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Abstract

We study the combined effects of vacuum polarization, relativity, bremsstrahlung, and atomic
polarization in nuclear reactions of astrophysical interest. It is shown that these effects do not
solve the longstanding differences between the experimental data of astrophysical nuclear reactions
at very low energies and the theoretical calculations which aim to include electron screening.
(© 1997 Elsevier Science B.V.
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1. Introduction

Understanding the dynamics of fusion reactions at very low energies is essential
to understand the nature of stellar nucleosynthesis. These reactions are measured at
laboratory energies and are then extrapolated to thermal energies. This extrapolation is
usually done by introducing the astrophysical S-factor,

1
7(E) = 7 S(E) exp [-2m7m(E)] , (L.1)

where the Sommerfeld parameter, 7(E), is given by n(E) = Z;Z,e?/lw. Here Z;
Z,, and v are the electric charges and the relative velocity of the target and projectile
combination, respectively.
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The term exp(—2#n) is introduced to separate the exponential fall-off of the cross
section due to the Coulomb interaction from the contributions of the nuclear force. The
latter is represented by the astrophysical S-factor, which is expected to have a very
weak energy dependence. The form given in Eq. (1.1) assumes that the electric charges
on nuclei are “bare”. However, neither at very low laboratory energies, nor in stellar
environments is this the case. In stars the bare Coulomb interaction between the nuclei
is screened by the electrons in the plasma surrounding them. A simple analytic treatment
of plasma screening was originally given by Salpeter [1]. In most cases of astrophysical
interest Salpeter’s treatment still remains to be a sufficient approximation [2]. In the
very low energy laboratory experiments the bound electrons in the projectile or the
target may also screen the Coulomb potential as the outer turning point gets very large
(> 500 fm). As experimental techniques improve one can measure the cross section in
increasingly lower energies where the screened Coulomb potential can be significantly
less than the bare one. This deviation from the bare Coulomb potential should manifest
itself as an increase in the astrophysical S-factor extracted at the lowest energies. This
enhancement was indeed experimentally observed for a large number of systems [4-8].
The screening effects of the atomic electrons can be calculated [3] in the adiabatic
approximation at the lowest energies and in the sudden approximation at higher energies
with a smooth transition in between [9].

In the adiabatic approximation one assumes that the velocities of the electrons in the
target are much larger than the relative motion between the projectile and the target
nuclei. In this case, the electronic cloud adjusts to the ground state of a “molecule”
consisting of two nuclei separated by a time-dependent distance R(r), at each time
instant ¢. Since the closest approach distance between the nuclei is much smaller than
typical atomic cloud sizes, the binding energy of the electrons will be given by the
ground-state energy of the Zp + Zy atom, B(Zp + Zr). Energy conservation implies
that the relative energy between the nuclei increases by U, = B(Zr) — B(Zp + Zr).
This energy increment increases the fusion probability. In other words, the fusion cross
section measured at laboratory energy E represents in fact a fusion cross section at energy
E + U,, with U, being called by the screening potential. Using Eq. (1.1), one gets

o(E+U,) = exp i:Trn(E)%} o(E), (1.2)

where one assumes that the factor S(E)/E varies much slower with E, as compared to
the energy dependence of exp [-27n(E}].

The exponential factor on the right-hand-side of Eq. (1.2) is the enhancement factor
due to the screening by the atomic electrons in the target. For light systems the velocity
of the atomic electrons is comparable to the relative motion between the nuclei. Thus, a
dynamical calculation has to be done for the effect of atomic screening [9]. However,
the screening potential U, obtained from a dynamical calculation cannot exceed that
obtained in the adiabatic approximation because the dynamical calculation includes
atomic excitations which reduce the energy transferred from the electronic binding to
the relative motion.
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Contributions from the nuclear recoil caused by the atomic electrons are expected to
further increase the screening effect for asymmetric systems {9,10]. In almost all the
cases observed screening effects are found to be equal to or more than the theoretical
predictions. Recently, including improved energy loss data for atomic targets has been
shown to lead agreement between theory and data [ 11,12]; however, the situation is still
not resolved for molecular and solid targets. Electron screening enhancement was not
observed for the heavier symmetric system *He(*He, 2p)*He [ 13], which is expected to
have about 20% enhancement at the energies studied. Recent measurements [14] have
not yet clarified the effects of electron screening in this reaction. A mechanism which
reduces the screening enhancement for this system (and possibly for other systems with
large values of Z;Z; and the reduced mass) seems to be needed.

In this article we show that the contributions from the polarization of the vacuum,
relativity, bremsstrahlung, and atomic polarization cannot achieve this task. The moti-
vation for this investigation is that U, /E, appears multiplied by a large number, 5 (E),
in the exponential factor of Eq. (1.2). One needs only a small value of U, to obtain
a sizeable enhancement factor; typically U,/E ~ 0.001. The effects of the vacuum
polarizability were previously investigated in Ref. [15] for elastic scattering below the
Coulomb barrier and in Ref. [16] for subbarrier fusion reactions using the formalism
developed by Uehling [17]. Effects of vacuum polarization in '2C-'2C scattering at
4 MeV were subsequently experimentally observed [ 18]. Other small effects in elastic
scattering at low energies have also been studied by several authors [ 19-21]. They have
also been studied in the context of astrophysical reactions in Refs. [22,23]. However,
to our knowledge, the other effects have not been studied.

In Section 2 we study the effects of vacuum polarization, relativity, bremsstrahlung,
and atomic polarization for the astrophysical reactions listed in Ref. [14], and for which
a set of “experimental " values of screening energies AU, are given. These experimental
values are chosen so that Eq. (1.1) reproduces the enhancement of the fusion cross
sections at very low energies. In Section 3 we present our conclusions.

2. Small effects in thermonuclear reactions

To calculate the fusion cross-section corrections we use for simplicity the (s-wave)
WKB penetrability factor

Re

2
P(E) =exp —E/dr[p(r)| , (2.0

R,

where p(r) is the (imaginary) particle momentum inside the repulsive barrier. The
corrected fusion cross section is given by

og=o0c- R, (2.2)
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where o¢ is the pure Coulomb repulsion cross section, and R = Pco(E)/P(E), with
a = {scr, VPol, rel, Brems, At}, are the corrections due to atomic screening, vacuum
polarization, relativity, bremsstrahlung, and atomic polarization, respectively.

The atomic screening effect is calculated using |p(r)| = 2m[V.(r) — E-U,],
where E is the relative energy between the nuclei. The atomic screening potential,
assumed to be a constant function of r (valid for r < ap = 0.529 A), is given by U,.

2.1. Vacuum polarization

Vacuum polarization increases the electromagnetic potential between two like charges.
Like the Coulomb potential itself, the increase due to vacuum polarization is also pro-
portional to the product of the charges [17]. Vacuum polarization contribution increases
almost exponentially as the two charges get closer. The Coulomb interaction is smaller
for asymmetric systems than for symmetric systems of comparable size. On the other
hand, the nuclear force tends to extend farther out for asymmetric systems because of
the extra neutrons. Consequently, for asymmetric systems the very tail of the nuclear
force can turn the relatively weak Coulomb potential around to form a barrier at a con-
siderable distance from the nuclear touching radius. For symmetric systems, however,
the location of the barrier is further inside where the vacuum polarization contribution
is stronger. We show that the resulting increase in vacuum polarization is nevertheless
not sufficiently large to make an appreciable contribution to the extracted astrophysical
S-factor. For light symmetric systems with small values of Z,Z; this effect should be
negligible. Indeed, for the pp reaction the vacuum polarization contribution was shown
to be very small [22]. Similarly the measured S-factor for the d(d, p)*H reaction [8]
agrees well with theoretical calculations of atomic screening [24]. On the other hand
one may expect that already for the *He(*He, 2p)*He reaction the increase in the po-
tential due to the vacuum polarization could be large enough to counter the decrease
due to electron screening. We show that this is not the case.

The vacuum polarization potential is according to Uehling [17] given by

Z1Z2e2 2a [ 2r
Wor (1) = l r2 §1<7\—> , (2.3)
4

where @ = 1/137 is the fine structure constant, and A, = 386 fm is the Compton
wavelength of the electron. The function /(x) is given by

I(x)= [e™ 1+—]— —t%_—]dt 2.4
)= e 57 > . (2.4)

As shown by Pauli and Rose [25] this integral can be rewritten as
1(x) = a(x)Ko(x) + B(x)Ki(x) +7(x) /Ko(t) dr, (2.5)
e

where
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Fig. |. Comparison between the Coulomb potential and the vacuum polarization potential as a function of the
nuclear separation distance for Z,Z; = 1. The vacuum polarization potential has been multiplied by a factor
1000 in order to be visible in the same plot.

a(x) =1+ 55, B(x)=—2x(1+ {5x?),

y(x) = 3x(1+ §x?), with x = 2r/A, . (2.6)

In Ref. [15] it was shown that the modified Bessel functions Ky and K; as well
the integral over Ky can be expanded in a very useful series in Chebyshev polynomials
which converge rapidly and for practical purposes only a few terms (= 5-10) is needed,
allowing a very fast and accurate computation of the Uehling potential.

In Fig. 1 we plot the Coulomb potential and the vacuum polarization potential for
Zi1Z; = 1. Both the Coulomb potential and the screening potential scale with the product
Zy1Z,. However, the vacuum polarization potential has a stronger dependence on the
nuclear separation distance.

The limits of the integral are the nuclear radius, R,, where the nuclear fusion reaction
occurs, and the classical turning point in the Coulomb potential, R = Z, 2232/E,, where
E' = E + U,. At very low energies the inferior limit R, is not important when vacuum
polarization is neglected (the exponential factor in Eq. (1.2) can be obtained with Vpg =
0, and R, — 0, in Eq. (2.1)). However, since the vacuum polarization potential has a
strong dependence on the nuclear separation distance, being much stronger at shorter
distances, its effect is very much dependent on the choice of this parameter. For all
reactions with the deuteron we use the “deuteron radius”, R, = 4.3 fm, corresponding
to an average distance value associated with matrix elements involving the deuteron.
For the other reactions we use R, values given in the third column of Table 1. In
the 4th row we show the ratio between the penetrability factor through the Coulomb
barrier and the penetrability factor including atomic screening, Pcise(E)/Pc(E). In the
5th row we show the effect of vacuum polarization, Pcvpoi(E) /Pc(E). The energy
E chosen is the lowest experimental energy for each reaction. The atomic screening
corrections U, were calculated in the adiabatic approximation, given by the differences
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Table |

Lowest experimental energies, Ep;,, energy corrections [24] due to the screening by the atomic electrons,
Uy, nuclear radii, and correction factors for the nuclear reaction: (a) due to atomic screening, 1 ~ Rge; (b)
vacuum polarization, | — Rype; () relativity, | — Ryy; (d) bremsstrahlung, 1 — Rp,; (e) atomic polarization,
1l — Ra

Reaction Emn Ue Rs  1—=Rse l—Rypyg | =Ry | —Rp 1—R | —RMon
[keV| [eV] |fm] [x1072] [x107%] [x107%] [x1073] [x1071]
D(d.p)T 162 20 43 0164  —095 0.17 0.54 1.01 0.246
*He(d, p)*He 588 119 43 0331 —1.60 0.47 1.12 0.39 0.314
D(°He, p)*He 538 113 43 0364  —1.58 0.47 1.00 2.11 0.357
*He(*He,2p)*He 25 292 30 0.196 -3.14 1.75 0.58 035 0.321
SLi(p,a)*He 1074 186 3.0 0258 —182 1.07 1.36 0.30 0.360
TLi(p, a)*He 1270 186 43 0.198  —1.88 1.04 1.28 0.17 0.284
SLi(d, @)*He 1431 186 30 0218 —2.32 0.72 0.71 0.15 0.313
H(°Li, a)*He 1094 186 30 0250 —1.82 1.07 123 2.55 0.350
H(Li, @)*He 1297 186 43  0.191 —1.88 1.04 1.17 1.42 0.275
D(°Li, a)*He 1589 186 33 0.184 —234 0.71 0.35 091 0.262
"B(p.a)"Be 1870 346 33 0376 238 2.03 1.45 0.57 0.758
UB(p,a)®Be 1670 346 2.0 0462 236 2.00 2.13 0.85 0.906

in electron binding energies between the separated atoms and the compound atom [9].
We see that the effect of vacuum polarization is small, but non-negligible for some
reactions. Moreover, it increases the discrepancy between the value of the screening
potential required to explain the experimental data and the theoretical calculations of
this potential as illustrated in Table 1.

2.2. Relativistic effects

A classical Hamiltonian may be written which contains relativistic effects to first
order in 1/mc? This Darwin Hamiltonian takes the following form in the center-of-
mass system:

> Z,Zret pt* (1 | ZpZre* [ p? + p?
=Lt 2t P (—+—)+ Pere (p “”), (2.7)

2mo r 82 \mp,  mi 2mpmyc? r

where mo = mpmy/(mp + my) is the reduced mass, and p, is the radial component of
the relative momentum. In a head-on collision,

2 Z,7Zre? A I ZpZre® p?
EZP_+/_T__P_2 — 4 | 2RI (2.8)
2mg r 8c2 \mp  mj mpmyc? r
The solution of this equation yields, for R, < r < Re,
/ 1/2
—1/?
Pl =(28) '/-[b(a+y)+\/(a+y)2+4/3(vc~E>] : (2.9)

a=1/2mg, B = (l/m‘;, + l/m’;n) /802 s y = ZPZT€2/ (mpmrczr) .
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The correction due to relativity is given in the 6th column of Table 1. Although the
correction in the momentum |p| is of the order of 1075, the penetrability is enhanced
by an amount of order of 103 as compared to the penetrability with only the Coulomb
interaction.

2.3. Bremsstrahlung

The energy emitted by bremsstrahlung per frequency interval dw and solid angle
element d{2 is

2

Todr ikn- 5
/ _elwtije_'kn'rj(t) [Uj(t) X n] , (2.10)
J

w2

dEp(w) = dwd.()c—3 oy

— 0o

where k = w/c and the direction of observation n = k/k. The sum goes over the
charges g;, positions r;, and velocity v; of the moving particles. [n the long-wavelength

approximation

eAikn-r,(l)zl A(lk);l\r;"}‘ R (21])
2

. ik . 2 _
dEg (@) = dwd AR>S |d(w) x 7 - %Q(a)) xit..| . (2.12)
C

where, in the center-of-mass system, with relative positions and velocities given by r(t)
and v(t), respectively, and

d(t)=fie’v(t), Q1) = e [m-r(n]e(t),

A (Zr Zy ApAr
=A)‘ LN el y Ap = — . 2.13
Fa= A (M, A;.> 7 Ap + Ar (2.13)

In a head-on collision

r=ag(coshé + 1), t = wo(sinh¢é + &),
ZpZre? o
an=—”zbf—e, wo=%. (2.14)

d(w), Q(w) are the Fourier transforms of d(¢) and Q(¢), respectively, which can be
calculated analytically. The final result, after an integration over (2, is

dEp(w) 4 v\ 2 v\ 2
TS = Z haoa (;> A2 [f%h, + 12 (5) hz} : (2.15)
where
27 __. 2 .
me=g e K@) m=eT KD = w/e,
1T dK;,
K =g [ eeos(a) de, KL = T (216)

0
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The above results give the bremsstrahlung due to the incoming branch of the trajectory
only, since we are interested in the energy loss until the fusion occurs. The result for the
full trajectory, including the outgoing branch is obtained by replacing the lower limit of
the integral in Eq. (2.16) by —oc0.

The frequencies z < | (w < wg) dominate the spectrum and we can replace the
functions Kj:(z) and K/, (z) by their approximate values for low z. The integration of
Eq. (2.15) over w is straightforward, and we get

4 0N o [ 2 a3 :
Ege = 55 haoa (2 AR{flJr;;zfz () [(2 1n(2w>> +§(2,2)H,
(2.17)

where {(2,2) =0.64493 ... is the Riemann’s Zeta function for a particular value of its
argument.

The results of energy loss by bremsstrahlung are given in the 7th row of Table 1,
where Rp, = Pcyp:/Pc is calculated by using Eq. (1.2), with U, replaced by (—Eg;).
It is larger for the systems with a large effective dipole charge f), since the quadrupole
radiation is smaller by a factor (v/c)?. However, even for the systems with a larger f;,
the bremsstrahlung correction is of order of 1073,

2.4. Atomic polarizability

The virtual excitations of the atomic electrons in the target yields in second-order
perturbation theory a polarization potential given by

0|Ve(r, R) | n)|?
P Y.L TR 219

n#0

where

Zpe? 1/R ifr;<R
VC(r,R)=Z d =Zp€2{/ i< } (monopole approx.), (2.19)

‘R—*",‘I ]/r,~ lfr,?R
[ 41 ve .~ [ri/R* ifri<R .
= ?Zpe Yio(7) { R/r,-z . r,-, SR (dipole approx.). (2.20)

The first equation is valid in the monopole approximation and the second equation is
valid in the dipole approximation, in a head-on collision. r; are the positions of the
atomic electrons, and R is the distance between the atomic nuclei.

Using hydrogenic wavefunctions and considering only the atomic polarization arising
from the transitions from the ground state, @,;,, = ®g, and the s-state, @ = DPago,
we get

4\/2 ZyZpe?

(I’ VmOn ’R ® -
(@100 |VE"(r, R) | ®200) 7 @

flx), (2.21)
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where y =3ZrR/2ap and
SO =+ x)exp(—x) . (2.22)

For the dipole excitations, considering transitions from the ground state, @,,, = ® g0,
and the p-state, &, = D210, we get

i 8 ZTZp€2
@ ’v""’ r,R'(P >=———— ), 223
< o |Ve (r,R)| @210 o3 a glx (2.23)
where
1 2 3
g(x) =}3[8— (8+8xy+4x’+ x')exp(—x)] . (2.24)

For an estimate of the effect of atomic polarizability, we will assume that the contri-
bution of virtual excitations of the s- and p-orbit are the most relevant. For a hydrogen
atom E; — E; = 10.2 eV. Using this value in Eqgs. (2.21)-(2.24), also for heavier atoms,
we find the corrections due to atomic polarizability presented in the two last rows of
Table 1. We see that atomic polarizability is more important for monopole excitations,
The reasoning here is the same as in the use of the adiabatic approximation for the
effect of electron screening: the monopole field of the combined (Zp + Zy) atom is
stronger than the monopole field of the Zp atom. Thus, the contribution of the monopole
term dominates over other multipolarities. However, its effect on the fusion cross section
is still small. This agrees with the hypotheses used in the dynamical calculations [9]
of atomic screening that effects due to atomic excitations, and particularly for virtual
cxcitations, are small and can be neglected.

2.5. Conclusions

In conclusion, we have shown that the vacuum polarization, relativistic corrections,
bremsstrahlung, and atomic polarization contributions to the astrophysical S-factor never
exceed a few percent, but may be significant in extrapolating the measured S-factor to
lower energies. Although these contributions are not comparable to that of sub-threshold
resonances and electron screening, they represent some of the many factors that may
contribute to the weak energy dependence of the S-factor. Nuclear polarization effects,
were not included, since they are much smaller than effects due to atomic polarization,
for light targets.

Vacuum polarization effects are the most important from all small contributions, and
sensitive to the inner turning point of the potential barrier, hence to the diffuseness of
the nuclear potential employed. Although the energy needed to create a virtual eTe™
pair is much larger than atomic excitation energies, the magnitude of its effect is greatly
compensated by its large matrix element (due to the large overlap of the electron and
positron wavefunctions), contrary to the atomic polarization cases. For the same reason,
nuclear polarization and excitation should be neglected.

We have shown in this work that none of the corrections beyond the effect of atomic
screening can explain the missing enhancement of the fusion cross sections in atomic
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target experiments. As suggested in Ref. [11], this effect might well be due to a wrong
assumption on the dependence of the stopping power on the beam energy.
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