the fixed initial state Ii) in fact does 
not depend on the choice of Ii). (This dependence is rather weak even if the 
exchange terms are taken into account). Since S, does not depend on the 
projection m of the dipole operator 01”) as well, it is convenient to introduce in 

the usual way the reduced matrix elements of multipole operators, 

(f; Z$4,10{m)Ii; ZiMi)= (ZfMfI ZiZMim)(f; Z,(lO, [Ii; Ii), (15) 

where f stands now for all quantum numbers except angular momentum ones, Z 
and M, and to perform the additional summation of Eq. (13) over m. In such a 
way one obtains 

CW,(2Zf+ l)(f; Z,(lDlli; zi)2=3(2zi + l)sD. (16) 
fJf 

Now let us take the ground state IO) of an even-even nucleus with angular 
momentum I, = 0 as an initial one Ii; 4). If we assume that the single GDR 
I 1) = I 1; 1) is an isolated state saturating the corresponding sum rule, we just 



CA. Bertulani, K Zelevinshy / Multiphonon giant resonance states 937 

divide the right-hand side of (16) by the excitation energy wiO to obtain the 
reduced matrix element 

twllo)2 = 2. (17) 

In order to be able to calculate the cross section of excitation of the double 
GDR, we have to take the single GDR state 11) as an initial one. The correspond- 
ing sum in Eq. (161, according to our assumption, is saturated by (i) “down” 
transition to the ground state IO), which has negative transition energy -wi,, and, 
due to the symmetry properties of the Clebsch-Gordan coefficients, a strength 
which is 3 times larger than that of Eq. (171, and (ii) “up” transitions to the double 
GDR states 12; I, = L > where L can be equal to 0 and 2. The resulting sum rule 
for the up transitions is 

c (2L+l) &)(2; L\(Dlll)2 = 12S,. (18) 
L=O,2 

where ~(24) = E2;. - E, is the energy of the second excitation. Actually, consider- 
ing, instead of the sum over m, the original dipole sum rule (13) for fixed m, one 
can separate the two contributions to the sum (18) and find 

(2; LI[D(/1)‘=2$. (19 

Obviously, it is consistent with the sum rule (18). 
Eqs. (17) and (19) imply the relation between the strengths of the sequential 

excitation processes, 

(2; LIIq11)2= 23111~llo~2. (20) 

For the equidistant vibrational spectrum this result is nothing but the standard 
Bose factor of stimulated radiation; our result is valid under more broad assump- 
tions. The resulting enhancement factor includes, in addition, the ratio of transi- 
tion frequencies which, according to the data, is slightly larger than 1. The 
generalization for the third- and higher-order excitation processes is straightfor- 
ward. 

The above assumption of saturation certainly does not account for the fact that 
the resonances are wide. In fact, this might be also relevant for the calculation of 
total cross sections since the amplitudes given by Eqs. (4) and (6) may vary strongly 
with the excitation energy. Therefore they might be sensitive to the shape of the 
strength function. The widths of the resonances can be taken into account in a 
simplified approach, as we describe next. 
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We assume that the damping of the collective modes is mostly due to the 
coupling to the background of complicated configurations in the vicinity of the 
resonance energy. Then the resonance state I A) gets fragmented acquiring the 
spreading width F,. The stationary final states If) in the region of the GR are 
superpositions (with the same exact quantum numbers as the collective mode) of 
the form 

(21) 

where I A) is a pure GR state and I v) are complicated many-particle-many-hole 
states. If the resonance component dominates in the excitation process as it should 
for the one-body multipole operator, see Eqs. (5) and (71, we find the first order 
amplitude u’fi”) of the excitation of the individual state If) in the fragmentation 
region 

(22) 

Here af\“’ stands for the original first-order excitation amplitude of Eq. (1). As a 
function of the transition energy, the probabili~ for the one-phonon excitation is 

(23) 

where we introduced the strength function 51;(o). 
The traditional derivation of the strength function (see ref. [15]) is based on 

rough assumptions concerning mixing matrix elements and the equidistant spec- 
trum of complicated states. The matrix elements V,, which couple the collective 
mode to the background states are assumed to be of the same average magnitude 
for all remote states I v) from both sides of the resonance. Under those conditions 
the resulting strength function has the Breit-Wigner (BW) shape 

F*(w) = A- r, 
277 (w - wh)2 + $r,” ’ 

where l-” is the spreading width of the collective resonance, 

(24) 

(25) 

d is the mean level spacing of complicated states, coupling matrix elements are 
averaged over the states 1 v) and We is the energy centroid. At present, we used in 
our numerical calculations the BW strength function (24) with the empirical 
parameters wh and r’. However, the same procedure can be applied to any 
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specific form of F*(w). Later (sect. 6) we come back to the question of justification 
of the model leading to Eqs. (24) and (25). 

The multiphonon states could also be reached by a direct excitation. Quite 
similarly, we can repeat the above arguments to calculate the probability for the 
direct excitation of a multiphonon state, with the appropriate spreading width and 
energy centroid of that state. The direct (or first-order) probabilities are then given 

by 

zyyw) =9-*(w)lu~(w)~2. (26) 

Let us now treat the case of the two-step excitation of GR (double-phonon). For 
simplicity, we denote the single-phonon state by 11) and the double-phonon state 
by 12), the corresponding centroids being at w1 and w2, respectively. The total 
probability to excite the double-phonon state is obtained by 

P(W) = C ) U:i”’ + U~d 12S( W - Wfi) 
f 

=P(co) +PyW) +P’(w), (27) 

where Plst is the direct (or first-order) excitation of the double-phonon state, P2nd 
is the two-step (or second-order) excitation term, and the last term in Eq. (27) is 
the interference between the two. 

The second-order amplitude is calculated from 

(28) 

Neglecting non-resonant terms, 

~(cp’)*C~k’~21(~fk-4)(C~k’)*ulo(~ki+4) 

k 

= (C~f’)*~dO’C/C~k’(2S(Oki-O’) 
k 

/ 

i dq 
X - -u21( ofi - 0’ - q)q,( co’ + 4) 

2r q+iO 
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Therefore, the second-order amplitude is given by 

(30) 

where a’,,(o) is defined in the last step of Eq. (29). Using similar derivations as 
above, we find for the interference term 

Pint(w) =F2(w) x2 Re{[a&(w)]*[ii20(w)]). (31) 

4. Nuclear excitation 

A possible origin of the observed discrepancy between experiment [7,8] and 
theory [5] could be due to the nuclear contribution to the excitation of GR. We 
feel it appropriate to discuss this possibility in more details. 

In heavy-ion high-energy collisions the nuclear excitation can be derived in the 
eikonal approximation [161. The inelastic scattering amplitude is given by 

(32) 

where M is the reduced mass of the system, PC*) are the c.m. scattering waves 
and C& are the intrinsic wave functions of the nucleus in the ground state and 
final state, respectively. 

In peripheral collisions we may assume that the projectile interacts with the 
target nucleus via vibrational fluctuations of the optical potential (deformed 
potential model). This assumption is based on the same spirit as the Bohr-Mottel- 
son model for the coupling of intrinsic motion to nuclear deformations (see e.g. 
ref. [171). One obtains in this model 

where k(R) is proportional to the derivative of the optical potential, 

(33) 

dU,,t 
k(R) =RdR. (34) 
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In Eq. (33) B, is the mass parameter for the vibrational state. The term inside 

parentheses in Eq. (33) can be related to the reduced matrix element (or deforma- 
tion parameter) for the electromagnetic transition [16]. The differential cross 
section for the excitation of a vibrational mode becomes 

) 

-2 

B(EA;A+O) 

x ~l(ty'-'lk(R)Y**,(~)ltIr'+')o, (35) 
CL 

where in the last step we assumed a uniform charge distribution with radius R, for 
the ground state. 

In the eikonal approximation, valid for high-energy collisions, 

(3y(-))*$V(+) 2: 
1 

yexp[iq*R+ix(b)l, 
(24 

where q is the momentum transfer in the reaction, and x(b) is the eikonal phase 
[16]. For the longitudinal momentum transfer we use the approximation qr = 

k, cos 8 - ki = Ak = oh/v, where v is the relative velocity. The azimuthal integra- 
tion is straightforward and one obtains [R = (b, Z)] 

(w”I k( R)Y,*,( I?) IW(‘)) = i’/db bJ,( q,b)F’,( WA\, b) eiX@), (37) 

where 

1 
Q(~~, b) = - I 

d&P, 

(2rj2 

dZ ei%z/uR- dR Y,,(@? 019 (38) 

with R = w and cos O = Z/R. The integration over scattering angle may be 
done by using the high-energy approximation do 1: 2aq, dq,/k2 and with the aid 
of the closure relation for the Bessel functions. We get 

oh” = 2a 
/ 

db b9’*(b), (39) 
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where 

xexp[-2 Im x(b)1 CJF,,(@A~ b>12- 
/J 

(40) 

The function PA(b) may be interpreted as the probability for the excitation of the 
vibrational mode h in high-energy collisions at a given impact parameter. 

For collisions at high energies we can assume that the optical potential is pure 
imaginary, being related to the nucleon-nucleon cross sections and to the nuclear 
ground-state matter distribution by [161: 

U,,,(R) = - @m,,jp,( R - r)pp( r) d3r. (41) 

The imaginary part of the Glauber phase in Eq. (36) is accordingly given by 

2 Im x(b) =cNN d3r pT(R-r)pp(r). (42) 

The nuclear excitation probability is peaked at grazing impact parameters. This 
occurs because the exponential factor in Eq. (401 decreases with decreasing b and 
the function FAp decreases with increasing b. For the reactions that we shall study 
in the next section the impact parameter interval where the nuclear excitation 
probability peaks is very small, of order of 1 fm or less. This means that there is 
very little interference between the Coulomb and the nuclear cross sections, since 
the bulk part of the Coulomb cross section originates from collisions in a large 
range of impact parameters, well beyond the grazing one. 

5. Numerical results 

The reactions 136Xe +208Pb at 0.69 GeV/nucleon and 209Bi +208Pb at 1 
GeV/nucleon have been measured recently at GSI [6,7]. We apply the formalism 
developed in the preceding sections to calculate the excitation probabilities and 
cross sections for these systems. 

Cross sections (in mb) for the Coulomb excitation of the IVGDR, ISGQR and 
IVGQR in 136Xe incident on Pb at 0.69 geV/nucleon are given in Table 1. We 
have assumed that the IVGDR, ISGQR and the IVGQR are located at 15.3, 12.3 
and 24 MeV, and that they exhaust lOO%, 70% and 80% of the corresponding 
sum rules, respectively [18]. We used bmin = 1.2(_4:/3 +A?/3I fm = 13.3 fm as a 
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Table 1 
Cross sections (in mb) for the Coulomb excitation of the IVGDR, ISGQR and IVGQR in ‘36Xe 
incident on *08Pb at 0.69 GeV/nucleon. The cross sections in the last column are calculated with the 
widths of the states taken into account. The values outside (inside) parentheses use bmin = 13.3 (15.6) 
fm. 

IVGDR 
ISGQR 
IVGQR 

m= f2 

- 
90 (64) 
29.7 (25.6) 

m=fl 

949 (712) 
8.4 (6.09) 
6.lt5.46) 

m=O 

264 (201) 
14.3 (10.6) 
14 (12.4) 

ut0t.A 

2162 (1630) 
211(150) 
84.lf74.5) 

%idth 

2482 (1820) 
241(169) 
102 (93) 

lower limit guess and b,, = 15.6 fm, suggested by the parameterization of ref. [14], 
as an upper limit (number inside parentheses). The parameterization of ref. [19] 
yields an intermediate value for this quantity. The contributions to various 
angular-momentum projections of each state are shown separately. In the last 
column the total cross sections are calculated with the widths of the states taken 
into account. We use for the IVGDR, ISGQR and IVGQR the BW strength 
functions (24) with the resonance widths r = 4.8, 4 and 7 MeV, respectively [18]. 
We see that states with higher angular-momentum projections are more populated. 
The inclusion of the widths of the resonances in the calculation increases the cross 
sections by about (lo-20)%. The experimental value [6] 1110 + 80 mb for the 
GDR is much smaller, which made the authors of ref. [6] claim that the GDR 
absorbs only 65% of the sum rule (this number apparently contradicts the system- 
atics of data for real monochromatic photons [18,20]). Using this value, our result 
reduces to 1613 (1183) mb which seems to prefer the upper value of bmi,. The 
numbers in parentheses are also in rough agreement with the data [6] for the 
ISGQR and IVGQR. 

Using the formalism developed in sect. 4 we have also calculated the cross 
sections for the nuclear excitation of the ISGQR in the same reaction. The cross 
sections for the excitation of isovector modes are reduced by a factor [(N - Z>/A12 
since the isovector mode is excited due to the difference in strength of the nuclear 
interaction between the target and the protons and neutrons of the projectile [15]. 
This implies that the isovector excitations are strongly suppressed in nuclear 
excitations. Therefore, we do not consider them here. For the excitation of the 
ISGQR we find aN = 5.3 mb, if we use the deformation parameter /3R = 0.7 fm 
for i3’jXe. In the calculation of the nuclear potential [see Eq. (4111 we used Fermi 
density distributions with parameters p,, = 0.17 fm-3 and R = 5.6 (6.5) fm, a = 0.65 
(0.65) fm for Xe (Pb). The nucleon-nucleon cross section used was 40 mb. A look 
at Eqs. (38) and (40) explains the origin of the small value for the nuclear 
excitation cross sections. The exponential factor in the integrand of Eq. (38) is 
irrelevant for excitation energies of order of the GR or less. This means that the 
Fourier transform of the nuclear interaction in high-energy collisions, u N c, 
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contains high frequencies. Thus, the magnitude of the function in Eq. (38) is 
basically determined by the value of the deformation parameters (i.e. reduced 
matrix elements) for a given resonance. The magnitude of the nuclear excitation 
cross sections of GR in high-energy collisions is given by the overlap in impact 
parameter between the last two terms of Eq. (401, which is quite small. This 
contrasts with the Coulomb interaction which in high-energy collisions contains 
high-frequency components, but extends to large impact parameters. 

The double-dipole-phonon state can couple to total angular momentum 0 or 2. 
As we mentioned in sect. 2, for the state with L = 2 there is the possibility of a 
direct quadrupole Coulomb excitation (L = 0 states cannot be Coulomb excited 
[3]). For simplicity, we do not consider here the physics of the isospin coupling of 
the two GDR. 

We calculated the direct and the two-step probabilities for the excitation of the 
double-phonon state according to the approach discussed in sect. 2. The total cross 
sections obtained are shown in Table 2. We found that the principal value term in 
Eq. (10) contributes very little (less than 1%) to the GDR X GDR cross section via 
a two-step process. 

From Table 2 we see that the inclusion of the widths of the final (GDR x GDR) 
and the intermediate (GDR) state increase the cross sections by (lo-201%. For the 
position and width of the GDR x GDR state we took E = 28.3 MeV and r = 7 
MeV, respectively 161, which corresponds to wia = 15.3 MeV and wzl = 13 MeV in 
Eqs. (81, (10) and (131, (14), both for L = 2 and L = 0. For the calculation of the 
direct excitation we assumed that the resonance would exhaust 20% of the ISGQR 
sum rule. It is based on the hypotheses that the mixing strength of the low-lying 
ISGQR could be located at the double-dipole phonon state as a consequence of 
the anharmonic phonon coupling of the QDD-type. Obviously, it should be 
considered as highly overestimated upper boundary of the direct excitation. Re- 
cently, Ponomarev and Voronov [21] have calculated the reduced transition proba- 
bility for the excitation of double-phonon states within the quasiparticle-phonon 
model. They find the value B(2+, E2) = 4.2 e2 fm4. Using this value we obtained 
that the cross section for the direct excitation of the L = 2 state is 12 kb, which 
smaller than what we quote above. We conclude that even in the more optimistic 
cases the contribution of the direct mechanism to the total cross section for 

Table 2 
Cross sections (in mb) for the Coulomb excitation of the double GDR in ‘36Xe incident on Pb at 0.69 
GeV/nucleon. The cross sections in the last column are calculated with the widths of the states taken 
into account. The values outside (inside) parentheses use bmin = 13.3 (15.6) fm. 

Double-phonon state m=+2 m= *l m=O flttota1 Dwidth 

L = 0 (two-step) 22.8 (10.7) 22.8 (10.7) 28.4 (13.3) 
L = 2 (two-step) 23.3 (11.2) 13.4 (6.6) 51.4 (26.8) 124.8 (62.4) 154 (77) 
L = 2 (direct - 20% of SR) 3.27 (2.85) 0.86 (0.77) 2.12 (1.88) 10.3 (9.12) 11.8 (10.8) 
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Coulomb excitation of the double-phonon state is much less than that of the 

two-step process. 
Another conclusion drawn from the numbers of Table 2 is that the excitation of 

the L = 2 double-phonon state is much stronger than for the L = 0 state. Adding 
the two contributions we find that the total cross section for the excitation of the 
double-phonon state (excluding the direct mechanism) in the reaction above is 
equal to 182 (101) mb. The experimental value of ref. [6] is about 215 f 50 mb. As 
states above, the nuclear contribution to the (direct) excitation of the double-pho- 
non state is not relevant. If we assume again that about 20% of the sum rule 
strength is exhausted by this state (using e.g. PR = 0.1 fm), we get 1.1 mb for the 
nuclear excitation of the L = 2 double-phonon state. Contrary to the single-pho- 
non case, the appropriate value of bmin for the double GDR experiment [6] is 
b,, = 13.3 fm. 

We also compare our results with the experiment of Ritman et al. [7]. They 
measured the excitation of a *08Pb target by means of *09Bi projectiles at 1 
GeV/nucleon and obtained 770 f 220 mb for the excitation cross section of the 
double resonance. We calculate the cross sections for the same system, using 
E, = 13.5 MeV, r, = 4 MeV, E, = 27 MeV and r2 = 6 MeV for the energy 
position and widths of the GDR and the GDR x GDR in *08Pb, respectively. 
Using the formalism developed in sects. 2 and 3 and including the effects of the 
widths of the states, we find vi = 5334 b for the excitation of the GDR and 
a2 = 692 mb for the excitation of the GDR x GDR, using bmin = 1.2(Av3 +Ay3) 
fm = 14.2 fm. Thus, while the cross section for the excitation of single phonons is a 
factor 2.8 larger than that of the experiment of ref. [6], the cross section for the 
excitation of double phonons is larger by a factor 3.8. This is due to the larger 
value for the excitation probabilities caused by a larger B(E1) value for this 
reaction. The parameterization [14] with bmin = 16.97 fm would lead to smaller 
cross sections crl = 4130 mb and a2 = 319 mb. 

We found the ratio of (P,= +1 + P,,,= _l)/P,,,=o = 9.4 for the excitation of the 
GDR in the experiment of ref. 171. They quote the value 28 in their calculations 
and fit the gamma-ray angular distribution according to this value. We think that 
this result could somewhat change the extracted value of the GDR X GDR cross 
section which is quoted in ref. [7]. 

Using the formalism shown of sects. 2 and 3 we find that the cross section for 
the excitation of three-phonon states in the experiment of Schmidt et al. [6] is 
equal to 19.2 mb (with bmin = 13.3 fm), while it is equal to 117 mb (with bmin = 14.2 
fm) for the experiment of Ritman et al. [7]. The identification of these resonances 
is therefore more difficult, but possible with the present experimental techniques. 
Using the same arguments leading to Eq. (20) we find for the reduced matrix 
elements, in obvious notations, ID,,]* = 3(0~~/w~~)] Die]*, which we used in our 
calculation. We assumed that 010/w32 = wio/02i. These enhancement factors for 
the excitation of higher phonon states are very important to explain the magnitude 



of the cross sections. The anharmonic effects, suggested in ref. [6] to explain the 
large excitation of double GDR, are expected to be small since the mixing of 
single- and double-phonon states is forbidden by the angular momentum and 
parity. The main anharmonic effect, apart form the weak coupling of the double 
GDR with L = 2 to GQR, is the IBM-like scattering of dipole phonons which 
splits L = 0 and L = 2 states but hardly changes excitation and decay properties. 

In our opinion, the weak point of the semiclassical approach in explaining the 
magnitude of the cross sections for the excitation of multiphonon states is the 
choice of the minimum impact parameter. A systematic e~er~ent~ study of the 
GDR X GDR cross sections for various systems and energies is clearly appropriate 
at this stage in order to define an optimal parameterization for this quantity. 

Another important question is related to the expected width of the multiphonon 
states. Early estimates [SJ indicated that these widths should scale as r, = n.Fr. The 
experiments show, however, that a scaling as F, = fir, is more appropriate, at 
least for the double GDR. We next address in detail different aspects of physics 
responsible for the width of the double-phonon state. 

6. Width of the double-phonon state 

Here we discuss in qualitative terms the problem of the width of a collective 
state which can be thought of as being created by the excitation of two quanta in a 
complex many-body system. We assume that the genuine decay to continuum is of 
minor importance at the given excitation energy. Therefore we focus on the 
damping width which comes from the fact that the collective mode is a specific 
coherent superposition of simple configurations (for instance, of a particle-hole 
character) rather than a pure stationary state. 

In the actual excitation process the predominant mechanism is that of the 
sequential one-phonon excitation. Under our assumption that the sum rule is 
saturated by the GR, the intermediate states contribute to this process as far as 
they contain a significant collective component. Therefore the interference of 
many incoherent paths can be neglected so that we are interested in the shape 
P(E) of the excitation function at a given energy E = E, + E, which can be 
obtained as a convolution of the single-phonon excitation functions, 

P(E)=fdE, dE, P,(E,)P,(E,)6(E-El-E,). (43) 

The same shape should be revealed in the deexcitation process. 
In this formulation the problem is different from what is usually looked at when 

one is interested, for example, in sound attenuation. In such classical problems the 
conventional exponential decrease of the wave intensity does not correspond to the 
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decay of the state with a certain initial number of quanta. Contrary to that, here 
we have to compare the damping rates of individual quantum states with the fixed 
number of quanta, single- and double-phonon states in particular. 

We have to mention also that in the nuclear GR case quantum effects are more 
pronounced since the temperature corresponding to the relevant excitation energy 
is less than fiw, whereas in the measurements of the attenuation of the zero and 
first sound in the macroscopic Fermi liquid [22] the situation is always inverse and 
the quantum limit is hardly attainable. (In nuclear physics the classical case can be 
studied with low-lying quadrupole vibrations). 

Independently of specific features of nuclear structure (level density, A-depend- 
ence, shell effects, finiteness of the system leading to the linear momentum 
non-conservation and, therefore, to the estimate of the available phase space 
which could be different from that for infinite matter, and so on) we can try to 
make several comments of general nature. 

If the anharmonic effects could be considered to be small we could assume that 
the phonons decay independently by what can be described, using the language of 
stationary quantum mechanics, as mixing to complicated background states. The 
decay rate Ti(e) of an individual quasiparticle (elementary excitation) with energy 
e depends on the background level density and, whence, on the excitation energy. 
The decay of a state with IZ quasiparticles occurs as far as one of the constituents 
decays. It implies the simple estimate of the width I” of the n-quantum state, 
r, = nr,(E/n). For the decay of typical many-particle-many-hole configurations 
[23-251 one usually takes the Fermi-liquid estimate r,(e) a e2 which leads to 
r, a T3 a E3/* since the average number of quasi-particles in a typical thermal 
configuration at temperature T is IZ a T. This estimate agrees with data. In the 
case of the pure n-phonon state, E/n = fzw, which results in the ratio rn = T,/T, 
= n. 

Thus, the simplest line of reasoning favors the width of the double GR to be 
twice as big as the width of the single GR. At the first glance, this estimate is 
especially reasonable for the giant dipole since here the anharmonic effects, 
determining the whole pattern of low-lying vibrations, are expected to be very 
weak. Angular momentum and parity conservation forbids cubic anharmonicity 
which would mix single- and double-quantum states and influence both excitation 
cross sections and spreading widths. The main anharmonic term, apart from the 
mentioned in sect. 5 weak mixing of the giant quadrupole to the double dipole 
state with L = 2, probably corresponds to phonon scattering similar to that in the 
IBM. It results in the shift of the double-phonon state from 2hw and splitting of 
L = 0 and L = 2 states hardly changing the decay properties. Experimentally, the 
energy shift seems to be rather small. 

There are also other arguments for the width ratio r2 = 2. In our calculation of 
cross sections we assumed the BW shape (24) of strength functions (23). If the 
sequential excitation is described by the BW functions P,(E,) with the centroid at 
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e and the width F, and P2(E2) with corresponding parameters e’ and r’, the 
convolution (42) restores the BW shape with the centroid at e + e’ and the total 
width r + r’. For identical phonons it means that the width ratio rz = 2. 

As we mentioned in sect. 3, the BW shape of the strength function is derived 
analytically within the simple model [15] of coupling between a phonon and 
complicated background states. One diagonalizes first the hamiltonian in the 
subspace of those complicated states and gets their energies E,. If the underlying 
dynamics is nearly chaotic, the resulting spectrum will show up level repulsion and 
rigid structure similar to that of the gaussian orthogonal ensemble (GOE), with the 
mean level spacing d. Roughly speaking, one can assume the equidistant energy 
spectrum. The collective phonon 11) at energy E, is coupled to those states, and 
corresponding matrix elements Vi, are assumed to be of the same order of 
magnitude (much larger than the level spacing d) for all states I v) in the large 
energy interval around the collective resonance. Then the energies of the station- 
ary states (final states If> in the notations of previous sections) are the roots 
E = E, of the secular equation 

F(E) =E-E,- c 
vu 

- =o, 
Y E-5’ 

and the distribution of the collective strength, Eq. (21), 

)*]-‘, 

(44) 

(45) 

reveals the BW shape (24) and the “golden rule” expression (25) for the width F,. 
We can repeat the procedure for the double-phonon state. Phonons of different 

kinds would couple to different background states with different level spacing and 
coupling matrix elements. It corresponds to independent decay leading as we 
discussed above to r2 = r + r’. For identical phonons, we should take into 
account that the double-phonon state 12) is coupled to the states “single phonon 
+ background” and the background states here are the same as those determining 
the width of the single-phonon state 11). This picture is in accordance with the 
famous Axel-Brink hypotheses. Therefore the expression for the width, Eq. (251, 
contains the same level density, whereas all coupling matrix elements for the 
transition to a complicated state Iv) (plus a remaining phonon) have to be 
multiplied by the Bose factor, V,, = fiV,,. Thus, we come again to r2 = 2. 

The approach of the preceding paragraph can be slightly modified by introduc- 
ing explicitly coupling via a doorway state [261 or GOE internal dynamics 1271. In 
both cases the Bose factor 6 leads to the same result r2 = 2. 

In addition, the collective resonance might be further broadened by the cou- 
pling to low-lying collective vibrational or rotational modes. For example, in the 
simplest model where the dipole phonon radiates and absorbs low-energy scalar 
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quanta, it is easy to show that, in the stationary cloud of scalar quanta, their 
average number, which determines the fragmentation region of the dipole mode, is 
proportional to the squared number of dipole phonons. Hence it gives a large 
width ratio r2 = 4. For the nuclei where actual data exist, this is not important 
since they are rather rigid spherical nuclei with no adiabatic collective modes. 

On the other hand, one can present some arguments in favor of the width ratio 
r2 = fi which apparently is preferred by the existing data. 

First of all, this value follows from the convolution (43) of gaussian distribution 
functions (instead of BW ones). Of course, this is the inconsistent approach since 
the experimentalists use a BW or lorentzian fit. But one can easily understand that 
the result r2 = fi is not restricted to a gaussian fit. For an arbitrary sequence of 
two excitation processes we have ( E > = ( E, + E, > and ( E 2 > = ((E, + E2j2 >; for 
uncorrelated steps it results in the addition of fluctuations in quadrature, (AEj2 = 
(AE,)2 + (AE2>2. Identifying these fluctuations with the widths up to a common 
factor, we get for identical phonons Q? = 2rf, or r2 = fi. 

The same conclusion will be valid for any distribution function which, as the 
gaussian one, has a finite second moment, contrary to the BW or lorentzian ones 
with the second moment diverging. In some sense we may conclude that, in 
physical terms, the difference between r2 = 2 and r2 = fi is due to the different 
treatment of the wings of the distribution functions which reflect small admixtures 
of far remote states. 

In the standard model of the strength function 1151 all remote states are coupled 
to the collective mode equally strong. This is obviously an unrealistic assumption. 
The shell model (more generally, mean field) basis is the “natural” one 1281 for 
estimating a degree of complexity of various states in a Fermi system at not very 
high excitation energy. In this representation, matrix elements of residual interac- 
tion couple the collective state (coherent superposition of particle-hole excitations 
found for example in the framework of the RPA) only to the states of the next 
level of complexity (exciton class). Those states, in turn, become mixed with more 
complicated configurations. This process proliferates and each simple state ac- 
quires its spreading, or fragmentation, width 2a = Nd where N stands for a typical 
number of stationary states carrying the noticeable weight of the ancestor state and 
the level spacing d is basically the same as in the mean-field approximation. 
Inversely, N can be viewed as the localization length of a stationary complicated 
state in the mean field basis. 

In the stochastic limit [29] the local background dynamical properties can be 
modelled by those of the GOE with the semicircle radius a. This intrinsic 
spreading width a, which is expected to be of the order of magnitude of typical 
matrix elements of the original residual interaction between simple configurations, 
is the dynamical scale missed in the standard model which corresponds to the limit 
a + 03. The existence of this intrinsic scale can be associated [29] with the 
saturation [30] of the width of a single GR at high temperature. 
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The standard model supposedly is valid for the spreading width F small in 
comparison with a. Because of the relatively weak interaction leading to the 
isospin impurity, this is the case for the isobaric analog states (IAS) [31,32] where 
typical spreading widths are less than 100 keV. This approach allows one to 
explain, at least qualitatively, small variations of the spreading widths of the IAS. 
The tunneling mixing of superdeformed states with the normal deformed back- 
ground presents an extreme example of the small spreading width. However, in the 
case of GR the situation might be different. 

To illustrate the new behavior in the opposite case of I’ 2 a, we can imagine the 
limit of the almost degenerate intrinsic states with very strong coupling to a 
collective mode. (The actual situation presumably is intermediate). Assuming that 
the unperturbed phonon state has an energy in the same region, one can easily see 
from Eqs. (44) and (45) that the coupling results in the appearance of the two 
collective states sharing evenly the collective strength and shifted symmetrically 

from the unperturbed region by AE = f /m. The physical reason is evident: 
the interaction of the background states through the collective mode creates a 
specific coherent superposition which is hybridized with and repelled from the 
original collective state. A similar effect was discussed in different context in ref. 
[33] and observed in numerical simulations [34]. The well known doubling of the 
resonance peak at the passage of a laser beam through a cavity containing a 
two-level atom is the simplest prototype of such a phenomenon. 

In this limit one gets the effective width of collective response 2AE = 

2/m=Z/n h r w ere r, is the standard spreading width (25). This effective 
width is linearly proportional to the average coupling matrix element. Therefore it 
should increase by factor 6 when applied to a n-phonon collective state. Thus, 
we anticipate in this limit r2 = fi. One may say that the phonons do not decay 
independently, being correlated via common decay channels. In the literature a 
similar result, due to apparently the same physical reasons, was mentioned in ref. 
[35] referring to the unpublished calculations in the framework of the second RPA. 

The precision of experimental observations is not sufficiently high to provide us 
with the accurate shape of the strength function for the double GR. Further 
experimental data along with the refined theoretical analysis are necessary. 

7. Conclusions 

We have performed a detailed investigation of the mechanisms for the excita- 
tion of multiphonon states in relativistic heavy-ion collisions. The effects of the 
widths of the resonances as well as of the excitation due to the nuclear interaction 
have been included. The nuclear contribution to the cross sections is shown to be 
irrelevant when large-Z nuclei are involved. We find that the experimental cross 
sections are well explained by our calculations. 
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We have used a sum rule approach in our calculations based on the assumption 
of saturation by collective GR. A microscopic RPA treatment for the excitation 
strengths would help to give more insight to this study. This is beyond the scope of 
this article. The problem of the width of multiphonon resonances also remains a 
challenge for our understanding of the damping mechanisms and onset of chaos. 
More theoretical work in this subject is highly desirable. 

The GDR x GDR excitation probability varies as be4 and therefore it is more 
sensitive to the value of bmin than that of the single GDR (a b-*1. The lower value 
of bmin allows one to reproduce the double GDR excitation cross sections. The 
contradiction still remains concerning the low experimental cross section [6] of the 
single GDR in 136Xe The systematic study of multiphonon excitations for various . 
combinations of projectile and target is highly desirable. From a theoretical point 
of view, the sharp cut-off at b = bmin oversimplifies the complicated description of 
the simultaneous action of electromagnetic and nuclear forces in near-grazing 
collisions of the extended quantum objects. The microscopic analysis of the 
problem is under progress. 
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Bertsch, P.F. Bortignon, R.A. Broglia, K. Snover and M. Thoennessen on the 
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from the National Science Foundation/US under grants PHY-9015255 and PHY- 
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