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Abstract

The production of mesons in ultraperipheral collisions of relativistic heavy ions is reanalyzed
using a projection technique to calculate the amplitudes for the appropriate Feynman diagrams. The
virtuality of the exchanged photons is fully accounted for in this approach. In the case of two-photon
fusion, it is explicitly shown that the inclusion of nuclear form factors validates the equivalent photon
approximation. However, this does not apply to three-photon fusion cross sections. The cross section
of J/1 production in ultraperipheral collisions at RHIC and LHC are shown to be much smaller than
the cross sections for the production of C-even mesons of similar mas2€9.1 Elsevier Science
B.V. All rights reserved.

1. Introduction

Two-photon physics is the dominant processTee colliders. This was first shown by
Brodsky, Kinoshita and Terazawa [1]. In an earlier paper, Low [2] showed that one can
relate the particle production by two real photons (with energieandwy, respectively)
to the particle decay width, . Since both processes involve the same matrix elements,
only the phase-space factors and polarization summations are distinct. Low’s formula is

I
o (w1, w2) = 8712%5(46010)2 - M?), 1)

where M is the particle mass’,, its decay width, and the delta-function accounts for
energy conservation.
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Another important theoretical development was the realization that the cross sections in
colliders are well described by replacing the virtual photons by an equivalent field of real
photons. One often uses the concept of an equivalent photon nunibgrwith energyw.

This approximation, called the Weizsacker—Williams method [3] (or the equivalent photon
approximation) yields for the particle production in colliders [1]:

o= / dw1 dwzM nz;L:Z) oyy (w1, ®2). 2

w1

To our knowledge, Ref. [4] was the first to apply a similar approach to study particle
production in relativistic heavy-ion collisions. As compared toee colliders, heavy
ions carry the advantage of a larger coupling constaiat)( which increases the cross
sections by a large factor. The disadvantage is that one needs to separate the final products
from those created by strong interaction processes. Inserting Egs. (1) in (2) and using
the equivalent photon numbers appropriate to heavy ions, the following expression was
obtained in Ref. [4], to leading logarithmic order:

oo 128 4 2Ty 3(21/5) 3)
3 M3 MR
where$§ = 0.681..., y is the Lorentz factor (e.gy = 108 for the RHIC collider at
Brookhaven), an® is a parameter which depends on the mass of the produced particle. If
M is much smaller than the inverse of a typical nuclear radius, thenl/M, otherwise
R is the nuclear radius. These choices reflect the uncertainty relation in the direction
transverse to the beam, as explained in Ref. [4]. Since spin-1 particles cannot couple to
two real photons [5], one expects that only spin-0 and spin-2 particles are produced.

Following these ideas, the two-photon fusion mechanism in heavy-ion collisions was
exploited by several authors, including the possibility to search for the Higgs boson [6—13].
At present, there are experiments at RHIC/Brookhaven, and proposed ones for the Large
Hadron Collider at CERN (LHC) [14], which aim to study these phenomena. For mesons
the cross section is very sensitive to the minimum impact parameter, and Refs. [9,10] have
shown that corrections to Eq. (3) are substantial. These corrections are of geometrical
nature and use the equivalent photon method, as in Eq. (3).

Due to the large theoretical and experimental interest in these phenomena [6-14] (see
also Ref. [15] and references therein), it is important to calculate the production mechanism
with an alternative approach. We use the projection method of Ref. [16] to obtain the meson
production amplitude in terms of the amplitude for production of quark—antiquark pairs by
the time-dependent field of the colliding nuclei. In Section 2 we start with a calculation for
the production of parapositronium in heavy-ion colliders. This will define the calculational
steps we need for the production of mesons. In particular, we show that the results agree
with a recent calculation for this process [17], thus validating the projection method. In
Section 3 we extend the calculation to the productiod efven mesons. In this case, one
has to account for the nuclear form factors. We show that the equivalent photon method is
obtained as a consequence of the cutoff of large photon momenta, imposed by the inclusion
of the nuclear form factors. In Section 4 we calculate the cross section for the production of
vector mesons({ odd) by three virtual photons. In particular, we show that the production
rates for J1p mesons are many orders of magnitude smaller than fof teeen mesons of
similar masses.
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2. Two-photon fusion in heavy-ion colliders

In the laboratory frame, the Fourier components of the classical electromagnetic field
at a distancé/2 of nucleus 1 with charg&e and velocitys, is given by (in our notation
q=1(q0.4;,93), andgz = q:)

) 2 earb/2 (D) &)
AO (q) = -8 Ze8(qo—,3q3)2722 a.nd AS :'BAO . (4)
+a3/y
For the field of nucleus 2, moving in the opposite direction, we repfkady —8 and
b by —b in the equations above. Although~ 1 in relativistic colliders, it is important
to keep them in the key places, as some of their combinations will lead to important
y = (11— p? Y2 factors.

The matrix element for the production of positronium is directly obtained from the
corresponding matrix element for the production of a free pair (see Fig. 1(a)), with the
requirement that?, = P_ = P/2, whereP is the momentum of the final bound state.
That is

M = M1+ Mz

A S 5
GGG

whereM is the positronium mass.

The treatment of bound states in quantum field theory is a very complex subject
(for reviews, see [18,20]). In our case, we want to use the matrix element for free-pair
production and relate the results for the production of a bound pair. A common trick used
in this situation is to convolute the matrix element given above with the bound-state wave
function. One can show (see, e.g., [16]) that this is equivalent to the use of a projection
operator of the form

i v (0) - i ¥ (0) _
i--- tr[--- (P + M)i and i---v— tr[--- (P + M)ig*], (6
ZW[ P+ Miy’] M[ P + M)ig]. (6)
Z, Z,
P.-q ¢ Pp.=P2 P--q P =P
q HM q :>
P, =P
P P
P.-q P.=P2 q-k §P++k
Z, h Z 5

(@ (b)

Fig. 1. Feynman graphs for two- and three-photon fusion in ultraperipheral collisions of relativistic heavy ions.
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where- - - is any matrix operator. The first equation applies to a spin-0 (parapositronium)
and the second to spin-1 (orthopositronium) particles, respectively. In these equations,
W (r) is the bound-state wave function calculated at the origin,édnd the polarization
vector, given by, = (0, 1/+/2, £i/+/2,0) andé} = (0,0, 0, 1).

Using Eq. (6) in (5), one gets for the parapositronium production:

2% (0

1
— 4i
My =de oV @n)dq?—Mm2/4

[€ouzn PoguAS (P12 — ) AL (P12 + q)

+ 3,00 Pugu A (P12 — )AL (P2 + )], (7)

wheree, .o is the antisymmetric Levi—Civita tensor.
Inserting the explicit form of the electromagnetic fields in Eq. (7), we get

v 2
Mq = &2 «/_) 20)3 [€0u3v Py Jou3 + €300 PuJ30].  Where 8)

Jouz = (8n°Ze) ﬁ/TZM 3[(P/2—q)o—B(P/2—q):]

x 8[(P/2+q)o+ B(P/2+q):]
exdi(P;/2—q,)-b/2]
[(P:/2— qt)2 +(P;/2 - qZ)z/Vz]
L exd—i(Py/2+4q,)-b/2)
[(P1/2+q)%+ (P/2+q)% /v
The delta functions imply the conditions

q:=—Po/28 and qo=—BP;/2. (10)

We also note thalp,,3 = — J3,,0 @andeg,3, = €3,00, and also thati, which is obtained by

the replacemem® « A@ in My, is the same adAy, i.e., M1 = Mo. In other words,

the direct (Fig. 1(a)) and the exchange Feynman diagrams yield the same result for the
matrix element. This is a consequence of the imposed conditiorPthat P, = P/2 and

of the projection onto the bound state. It is an important result that will also show up in
the diagrams involving three photons. Gathering all these results, andedggsi@, [, =

|P x I|, we get

9)

¥ (0)
M = 16|—(Za) |P x I|, where (11)
d? 1 1
IZ/ zqtqtz 2 2,2 2. .2/.2 (12)
g +Q°[(P:/2+q,) +wf/y 1l(P:/2—q,) +w5/y°]
with
M2 p2 P2 M2 p2
2 t z t
ML e MR 13
Q >t a2 T (13)
wl:#, w2=% and

dorwy = M?+ P2 — P, /y?>~M?+ P2, (14)
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whereE = Py is the total positronium energy.

We see thatv1 andwy play the role of the (real) photon energies. For real photons, one
expects 1wy = E?, as in Eq. (1).

The two-photon fusion cross sections can be obtained by using

d3pr
o= ] 2
"

Since the important impact parameters for the production of the positronium will be
b >1/m. > R, whereR is the nuclear radius, the integral over impact parameter can start
from b = 0. Thus, the integral over impact parameter in Eq. (15) yields the delta function

1 , ) ,
W/eXF{'(qz —a) - b] b =5(q;, —q}). (16)
We thus obtain
do 64 2 4
& = amp VO
% / dZCIt (P x qt)z 1
(q2+ Q)2 [(P1/2+ )2 + w2 /Y22 [(P/2— q,)? + w5 /7?12

(17)

We now show that the above equation is equal to the equation obtained in Ref. [17].
First we change the variables to

P, P,
q1t=7_qt7 th=7+qt’
P.j2- P./2
g1p = 2/ ‘Zz’ = 2/ ‘|"Zz. (18)
It is easy to show that
(P,/2—q)*+w3/y?=q% +q% = —¢? and
(P/2—q)? +w2/y? =45 +4q5. = —43. (19)
and that
2 2. 2 MP P2, 2
P; xq,=q1 Xqy and CI;‘|‘Q:%—7+T=611+612—M~ (20)

The positronium wave function at the origin is very well known. Itis givermiy0)|? =
M3a3/(64r), whereM is the positronium mass. Thus, Eq. (17) becomes

do () oo
Eﬁ = TmJB, where (22)
M2 [ :
]B=7 A58(qy, +qo — Py)dgq, dgy  With (22)
M? 47%"
R £ Rk b £(3)=1202... and op= —=— (23)

ata5 M?—qf—q5’ M?
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We have included the zeta-functign(3) to take into account the production of the
parapositronium in higher orbits, besides the production inktkghell.

Eq. (21) is exactly the same as Eq. (2.23) of Ref. [17]. Thus we have shown that
the approach used in this article for the production of a bound particle (in this case, the
parapositronium) by means of the two-photon fusion yields the same results as in the
approach of Ref. [17]. In that article the total cross section for the production of the
parapositronium was obtained by separating the regions where a leading-order logarithmic
approximation could be used and a region where the integral in Eqg. (22) could be solved
numerically. To verify their results, we will follow a different route. Using Eq. (17), we
can do the integration over the angldetweenP; andq, analytically. We get
M

4 q
o £(3)op / dP; dP, dg;

3p3 N(g;, P, P;)
2 9
Eoef+ <)

Near, Po, By = 2 ,/a%— 1(af—a1a2—2) —i—,/a%— 1(a§—a1a2— 2) (25)
ts L'ty L'z) — 7T )
bt Jaz—1/a% —1(al+a2)3

P2/4+q? + o /y? P2/4+q? + w3 /y?

= and az= .
qr Py q: P

The triple integral in Eq. (24) can be calculated numerically. For RHIC, ugirg108
and Au+ Au collisions, we finds = 19.4 mb. For the LHC, usingg = 3000 and Ph- Pb
collisions, we findr = 116 mb. These are in good agreement with the results (Born cross
sections) of Ref. [17]. The Born cross sections obtained in Ref. [17] are 17.8 mb for RHIC
(Au+ Au) and 110 mb for LHC (Pb- Pb). Notice however, that those authors have shown
that Coulomb corrections are very important, due to the low mass of the electron and the
positron. When Coulomb corrections are included to the Born cross sections, the final
values decrease by as much as 43% for RHIC and 27% for LHC. We do not include
Coulomb corrections in our calculations, as we are mostly interested in meson production,
for which we expect the corrections to be less relevant. However, at the level of Born cross
sections, the good agreement with Ref. [17] is a good check of our calculations.

o =

where (24)

where

(26)

b:th[, ai

3. Production of C-even mesons

We can extend the calculation of the previous section to account for the production of
mesons with spiry = 0 andJ = 2 by the two-photon fusion mechanism. The following
procedure is to be adopted:

1. Replace the electron—positron lines by quark—antiquarks in the diagram of Fig. 1(a).

2. M in the following formulas will refer to the meson mass.

3. Replacer? by a2(2J + 13, Qj‘, where 3 accounts for the number of colors, and
Q; is the fractional quark charge. These two last factors will cancel out when we
expresg¥ (0)|2 in terms of I, the decay width of the meson. To understand how
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this is done, lets discuss the basics of the annihilation process of a positronium (see
also Ref. [21]). With probabilityx? the e can fluctuate and emit a virtual photon
with energym,. The electron recoils and can travel up to a distande'm, (or time

~ m,) to meet the positron and annihilate. This occurs whenaad € are both
found close together in a volume of siz&/m.)3, i.e., with a probability given by
|¥(0)|2/m3. Thus, the annihilation probability per unit time (decay width)/is~
a2|11/(0)|2/m§. Angular momentum conservation and CP invariance does not allow
the orthopositronium to decay into an even number of photons [5]. The description of
the annihilation process given above is thus only appropriate for the parapositronium.
A detailed QED calculation yields an extrar 4n the formula above. This yields

Iy (1S0) = 8.03x 10° s72, while the experimental value [22] is@9(11) x 10° s71,

in good agreement with the theory. For mesons, including the color and the charge
factors, as described before, the relationship betweé) and ", arise due to the
same reasons. One géls, = 16ra?|¥ (0)|2/M2-3Y"; OF.

According to these arguments, the connection betwggnand |¥ (0)|2, extended to
meson decays, should be valid for large quark masses so thgt & m where

V/(r2) is the mean size of the meson. Thus, it should work well for, e.g. charmonium
statescc. In fact, Appelquist and Politzer [24] have generalized this derivation for the
hadronic decay of heavy-quark states, which besides other phase-space considerations
amounts in changing to «;, the strong-coupling constant. This can be simply viewed

as a way to get a constraint on the wave functjér(0)|2 [23]. One expects that

these arguments are valid to zeroth order in quantum chromodynamics and in addition
one should include relativistic corrections. But, as shown in [21], the inclusion of
relativistic effects, summing diagrams to higher order in the perturbation series, is
equivalent to solving the nonrelativistic Schrédinger equation.

. Change the integration variableg¢g. andg,,.
. Introduce form factor#'(q1,) and F (q2;) to account for the nuclear dimensions. This

is a simple way to eliminate the integral over impact parameters and will be justified
‘a posteriori’, i.e., when we compare our results with those from other methods. These
form factors will impose a cutoff ig1, andgz;, so that

1
q1,q2 = R <M, (27)

whereR is a typical nuclear size. Taking = 6.5 fm, we get YR ~ 30 MeV. This is
much smaller than the meson masses. As an outcome of this condition, we can replace
Q% ~ M?/2in Eq. (13).

According the steps 1-5, we get from Eq. (17):

do 16741 z%2* = 1
dp, = x2 M3 " YVE

[Fi(¢3) Fa(a2)]? . (28)

X/thdQZt(QthZt)z 2 2
(af, +@2/v?) (a5, + 3/7?)

Using Eqgs. (14), we have
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E =w1+ wy, w1 —w2=P, and wiwz= M2/4,
so that
M? 2+ M?/4
dp. = (1+ M Vaw, and = ATM/4 (29)
4of w1

Thus,

do dN2, (@
o _ onNy@) _

inl(wl)nz(wz), where (30)
dw1 dw1 w1

dg ¢%[Fi (4717
(q%+ w2 /y)?
We notice that(w) is the frequently used form of the equivalent photon number which
enters Eq. (2). Thus, Egs. (30) and (31) are the result one expects by using the equivalent
photon method, i.e., by using Egs. (1) and (2). This is an important result, since it shows
that the projection method to calculate the two-photon production of mesons works even
for light-quark masses (i.e., far?). In this case there seems to be no justification for
replacing the quark masses and momenta by half the meson masses and momenta, as we
did for the derivation of Eq. (28). This looks quite intriguing, but it is easy to see that the
step 3 in our list of procedures adopted is solely dependent on the meson mass, not on the
quark masses, i.e., if they are constituent, sea quarks, etc. Moreover, the projection method
eliminates the reference to quark masses in the momentum integrals. The condition (27)
finishes the job, by eliminating the photon virtualities and yielding the same result one
would get with the equivalent photon approximation.

In the next section we will extend this approach to the calculation of vector-meson
(J = 17) production by three photons. There we will also apply the results to light-
quark masses, but we will not be able to check the results against the equivalent photon
method since we cannot calculate the process as originating from the collisions of three
real photons.

We now define a “two-photon equivalent number”

d\; d M?
Nay (M?) Z/dw djy =/an1(w)n2(z> (32)

I 2
o™ = 87227+ 1)L and ni(w)=—=Z% (31)
M3 7

so thatoe = o P N>y (M?). To calculate the integral (32), we need the equivalent photon
numbers given by Eq. (31). The simplest form factor one can use for this purpose is the
‘sharp-cutoff’ model, which assumes that

F(¢®)=1 forg®?<1/R, and F(¢?)=0, otherwise (33)
In this case, we can use the integral

1/R d 3 2
g q 1 14 1
—— > =—|In[1 - , 34
@+ 2/ 2[ <+w2R2> 1+w2R2/y2] 59
0

and get for the differential cross section
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4 2 2
dow 72w w?R? 1+ w?R?/y?

16y 2w? 1
In{1 — . 35
X[ ( + M4R2> 1+M4R2/16y2w2] (35)

The spectrum possesses a characteristic dependence, except far>> y /R, when it
decreases ag/a°.

When the conditiony > MR is met, we can neglect the unity factors inside the
logarithm in Eq. (34), as well as the second term inside brackets. Then, doing the
integration of (35) fromw = M2R/4/y to w = y/R, we get Eq. (3). But, Eq. (35)
is an improvement over Eq. (3). Eq. (3) is often used in the literature, but it is only
valid for y > MR. This relation does not apply to, e.g., the Higgs boson production
(Mo ~ 100 GeV), as considered in Ref. [6].

For quantitative predictions we should use a more realistic form factor. The Woods—
Saxon distribution, with central densityp, size R and diffuseness: gives a good
description of the densities of the nuclei involved in the calculation. However, this
distribution is very well described by the convolution of a hard sphere and an Yukawa
function [25]. In this case, the form factors can be calculated analytically:

4 . 1
F(q?) Z—f(’[sm@m —choqu)][m]. (36)

For Au we useR = 6.38 fm, anda = 0.535 fm, with oo normalized so thaf dBrp(r) =

197. For Pb the appropriate numbers are 6.63 fm, 0.549 fm, and 208, respectively [19].
With this form factor, the two-photon equivalent photon numbéf,¢l/dw is also
obtainable in a closed form. In Table 1 we show the cross sections for the production
of C-even mesons at RHIC (A# Au) and LHC (Pb+ Pb) using the formalism described
above.

As pointed out in Refs. [9,10], one can improve the (classical) calculation of the two-
photon luminosities by introducing a geometrical factor héunction in Ref. [9]), which
affects the angular part of the integration over impact parameters. This factor takes care
of the position where the meson is produced in the space surrounding the nuclei. In our
approach, the form factors also introduce a geometrical cutoff implying that the mesons
cannot be produced inside the nuclei. However, it is not easy to compare both approaches

Table 1
Cross sections for two-photon production 6f-éven) mesons at RHIC (A# Au) and at LHC (Pbt Pb)

Meson  Mass [MeV] Iy [keV] o™ [nb] NZBYH'C/103 NZL;*C/107 oRHIC b oLHC [mb]

0 134 78 x 1073 99 49 28 4940 28

n 547 046 86 12 18 1000 16
v 958 42 147 51 14 746 21
f2(1270 1275 24 179 30 12 544 22
(1320 1318 10 67 29 11 195 82
e 2981 75 87 0.38 a7 33 0.61
X0c 3415 33 26 0.24 063 063 016

X2¢ 3556 08 28 0.21 056 059 Q015
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directly, as we obtain a momentum representation of the amplitudes when we perform the
integration over impact parameters to obtain Eq. (28). But we can compare the effects of
geometry in both cases by using Eq. (35). After performing the integral @yere can
rewrite it as

o =/ds L(s)oyy (5), (37)

wheres = 4w1ws is the square of the center-of-mass energy of the two photan,is
given by Eq. (1), and (s) is the “photon—photon luminosity”, given by

12%2 [ dw 2 1
L(s)="= “lin(1 ~
W=7 /w[ < +a)2R2) 1+a)2R2/y2:|

16y 2w? 1
x [In<1+ 252 )— 1+s2R2/16y2w2]. (38)

In Fig. 2 we compare the result obtained by Eq. (38) and that of Ref. [9]. The
luminosities for RHIC (Aut+ Au) and for LHC (Pb+ Pb) are presented. For RHIC the
difference between the two results can reach 10% for very large meson masses (e.g.
the Higgs), but we notice that for the LHC the two results are practically identical, the
difference being of the order of 3%, or less, even for the Higgs. Thus, the improved version
of Eq. (3), given by integrating Eq. (35), is accurate enough to describe meson production
by two-photon fusion. Other effects, like the interference between the electromagnetic
and the strong interaction production mechanism in grazing collisions, must yield larger
corrections to the (nondisruptive) meson production cross sections than a more elaborate
description of geometrical effects.

The results in this section are very important for our purpose of calculating the
production of vector mesons by means of three-photon fusion in peripheral collisions. This

10l 1
ol |
1 LHC
« gt 1
>
[} 102' T
=
= 00t |
R gt .
) RHIC
107°F 1
1081 1
01 02 05 1 2 5 10
52 [GeV]

Fig. 2. Two-photon luminosities (see definition in Eq. (37)) at RHIC and LHC. Dashed lines include a geometric
correction.
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could be a relevant process, e.g., for a study of the three-photon vertex in charmonium
production.

One might think that the calculation could be performed by using the equivalent
photon approximation that, as we have seen in this section, works so well-éwen
mesons. However, the introduction of a third photon leads to an additional integration,
which implies that at least two of the exchanged photons cannot be treated as real ones.
Nonetheless, the results of this section paves the way to the calculation of production of
C-odd mesons. Although the use of the projection technique to systems composed of light
quarks is questionable, we have seen that it works, basically because of the relation (27),
due to the inclusion of the nuclear form factors.

4. Production of vector mesons

Lets now consider the diagram of Fig. 1(b), appropriate for the fusion of three photons
into a C-odd patrticle. According to the Feynman rules, the matrix element for it is given

by
4 4
Myg=e u<P> d'q d* A(1)<£_q>w

@0t ] @) 2_ M2/4
@, o KktM/2 <2)< > (f)
x A9 (q k) M2/4A ol 5 )- (39)

There will be 12 diagrams like this. But, as we will see below, the upper photon leg in
diagram of Fig. 1(b) can be treated as a real photon, meaning that the equivalent photon
approximation is valid for this piece of the diagram.

One has to use the second of the Egs. (6) to account for the projectiorCemdal
particles. The calculation of the traces is quite lengthy and was performed using the
program FORM [26]. We have found out that the particle is produced with its polarization
vector in the transverse direction, as the coefficients accompaéyiaig of higher order
in 1/y. Neglecting such terms, we get

ALAP AP Ty g + My P (v ky + M)y (v° Py + M)ELY
=—16MAL AP AL (ko + Bk3)(q, — P1/2) - &*. (40)

The above product of the longitudinal componentggfyields factors proportional to the
delta-function, i.e.:

E P3
AP AP AY 8[5 —q0— ﬁ(— —613)}3[610 —ko+ Blgs — k)]

2
E P3
8| = 4+ko—B| =+k3)|. 41
><[2+0 ﬂ<2+3)} (41)
These delta-functions lead to the conditions
E P38

qo=——- and ko=—pks— fuwo, (42)

QSZ—ﬁ, >
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wherews is given by (14).
The integral oveyo, ko andks yields a factor 1/2, and the matrix element becomes

M, = %(Za)?’«/ﬁtpw)

(q,—P//2)-& 1
x/dzq,d% ;2_;‘42/4 kz_M2/4[(Pz/2—q,)2+a)%/y2]

x [(q; — k)2 + (E/2B + k3% /v?] [(Pi/2+ k)% + (P32 + k)% /v?] "
x explg; -b/2). (43)

Asin Eq. (17), we know that the nuclear form factors imply
1
Qth,kz:E<<M (44)

We can thus use the approximation for the propag&ér— M2/4)~1 ~ —2/M?,
Changing the integration variable frointo k' = k + P /2, the propagators in the third
line of (43) become

2 2 i / _2
[(g;+ Pi/2—K,) + (BE/2— P3/2+K3) /v?] [k +k&/v?] . (45)

The integrand peaks sharply/t= 0 and one can eliminate from the first term inside
brackets. Thus, the matrix element (43) becomes

(o) -e*)ex -b/2
3 é/;/dqudkzkl (g1, 2) F32(¢Iz2 /2)
M [95, + w5/v?]

x fdkg (K2 +K3/v2] [d5 + (@1 +ka)?/v?] "

16
My=——(2Za)
b4

X [k3 +wr — w1 — k%/Za)zyz]_l, (46)

whereq 4, andg,, are defined in Egs. (18) angi andw; are defined in Eq. (14).

If this matrix element was the only one being considered, it would be easy to show that
the one-photon exchange with one of the nuclei can be treated in the equivalent photon
approximation. This arises from the structure of the first term inside the integral in (46).
This result was expected in view of our results of the last section. But, the two-photon
exchange in the lower part of the diagram leads to complicated integrals which cannot be
simplified in terms of equivalent photons.

We thus need to calculate the six diagrams which are obtained by interchange of the
two-photon lines, as shown in Fig. 3, and multiply the result by 2 to account for the same
set of diagrams by inverting the roles of each nucleus. We calculate the amplitudes related
to the diagrams by means of the same procedures we adopted in Egs. (39) through (46). We
find that he matrix elements for the diagrams (b), (c), (e) and (f) of Fig. 2 are by a factor
1/y smaller than those for the diagrams (a) and (d). The amplitude for the diagram (d) in
Fig. 2 yields

M, = —1—6(Za)3w / dzqt dk, &, (w2/w1)(q2; - €*) EXPlg, - b/2)
T M2 43, +«i/v?]
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(a) (b) 3 ©
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Fig. 3. Feynman graphs for three-photon fusion in ultraperipheral collisions of relativistic heavy ions.

x / dks[k2 + k%/yz]fl[qlzl + (2w1 — w2 + ks)z/Vz]il

x [k3+ w1 — w2 — k%/Zwlyz]il. 47)

The corresponding cross section which is obtained from amplitddgsand M, is
given by &, + dop, + doint = 2 do,,. The interference termogh yields a contribution of
order of 1/y? after azimuthal integration, and is disregarded.

The last term in the integrand ovies dominates the integral in Eq. (46) and it is strongly
peaked (with width of order oM /y) at ks ~ w1 — wy. We can replace this value in the
other terms of the integrand and take them out of the integral. The remaining integral can
be done analytically. We get

. v (0) 2 (g1, -e*)explq, -b/2) 1
M, = |32(Za)3—/d g, dk, k
M3/? U2 4 02/ [+ (01— 02)2/y7]

1
X .
[42, + o1 — w2)?/y?] 5
The same trick can be applied to the amplitude of Eq. (47).
We now use Eq. (16) and integrate the squared amplitudeboweunltiplying by a factor
of 2 to account for the amplitude of diagram (d) of Fig. 3. Again, we insert the nuclear form
factors at each of the nuclear vertices to account for the nuclear sizes. We also change the
integration variables tg,, andq,,. The final result, after integrating ovgry, - &, is

d_a = 102471|‘1/(0)|2(Zot)6 ]3: / 91 qlt[ (411)1
9 MPE ] (47, + 05/v?)

« / [ dgz g2 [ F (43,)] ]2[ /( dk, ki F (k) )T, (49)

43 + (2w1 — wp)?/y? k2 + (w1 — w2)?/y 2

We now use the relationship betweéhand P, to w1 and wp and get rid of the
meson wave function at the origin. The wave functj@n0)|2 cannot be related to the
vy-decay widths. But, vector mesons can decay inteepairs. These decay widths
are very well-known experimentally. Following a similar derivation as forytyedecay,
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Table 2

Cross sections for three-photon production of veotdiofid) mesons at RHIC (A4 Au) and at LHC (Pbt Pb)
Meson Mass [MeV] Tere- [keV] o) [nb] oRHIC [nb) o-HC [nb]
00 770 677 1740 137 1801
w 782 Q060 147 13 163
J/b 3097 526 21 31 423
P’ 3686 212 5 12 155

the e"e~-decay width of the vector mesons can be shown [23] to be equBlie =
16ma?|¥ (0)12/3M?(3- Y, 0?). Inserting these results in the above equation, the factor

3> Ql.z) will cancel out for the same reason as explained in Section 3, and we get

do =o—(_)n(w)H(M,w), where o) =96r ,
dw 1) M3

with n(w) given by (31) and

Tere-

(50)

2
HM a))=Z4a3M2/ dg2: g2 [F(q2)]? |:/ dk, k, F (k?) |
( )?

[42 + (M2/20 — 0)2/y2)? | ) (kK2 + (M2/40 — )2/y?
(51)

The above formulas should also be valid for the production of the orthopositronium
in ultraperipheral collisions of relativistic heavy ions. For RHIC (AuAu) we obtain
o =112 mb, while for the LHC (Pb+ Pb) we gety = 35 mb. These numbers are also in
good agreement with the results (in the Born approximation) given in Ref. [17]: 11.3 mb
and 40 mb, respectively. When one includes Coulomb corrections, as shown in Ref. [17],
the cross sections for orthopositronium production is reduced by 40% for both RHIC and
LHC. This is not considered in the present approach, as we are mainly interested in vector-
meson production for which this effect should be smaller.

In Table 2 we present the cross sections for the production of vector mesons by means
of the three-photon fusion process. We use the form factor given by Eq. (36).

We see that the cross sections for the production of vector mesons in ultraperipheral
collisions of relativistic heavy ions are small. They do not compare to the production of
vector mesons in central collisions. In principle, one would expect that the cross sections
for three-photon production would scale @x)3, which is an extraZ« factor compared
to the two-photon fusion cross sections. However, the integral over the additional photon
momentum decreases the cross section by several orders of magnitude.

5. Conclusions

We have carried out a derivation of the production of mesons in ultraperipheral
collisions of relativistic heavy ions in terms of a projection procedure. This is useful in
order to study the virtuality content of the exchanged photons. We have shown that the
cross section for the production of the (para-)positronium is the same as that obtained by
another calculation [17].



C.A. Bertulani, F.S Navarra/ Nuclear Physics A 703 (2002) 861-875 875

It has also been shown that the inclusion of nuclear form factors leads to cross
sections for two-photon fusion which agree with those obtained by the equivalent photon
approximation. As a byproduct we extended the calculation to the production of vector
mesons. We have shown that their cross sections are very small and can be neglected for
practical purposes.
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