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Abstract

We study the effect of higher-order processes in Coulomb dissociation of ''Li by numerically
solving the three-dimensional time-dependent Schrddinger equation for the relative motion of
a di-neutron and the °Li core. Comparisons are made to first-order perturbation theory and
to measurements. The calculated Coulomb reacceleration effects improve the agreement with
experiment, but some discrepancy remains. The effects are smaller in the dissociation of lige,
and they decrease with increasing beam energy.

1. Introduction

In recent years there has been several attempts to understand the effect of higher-
order processes in Coulomb dissociation. The most recent activity [1-4] was spurred
by three-body coincidence measurements [5] of the '"Li — °Li+n+n breakup. It was
observed that the average velocity of the charged fragment was larger than that of the two
neutrons. This result may indicate that first-order perturbation theory is not sufficiently
accurate to describe the dissociation of loosely bound nuclei. If that indeed is the case
it would become very difficult to infer radiative capture rates from the inverse Coulomb
dissociation measurements [6].

Previous studies of higher-order dynamical effects have not been very successful in
describing the ''Li data mentioned above. Due to the complexity of the problem it is
customary to treat it as a two-body system consisting of a di-neutron interacting with
the °Li core. Shyam et al. [1] made use of the post-representation form of the breakup
process, and did not see any velocity shift of the charged fragment with respect to
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the neutrons. Canto et al. [2] made coupled-channel calculations with a discretized
continuum, including the dipole component of the Coulomb interaction with the target.
They achieved some asymmetry in the relative velocity distribution, but not as much as
seen in the experiment.

In the following we study the breakup using a simplified di-neutron model for ''Li.
We calculate the time evolution of the wave function for the relative motion of the core
and the di-neutron in three dimensions. We calculate the momentum distributions for
the breakup, and make comparisons to perturbation theory and to experimental data [5].
We also study the two-body breakup of ''Be into a neutron and a '°Be fragment.

The method we use is a straightforward generalization of the one- and two-dimensional
calculations reported in Refs. [3,4]. An advantage of the method is that it is fairly easy
to include higher multipole components of the Coulomb field. The quadrupole field is
known to be important in the Barkas effect [7] in atomic stopping theory, and that
motivated us to include it here.

2. Description of model calculations

We consider the breakup of a weakly bound projectile (Z,, Ap), consisting of a tightly
bound core (Z, A.) and a cluster (Z,, Ay),

(Zp, Ap) — (Ze, Ac) + (Zy, AY),

due to the Coulomb interaction with a target nucleus (Z, A;). We ignore for simplicity
the scattering of projectile and target, and assume a straight-line trajectory for the relative
motion, R(t) = b—vt. The Coulomb field that excites the relative motion of the fragment
and core is

_ 2 Z; Zy _ Zp
Voot = Zee <|rcp—R(t)|+|rxp—R<z)| R(z))’ S

where r¢, and ry, are the positions of the core and the cluster with respect to the center
of mass of the projectile. It acts on the relative position r = ry. of the cluster and core
through the transformations: re, = —rAyx/A; and ry, = r(1 — A, /A;). One can perform
a multipole expansion of this interaction and for r¢, and ry, smaller than R(#) one can
express the result in terms of a multipole-dependent effective charge,

ex = Zo(—Ax/Ap)* + Z(1 — A /AR . (2)

We shall in particular consider the Coulomb dissociation of !'Li into °Li and two
neutrons, i.e. Zx = 0 and Ax = 2. The dipole field dominates the breakup in this case,
whereas the quadrupole field is less significant, partly due to a small effective charge.
The quadrupole field would be relatively more important in dissociation of two charged
fragments, as for example in the breakup of ®B into a proton and Be.

We adopt a simple di-neutron model for !'Li and describe the ground state as an
s-state bound by 0.3 MeV in a shallow Woods-Saxon potential, which has only one
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bound state. The parameters of the potential is a depth of 6.57 MeV, a diffuseness of
0.67 fm and a radius of 2.496 fm. The time evolution of the wave function, in the
presence of the Coulomb field from the target, is calculated using the method described
in Ref. [4], generalized to a three-dimensional problem. The wave function is expanded
in spherical harmonics,

1 .
w(r,1) —;%juemu,tmm(r), (3)
and the source term S, in Eq. (6) of Ref. [4] due to the Coulomb interaction with the
target nucleus becomes

Sem(r,8) = > (Yom| Veou | Yome Yusgrme (7, 1). (4)

m’ .

We include all angular-momentum states up to £ = 8, and A = 0, 1 and 2 in the
multipole expansion of the Coulomb field. We choose a coordinate system with a z-axis
perpendicular to the reaction plane; the reflection symmetry in this plane implies that we
only have to consider even values of A + u in the multipole expansion of the Coulomb
field, and even values of £ + m in the wave function, since we start from an s-wave.

The reaction we want to study is the Coulomb dissociation of !'Li on a lead target at a
beam velocity of v/c = 0.24, corresponding to the experimental conditions of Ref. [5].
The ground-state wave function is represented on a radial grid which extends out to
150 fm in steps of 0.2 fm. We start the dynamical calculation at = —1000 fm/c
at which time the distance between projectile and target is larger than the adiabatic
distance, fw/AE, even for excitations near threshold (A4Et; /5 = 1.5 for AE = 0.3 MeV).
We follow the time-evolution in steps of 2 fm/c up to t = +1000 to 3000 fm/c,
depending on the impact parameter. The decision to stop the calculation is determined
by several requirements which must be met to obtain a reliable momentum distribution.
First of all, the dissociation probability must have converged. Secondly, the continuum
part of the wave function must have left the potential well but it must not yet have
reached the outer boundary of the radial grid. Finally, the long-range influence of the
Coulomb field, after we stop the calculation, should not be too significant.

From the final wave function, ¥ (#), obtained for a given impact parameter b, we
calculate the dissociation or breakup probability as

Pyiss(b) =1 — [{¥gs|® (£1))]%, (5

where ¥, is the ground-state wave function. As in Ref. [4], we extract the continuum
part of the final wave function,

1Pcont(tf) =‘F(tf) _lpgscpgs'ip(tf)), (6)
and project out the momentum distribution,

dP(p,b) _ 2
—ap [{p|¥ (:))]*. @)
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Fig. 1. Impact-parameter dependence of the average longitudinal (solid curve) and transverse momenta
(dashed curve) for the relative motion of the di-neutron and ®Li after Coulomb dissociation, in units of pjass
defined in Eq. (8).

The normalization of this distribution is the breakup probability. The differential cross
sections discussed in the next section are then obtained by integrating over an appropriate
range of impact parameters.

Of particular interest is the average momentum of this wave function. In first-order
perturbation theory this would be zero. In a simple picture one might expect that the
dissociation takes place essentially at ¢ = 0 and the continuum wave function would then
acquire the classical, longitudinal momentum

Petass = Zi( Zx — ZpAx/Ap)€” Jub (8)

along the beam direction, where (Z; — Z,Ax/Ap) is the dipole effective charge asso-
ciated with the projectile wave function. We find it instructive to present the average
longitudinal momentum in units of this simple estimate. The result we obtain is shown
as a function of impact parameter by the fully drawn curve ! in Fig. 1. The longitudinal
momentum is seen to be reduced compared to the simple classical estimate at the smaller
impact parameters but it reaches this value at about 50 fm. We also show as the dashed
curve in Fig. 1 the average transverse momentum in the reaction plane, perpendicular to
the beam direction. It decreases slightly for increasing impact parameters and is larger
than the classical value (8).

! The longitudinal momentum has been corrected for the long-range Coulomb acceleration that occurs after
the time we stop the numerical calculation. The correction amounts to at most 5% of pgjass.
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3. Comparisons to perturbation theory

The calculated dipole response from the di-neutron ground state is shown in Fig. 2 as
a function of the excitation energy. It peaks at 0.48 MeV, and the total strength, B(E1)
= 2.5 ¢2fm?. This is about 67% larger than the prediction of the di-neutron model based
on a zero-range nuclear binding potential [8], but the overall shapes are quite similar.
In first-order perturbation theory, the excitation probability is given by the expression,

4 e\ T 2
Pu(0) =5 (255) [ arEE0E (36 + Kic6)). ©®)
0

where £ = AEb/fw and AE = E. + |Eg| is the excitation energy; see Ref. [9] for
a review. Note that we have not included relativistic effects in our calculations. This
probability is meaningful only if it is small compared to unity. However, since it can
become quite large as shown by the dashed curve in Fig. 3, it is more reasonable to use
the following prescription for the breakup or dissociation probability:

Pyiss(b) =1 — exp(—Prop(b)), (10)

which is the result one obtains for a coherent state, taking into account the effect of
multiple excitations. This result is shown by the fully drawn curve in Fig. 3, and it
compares quite well with the results of the dynamical calculations discussed in the
previous section, which are shown by the open circles. The largest deviation in this
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Fig. 2. Dipole response from the di-neutron ground state in !!'Li as a function of excitation energy. The
threshold is located at 0.3 MeV.




112 H. Esbensen et al./Nuclear Physics A 581 (1995) 107-118

1 IIlIIlI

J I T

T T IIIIIII
1 lllllll[

T T T lllll[

J .| IIlll[

T
L1l

=
8
]
S
8

200
b {fm)

Fig. 3. Coulomb dissociation probabilities as functions of impact parameter. The open circles are the results
of the dynamical calculations discussed in the text. The dashed curve is the result obtained in first-order
perturbation theory (Eq. (7)), and the fully drawn curve is the result obtained from Egs. (9) and (10).

figure is 15% and appears at 10 fm. The almost perfect agreement at large impact
parameters is actually a good check on the dynamical calculations.

In practical calculations of dissociation cross sections there are of course several
uncertainties and corrections which set in at the smallest impact parameters, such as the
nuclear dissociation and absorption and corrections for Coulomb trajectories. If we more
or less arbitrarily choose an impact parameter range of 11 < b < 160 fm, which we
have covered by the dynamical calculations, we obtain a cross section of 8 b. The result
obtained from the fully drawn curve is only 6% higher, whereas the result obtained from
the dashed curve is 16% higher. Thus it appears that one can obtain quite reliable cross
sections from first-order perturbation theory using the prescription Eq. (10), and there
does not appear to be an urgent need for doing full dynamical calculations.

Let us mention that our di-neutron model is somewhat unrealistic: the total dipole
strength and the Coulomb dissociation cross section are about a factor of two larger than
more realistic estimates, see for example Refs. [5,10]. A way to fix this discrepancy is
to reduce the effective charge by a factor of 0.7. The direct coupling between the ground
state and the continuum would then be realistic, but the continuum-continuum coupling
would become too weak. We have therefore decided not to make any adjustments of
our model at this point, since the main purpose of our study is to see the effect of
continuum-continuum couplings.

In first-order perturbation theory, the momentum distribution generated by dipole
excitations from the spherical ground state is
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Fig. 4. The three projections of the momentum distribution for the relative motion of the di-neutron and the
9Li core after Coulomb dissociation, viz. the longitudinal (a), the transverse in the reaction plane (b) and
the out-of-plane projection (c) on the z-axis, which is perpendicular to the reaction plane. The dashed curves
are based on first-order perturbation theory, and the solid curves are the results of the dynamical calculations
discussed in the text.

dProp(p.b) 1 (2Ze*\’ dB(ED) £
dp 3 ﬁu> ptdp B2
X (K§(£€) cos’(80) + K (£) cos’(6,,)) (11)

where the 6, and &, are the angles between the momentum p and the longitudinal and
transverse directions, respectively. We shall always normalize this distribution according
to Eq. (10). We first examine the three projections of this distribution, namely the
longitudinal (along the beam axis), the transverse (perpendicular to the beam and
in the scattering plane), and finally the projection on the z-axis perpendicular to the
scattering plane. A characteristic feature at intermediate and high beam energies is the
dominance of transverse dipole excitations (the last term in Eq. (11)) over longitudinal
dipole excitations (the first term). From the simple cos(€) dependence in Eq. (11) it is
then seen that the transverse-momentum distribution will have a local minimum for pyays
=0, whereas the longitudinal and the out-of-plane distributions will have a maximum at
zero, and the out-of-plane distribution will be the narrower.

The momentum distributions for the relative motion of the di-neutron and the °Li
core that we obtain are shown in Fig. 4 together with the results of perturbation theory
(dashed curves). The differential cross sections were obtained by integrating over the
impact parameter range 11 < » < 160 fm. The longitudinal distribution (a) is found
to be shifted compared to the symmetric prediction of first-order perturbation theory,
with an average shift of —7 MeV/c. The effect is somewhat larger on the in-plane
transverse-momentum distribution (b), where the average shift is 12 MeV. Finally, the
out-of-plane distribution (c) is rather insensitive to higher-order dynamical effects.
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4, Comparisons to measurements

We now compare the calculations to the measurements of Ref. [5]. Using the coinci-
dent measurement of the momenta of the three particles in the final state, this experiment
inferred the !'Li decay energy spectrum and the distribution in the difference of veloci-
ties between the °Li and the neutron pair. Unfortunately, due to a limited acceptance in
the experiment, it is not completely trivial to compare with theory.

We first consider the decay energy spectrum. Experimentally, this is the distribution
of energies of the final-state particles in their center-of-mass system. In our di-neutron
model, the decay energy is related to the momentum of the final-state wave function
by Egec = p?/2pxc, Where pxe = maAx(Ap — Ax) /Ap. In Fig. 5 we show the theoret-
ical distributions obtained in perturbation theory (dashed line) and with higher-order
dynamic effects (solid line). Also shown are the data (with an arbitrary normalization)
obtained in Ref. [5] and corrected for the detection efficiency (Fig. 11 of Ref. [5]).
Although our di-neutron model does not account for the shape of the measured spectrum
at small excitation energies, the discrepancy between our two numerical results clearly
indicate that one cannot extract the dipole response directly from the measurement and
the equivalent photon spectrum, i.e. by assuming first-order perturbation theory to be
valid.

We next consider the distribution in the longitudinal velocity, which is very sensitive
to Coulomb reacceleration. The average longitudinal velocity for the relative motion of

0
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Fig. 5. Decay energy spectrum for !!Li after Coulomb dissociation on a lead target at 28 MeV/A, obtained
in first-order perturbation theory (dashed curve) and from the dynamical calculations discussed in the text
(solid curve). Also shown are the experimental results {5] (with an arbitrary normalization), which have
been corrected for the detection efficiency.
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Fig. 6. “Longitudinal” momentum distribution for the relative motion of the di-neutron and the ®Li core. The
experimental results [5] have not been corrected for detection efficiency. The calculated curve include the
effect of Coulomb deflection and the finite acceptance angle of the neutron detectors.

the °Li fragment and the two neutrons is calculated to be dv/c = +0.005, using the
results shown in Fig. 1. This is comparable to, but somewhat smaller than the measured
value [5] of +0.008.

The experiment provides detailed information about the distribution with a graph of
the spectrum as a function of the difference in speeds (velocity magnitudes) between
the °Li and the neutron pair, Fig. 14 in Ref. [5]. The speed difference can be written
as

Av = |Vf,cm+"'9| - |Vf,cm+V2n|a (12)

where v cm is the center-of-mass velocity of the three fragments in the laboratory system,
and vy and vy, are the velocities of ?Li and the two neutrons, respectively, in the rest
frame of the three-body system. To second order in the relative velocity we obtain

Av = ((v9 — U2n) - Vrem — 25|09 — U2al?) /Vtcm. (13)

The first term is the relative velocity measured along the direction of the final center-
of-mass motion, and the last term is a small correction that we can ignore.

The experimental and calculated distributions are shown in Fig. 6. For the calculated
distribution, the internal momentum distribution is projected onto the direction of the
final center-of-mass motion for each impact parameter, and then an appropriate average
is taken over impact parameters. Here we have also included the corrections for the
small acceptance angle of the neutron detectors, which have an opening angle of about
5°. Roughly speaking, this implies the elimination of events which have a transverse
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momentum ( 4/ pZans + p?) larger than 32 MeV/c. This is quite a significant cut as can
be seen in Fig. 4, and it will, in particular, reduce the relative contribution from small
impact parameters, where we obtain the broadest momentum distributions and where
the higher-order dynamical effects (including Coulomb deflection) are the largest. The
cut reduces the calculated cross section to about 50% of its original value.

The calculated distribution shown in Fig. 6 reproduces the data quite well at positive
“longitudinal” momenta and shows some asymmetry, but not enough to reproduce the
data at the largest negative momenta. Our results are similar to those obtained by Canto
et al. [2], who only made use of the dipole field. The point is that the dipole field
plays the dominant role, whereas the effect of the monopole and quadrupole fields is
rather insignificant in our calculations. Let us finally mention that there are additional
corrections to consider (for example energy loss in target, energy dependence of neutron-
detection efficiency) before one can make definitive conclusions from the comparison
to the data. We have chosen not to pursue such corrections any further at this point.
New measurements, which cover a much larger neutron acceptance angle, will hopefully
become available in the future.

We finally study the Coulomb dissociation of ''Be into a neutron and a '°Be fragment,
which has recently been measured at 72 MeV/A on a lead target [11]. The analysis
of the data showed good agreement with the semiclassical model of Ref. [12]. Here
we shall again compare the data to first-order perturbation theory and to higher-order
dynamical calculations.

We use a potential model for ''Be assuming an inert '°Be core plus a valence neu-
tron. A Woods—Saxon potential is used with parameters V; = —51.55 fm, R = 3 fm,
and ag = 0.52 fm. These parameters reproduce the 2s;/, ground-state binding energy of
0.505 MeV. The differential cross section was calculated in first-order perturbation the-
ory, and it was normalized so that good agreement with the experimental data was found
(dashed line in Fig. 7a). This required a scaling factor 0.87, which is somewhat larger
than the spectroscopic factor of 0.77 deduced from the '°Be(d,p)!'Be reaction [13].
The agreement with the experimental data is very good in view of the simplicity of the
model. Indeed, as discussed by Nakamura et al. {11], the Coulomb breakup of this halo
nucleus is primarily sensitive to the tail of the valence-neutron wave function, which
has a simple Yukawa form. A similar conclusion was reached by Anne et al. [14] from
an analysis of the angular distribution of the emitted neutrons.

Starting from the 2s;/, ground state the effects of Coulomb reacceleration were
calculated. The results of the non-perturbative calculation is given by the solid line in
Fig. 7a, with the same normalization factor. We see that the reacceleration effect causes
a very slight modification of the energy spectrum.

We have repeated the calculations at a smaller beam energy of 28 MeV/A. The results
are shown in Fig. 7b. We see that the reacceleration effect is much larger, although not
as large as in the !'Li case (compare Figs. 5 and 7b). This shows that the reacceleration
effect is dependent on the breakup probabilities. The breakup probability of !'Be is
about a factor 2 smaller than that of !'Li, essentially because the effective dipole charge
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Fig. 7. Energy spectrum for the dissociation of 'Be projectiles on a lead target at 72 MeV/A is shown in
(a). The dashed curve is the prediction of first-order perturbation theory normalized to the data points [11].
The solid curve is obtained by the numerical solution of the Schrodinger equation. Similar results are shown
in (b) for a beam energy of 28 MeV/A.

is a factor of 1.5 smaller. The effect is also dependent on the bombarding energy, being
smaller at larger beam energies. This occurs because the breakup probability decreases
with increasing beam energy in this energy interval, cf. Eq. (9).

5. Conclusions

Our study of higher-order processes in Coulomb dissociation in a three-dimensional
model confirms the general behavior of the Coulomb reacceleration found in an earlier
one-dimensional study [3]. When the excited state is not a very narrow resonance, the
magnitude of the reacceleration is similar to the classical value assuming an instan-
taneous breakup at the distance of closest approach. This is unfortunate for using the
reaction to measure low-energy transition strengths, because reacceleration effects distort
the sought spectrum.
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In the case of !'Li, we found severe distortion of the spectrum for the energy region at
and below the peak. On the other hand, the distortion was small on the high-energy side
of the peak, so a simple analysis could be used confidently there. Canto et al. [2] have
studied !'Li Coulomb dissociation with a model including the same physics, but using a
different numerical method. They also find substantial distortion of the excitation energy
spectrum in the peak region, but practically no effect of the higher-order interactions
above 0.6 MeV.

The data on the relative velocity of the °Li fragment and the two neutrons is more
problematic. Our predicted distribution is not skewed as much as the experimental dis-
tribution toward the side of a faster °Li. We fit the distribution on the slower side but not
on the faster side. In this we agree with the calculation of Ref. [2]. However, additional
corrections associated with the experimental conditions may affect the distribution, so
we do not wish to make a firm conclusion on the basis of this comparison.

It is clear that Coulomb reacceleration effects are significant in the dissociation of
Li, and they can qualitatively be accounted for in the di-neutron model. The lack of
quantitative agreement is certainly not a failure of the numerical techniques, but the basic
model assumption of a two-body system is questionable. On the other hand, Coulomb
dissociation of ''Li at a moderate beam energy is probably one of the most dramatic
cases concerning effects of higher-order dynamical processes. The effects are smaller
for 'Be. Moreover, they decrease with increasing beam energy. The latter fact must
clearly be considered in the planning of future measurements.
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