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Abstract

Halo nuclei are a promising new arena for studies based on effective field theory (EFT). We
develop an EFT for shallowp-wave states and discuss the application to elasticnα scattering. In
contrast to thes-wave case, both the scattering length and effective range enter at leading order. We
also discuss the prospects of using EFT in the description of other halos, such as the three-body halo
nucleus6He.
 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Nuclear halo states have been found in a number of light nuclei close to the nucleon
drip lines. They are characterized by a very low separation energy of the valence nucleon
(or cluster of nucleons). As a consequence, the nuclear radius is very large compared to the
size of the tightly bound core. The large size of halo nuclei leads to threshold phenomena
with important general consequences for low-energy reaction rates in nuclear astrophysics.
One example is the reactionp + 7Be→ 8B + γ which is important for solar neutrino
production. The nucleus8B is believed to be a two-body proton halo, consisting of a7Be
core and a proton [1]. Somewhat more complicated are three-body halos consisting of a
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core and two slightly bound nucleons. Particularly interesting are Borromean three-body
halos, where no two-body subsystem is bound. Typical examples are6He and11Li, which
consist of a4He and9Li core, respectively, and two neutrons. For reviews of halo nuclei,
see Ref. [2]. The physics of halo nuclei is an important part of the physics program at RIA
[3]. A thorough discussion of reactions with rare isotopes can be found in Ref. [4].

The physics of halo nuclei is a promising new arena for effective field theory (EFT).
EFTs provide a powerful framework to explore separation of scales in physical systems
in order to perform systematic, model-independent calculations [5]. If, for example, the
relative momentumk of two particles is much smaller than the inverse range of their
interaction 1/R, observables can be expanded in powers ofkR. All short-distance effects
are systematically absorbed into a few low-energy constants using renormalization. The
EFT approach allows for systematically improvable calculations of low-energy processes
with well-defined error estimates. The long-distance physics is included explicitly, while
the corrections from short-distance physics are calculated in an expansion in the ratio of
these two scales.1 The inherent separation of length scales in halo nuclei makes them an
ideal playing ground for EFT.

In recent years, there has been much interest in applying EFT methods to nuclear
systems [6,7]. Up to now, nuclear EFT has mainly been applied to two-, three-, and four-
nucleon systems starting from a fundamental nucleon–nucleon interaction. The original
motivation was to understand the gross features of nuclear systems from a QCD perspective
by deriving the nuclear potential and currents relevant for momenta comparable to the pion
mass (p ∼ mπ ) [8]. More recently, it has been realized that it is possible to carry out
very precise calculations for fundamental physics processes at lower energies. For very
low momenta (p � mπ ), even pion exchange can be considered “short-distance” physics.
In this case, one can use an effective Lagrangian including only contact interactions. The
large s-wave scattering lengths require that the leading two-body contact interaction be
treated non-perturbatively [9,10]. In the two-nucleon system, this program has been very
successful (see, e.g., Refs. [6,11] and references therein).

Using EFT, one can relate low-energy measurements in one reaction to observables
in a similar (but unmeasured) reaction in a controlled expansion with reliable error
estimates. This is in contrast to standard potential model calculations where errors can
only be estimated by comparing different potentials. An example of a precise calculation
in the “pionless” EFT is the reactionn + p → d + γ [12], which is relevant to big-
bang nucleosynthesis (BBN). As for many other reactions of astrophysical interest, the
uncertainty in the cross section is difficult to determine due to the lack of data at low
energies and the lack of information about theoretical estimates. In the energy of relevance
to BBN, both E1 and M1 capture are important. They have been calculated to fifth and third
order, respectively, where two new counterterms appear. Using the measured cold-capture
rate and data for the deuteron photodisintegration reaction to fix the counterterms, the
n+p→ d+γ cross section was computed to 1% for center-of-mass energiesE � 1 MeV.

1 Note that “effective theory” is sometimes used in reference to a model that captures the essence of the
relevant long-distance physics without necessarily accounting for the short-distance physics in a systematic way.
Here we use “EFT” in the model-independent sense described above, in which “power counting” of the different
orders in the expansion is a crucial ingredient.
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Much of the strength of EFT lies in the fact that it can be applied without off-shell
ambiguities to systems with more nucleons. The crucial issue of the relative size of
three-body forces has been investigated in the three-body system [13]. Nucleon–deuteron
scattering in all channels except thes1/2-wave can be calculated to high orders using
two-nucleon input only, with results in striking agreement with data and potential-model
calculations [14]. For example, to third order, thes3/2 scattering length is found to be

a
(EFT)
3/2 = 6.33± 0.10 fm, to be compared to the measureda

(expt)
3/2 = 6.35± 0.02 fm. In

contrast, in thes1/2-wave channel, the non-perturbative running of the renormalization
group requires a momentum-independent three-body force in leading order [15]. Once the
new parameter is fitted to (say) the scattering length, the energy dependence is predicted.
The triton binding energy, for example, is found to beB

(EFT)
3 = 8.0 MeV in leading order,

already pretty close to the experimentalB
(expt)
3 = 8.5 MeV. Recently, this approach was

also applied toΛd scattering and the hypertriton [16]. Using the hypertriton binding energy
to fix the three-body force, the low-energyΛd scattering observables can be predicted. The
results are very insensitive to the poorly knownΛN low-energy parameters. In a related
study, theΛd Phillips line was established [17].

However, in an EFT it is, by no means, necessary to start from a fundamental nucleon–
nucleon interaction. If, as in halo nuclei, the core is much more tightly bound than the
remaining nucleons, it can be treated as an explicit degree of freedom. One can write an
EFT for the contact interactions of the nucleons with the core and include the substructure
of the core perturbatively in a controlled expansion. This approach is appropriate for
energies smaller than the excitation energy of the core. In other words, one can account
for the spatial extension of the core by treating it as a point particle with corrections from
its finite size entering in a derivative expansion of the interaction. This is a consequence
of the limited resolution of a long wavelength probe which cannot distinguish between a
point and an extended particle of sizeR if the wavelengthλ�R.

In this paper, we consider the virtualp-wave state innα scattering as a test case. Even
though there is no bound state in this channel, it has all the characteristics of a two-body
halo nucleus. Furthermore it is relevant for the study of the Borromean three-body halo
6He, which will be addressed in a forthcoming publication [18]. Elasticnα scattering is
relatively well-known experimentally. Since the nucleon hasj = 1/2 and theα particle
hasj = 0, there are contributions from ans-wave (s1/2), two p-waves (p1/2 andp3/2),
etc. Arndt et al. performed a phase-shift analysis of low-energy data and extracted the
effective-range parameters in thes- andp-waves [19]. Thep3/2 partial wave displays a
resonance atE ∼ 1 MeV corresponding to a shallow virtual bound state, while thes1/2
andp1/2 partial waves are non-resonant at low energies. We will show that thisp-wave
resonance leads to a power counting different from the one fors-wave bound states [9,10]
that has been discussed extensively in the literature because of its relevance for the no-core
EFT.2 In particular, proper renormalization requires two low-energy parameters at leading
order, namely the scattering length and the effective range. The extension to higher orders
is straightforward. As we will see, the EFT describes the low-energy data very well.

2 By no-core EFT we mean an EFT where all nuclei are dynamically generated from nucleon (and possibly
pion and delta isobar) degrees of freedom.
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The organization of this paper is as follows: in Section 2, we work out renormalization
and power counting for ap-wave resonance in the simpler context of spinless fermions.
In Section 3, we include the spin and isospin of the nucleon and apply our formalism
to elasticnα scattering. In Section 4, we summarize our results and present an outlook. In
particular, we discuss the extension to the Borromean three-body halo6He and the reaction
p+ 7Be→ 8B+ γ .

2. EFT for shallow p-wave states

In this section, we develop the power counting for shallowp-wave states (bound states
or virtual states) in the particularly simple case of a hypothetical system of two spinless
fermions of common massm. Our arguments are a generalization of those in Ref. [9].

In order to have a shallow bound state, we need at least two momentum scales: the
breakdown scale of the EFT,Mhi, and a second scale,Mlo � Mhi, that characterizes
the shallow bound state. The scaleMhi is set by the degrees of freedom that have been
integrated out. In the case of an EFT without explicit pions and core excitations,Mhi is
the smallest between the pion massmπ and the momentum corresponding to the energy of
the first excited state. The scaleMlo is not a fundamental scale of the underlying theory. It
can be understood as arising from a fine-tuning of the parameters in the underlying theory.
If the values of these parameters were changed slightly, the scaleMlo would disappear.
We seek an ordering of contributions at the scaleMlo in powers ofMlo/Mhi. Due to the
presence of fine-tuning, naive dimensional analysis cannot be applied.

For simplicity we neglect relativistic corrections. They are generically small because
they are suppressed by powers of the particle massm, and in the cases of interest here
m�Mhi. They can be included along the lines detailed in Ref. [9].

2.1. Natural case

First, we will consider the natural case without any fine-tuning. The scale of all low-
energy parameters is then set byMhi and naive dimensional analysis can be applied.

TheT -matrix for the non-relativistic scattering of two spinless fermions with massm

in the center-of-mass frame can be expanded in partial waves as

T (k,cosθ)=
∑
l�0

Tl(k,cosθ)= 4π

m

∑
l�0

2l + 1

k cotδl − ik
Pl(cosθ), (1)

where k is the center-of-mass momentum,θ the scattering angle, andPl(cosθ) is a
Legendre polynomial.3 The generalized effective-range expansion for arbitrary angular
momentuml reads:

k2l+1 cotδl =− 1

al
+ rl

2
k2− Pl

4
k4+ · · · , (2)

3 Note that we assume the two fermions are distinguishable.
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whereal , rl , andPl are the scattering length, effective range, and shape parameter in the
lth partial wave, respectively. Forl = 0, Eq. (2) reproduces the familiar effective-range
expansion fors-waves. Note that the dimension of the effective-range parameters depends
on the partial wave. In thes-wave,a0 and r0 have dimensions of length, whileP0 has
dimensions of (length)3. For p-waves,a1 has dimension of (length)3 (it is a scattering
“volume”), r1 has dimension 1/(length) (it is an “effective momentum”), andP1 has
dimension of length.

Thes-wave contributionT0 has been discussed in detail in the literature [9,10]. Our goal
here is to set up an EFT that reproduces thep-wave contributionT1 in a low-momentum
expansion,

T1(k,cosθ) = −12πa1

m
k2 cosθ

(
1+ a1r1

2
k2− ia1k

3+ a1

4

(
a1r

2
1 −P1

)
k4+ · · ·

)
.

(3)

We start with the most general Lagrangian for spinless fermions withp-wave
interactions:

L = ψ†
[
i∂0+

−→∇ 2

2m

]
ψ + C

p

2

8

(
ψ
↔∇i ψ

)†(
ψ
↔∇ i ψ

)

− C
p
4

64

[(
ψ
↔∇ 2 ↔∇ i ψ

)†(
ψ
↔∇ i ψ

)+H.c.
]
+ · · · , (4)

where
↔∇= ←−∇ − −→∇ is the Galilean invariant derivative, H.c. denotes the Hermitian

conjugate, and the dots denote higher-derivative interactions that are suppressed at low
energies. The fermion propagator is simply

iS(p0,p)= i

p0− p2/2m+ iε
, (5)

and the Feynman rules for the vertices can be read off Eq. (4). Around the non-relativistic
limit, all interaction coefficients contain a common factor of 1/m that follows from
Galilean invariance. From dimensional analysis, we haveC

p

2 ∼ 12π/mM3
hi and C

p

4 ∼
12π/mM5

hi. The exact relation ofCp

2 andCp

4 to the scattering length and effective range
will be obtained in the end from matching to Eq. (3).

We work in the center-of-mass frame and assign the momenta±k and±k′ to the
incoming and outgoing particles, respectively. The total energy isE = k2/m = k′2/m.
The EFT expansion is in powers ofk/Mhi. The leading contribution toT1 is of order
12πk2/mM3

hi. It is given by the tree-level diagram with theCp

2 interaction shown in
Fig. 1(a). The result is simply

iT1(a) =−iCp

2 k · k′. (6)

The second term in the low-momentum expansion is suppressed byk2/M2
hi compared to

the leading order. It is given by the tree-level diagram with theC
p
4 interaction shown in

Fig. 1(b):

iT1(b) =−iCp

4 k
2 k · k′. (7)
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Fig. 1. Lowest-order diagrams for the perturbative expansion ofT1. Particle propagators are represented by solid
lines. TheCp

2 (C
p
4 ) vertex is indicated by the open circle (crossed circle).

At order 12πk5/mM6
hi, we have the one-loop diagram with twoCp

2 interactions shown in
Fig. 1(c). The contribution of this diagram is

iT1(c) =
(−iCp

2

)2∫ d4q

(2π)4

iq · k
E
2 + q0− q2

2m + iε

iq · k′
E
2 − q0− q2

2m + iε

= (
C

p

2

)2
imk′ikj

∫
d3q

(2π)3

qiqj

q2− k2− iε
, (8)

where thedq0 integral was performed via contour integration. The remaining integral must
be proportional toδij since no other vectors are available. Adding and subtractingk2 in the
numerator, we find

iT1(c) =
(
C

p
2

)2 im

6π2 k · k′
{∫

dq q2+ k2
∫

dq + k4
∫

dq
1

q2− k2− iε

}

= (
C

p

2

)2 im

6π2
k · k′

{
L3+ k2L1+ π

2
ik3
}
, (9)

whereL3 and L1 are infinite constants. These two ultraviolet divergent terms can be
absorbed by redefining the low-energy constantsC

p

2 and C
p

4 , respectively, which are
already present inT1(a) and T1(b). No new parameter enters at this order. The series
proceeds in an obvious way.

We can now match to Eq. (3) to relate the renormalized coefficients to the effective-
range parameters. We find from Eq. (6) thatC

p

2 = 12πa1/m, and from Eq. (7) thatCp

4 =
C

p

2 r1a1/2. After renormalization,T1(c) reproduces the third term in the low-momentum
expansion of Eq. (3). Note that diagram 1(c) cannot be renormalized byC

p

2 alone even
though it does not contain aCp

4 vertex. This observation has important consequences in
the unnatural case with fine-tuning.

2.2. Unnatural case

Now we turn to the more interesting case with a shallowp-wave state. In Refs. [9,10],
it was shown that for a shallows-wave state the leading-order contact interactionC0 has
to be treated non-perturbatively. In this case,C0 is enhanced by a factorMhi/Mlo over the
expectationC0 ∼ 4π/mMhi from naive dimensional analysis. Adding a new rung in the
ladder forming the amplitude means adding an intermediate state (∼ mk/4π ) and aC0
(∼ 4π/mMlo). Since the physics of the bound state is determined byk ∼Mlo, C0 has to
be summed to all orders.
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For p-waves matters are slightly more complicated. We have seen above that the
renormalization of the one-loop diagram with twoCp

2 interactions requires tree-level
counterterms corresponding to both the leadingC

p

2 and subleadingCp

4 interaction. As
consequence, at least theCp

2 andCp
4 interactions have to be treated non-perturbatively if a

shallowp-wave state is present.
Bound (virtual) states are associated with poles in theS-matrix on the upper (lower)

half of the complex momentum plane. The characteristic momentumγ of the bound/virtual
state is given by position of the pole,|k| ≡ γ . For a shallowp-wave state withγ ∼Mlo,
the magnitude of both the effective range and the scattering length must be set byMlo. This
is a consequence of the renormalization argument from the previous subsection. EitherC

p

2
andCp

4 are both enhanced or they are both natural. Assuming that the higher terms in the
effective-range expansion are natural, the order of magnitude of the first three terms in the
expansion is

k3 cotδ1∼M3
lo +Mlok

2+ 1

Mhi
k4+ · · · , (10)

and the effective-range parameters scale as

1

a1
∼M3

lo,
r1

2
∼Mlo and

P1

4
∼ 1

Mhi
. (11)

Both C
p

2 andCp

4 are enhanced over the expectation from naive dimensional analysis and
scale as

C
p

2 ∼
12π

mM3
lo

and C
p

4 ∼
12π

mM5
lo

. (12)

Consequently, for momenta of orderMlo neither interaction can be treated perturbatively.
The shape parameterP1, however, is of order 1/Mhi and its contribution is suppressed by
Mlo/Mhi compared to the leading order.

In the following, we will demonstrate that treating theCp

2 and C
p

4 interactions to
all orders is indeed sufficient for proper renormalization and, moreover, required to
reproduce the physics of the shallowp-wave state. We will also work out the leading-order
description of a shallowp-wave state.

For convenience, we will not use the Lagrangian (4) but follow Ref. [20] and introduce
an auxiliary field (the dimeron) for the two-particle state. The corresponding Lagrangian
is,

L = ψ†
[
i∂0+

−→∇ 2

2m

]
ψ + η1d

†
i

(
i∂0+

−→∇ 2

4m
−∆1

)
di

+ g1

4

(
d

†
i

(
ψ
↔∇ i ψ

)+H.c.
)
+ · · · , (13)

where the signη1 =±1 and the parametersg1 and∆1 will be fixed from matching. This
Lagrangian contains exactly the same number of parameters as the original Lagrangian (4).
Up to higher-order terms, Eq. (13) is equivalent to Eq. (4), as can be seen by performing
the Gaussian path integral overdi .
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Fig. 2. The full dimeron propagator (thick shaded line) is obtained by dressing the bare dimeron propagator
(double solid line) with particle bubbles (solid lines) to all orders.

The bare dimeron propagator is given by

iD0
1(p0,p)ij = iη1δij

p0− p2/4m−∆1+ iε
. (14)

Summing theCp
2 andC

p
4 interactions to all orders in the theory without the dimeron

corresponds to dressing the bare dimeron propagator with particle bubbles to all orders.
This summation is shown diagrammatically in Fig. 2. The full dimeron propagator is most
easily calculated by first computing the self-energy from the particle bubble−iΣ1 which
up to overall factors is given by the one-loop diagram from Fig. 1(c). We have

−iΣ1(p0,p)ij

= g2
1

∫
d4q

(2π)4

qiqj(p0
2 + q0− (p/2+q)2

2m + iε
)(p0

2 − q0− (p/2−q)2
2m + iε

)
= iδij

mg2
1

12π

{
2

π
L3+ 2

π
L1
(
mp0− p2/4

)+ i
(
mp0− p2/4

)3/2
}
, (15)

whereL3 andL1 are infinite constants as in Eq. (9). The full dimeron propagator now
simply follows from the geometric series

iD1(p0,p) = iD0
1(p0,p)+ iD0

1(p0,p)
(−iΣ1(p0,p)

)
iD0

1(p0,p)+ · · ·
= iD0

1(p0,p)
(
1−Σ1(p0,p)D0

1(p0,p)
)−1

, (16)

where the vector indices have been suppressed. Using Eqs. (14), (15), we find

iD1(p0,p)ij = −iδij 12π

mg2
1

(
12π∆1

η1mg2
1

− 12π

η1m2g2
1

(
mp0− p2/4

)

− 2

π
L3− 2

π
L1
(
mp0− p2/4

)− i
(
mp0− p2/4

)3/2
)−1

= −iδij 12π

mg2
1

(
η1

12π∆R
1

m(gR
1 )2
− η1

12π

m2(gR
1 )2

(
mp0− p2/4

)

− i
(
mp0− p2/4

)3/2
)−1

, (17)

where the last line defines the renormalized parameters∆R
1 andgR

1 .
Thep-wave scattering amplitude is obtained by attaching external particles lines to the

full dimeron propagator. In the center-of-mass system,(p0,p)= (k2/m,0), this leads to
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T1(k,cosθ) = 12π

m
k2 cosθ

(
η1

12π∆R
1

m(gR
1 )2
− η1

12π

m2(gR
1 )2

k2− ik3
)−1

≡ 12π

m
k2 cosθ

(
− 1

a1
+ r1

2
k2− ik3

)−1

, (18)

from which the matching conditions can be read off easily. We see that, as advertised, two
coefficients are necessary and sufficient to remove any significant cutoff dependence.

2.3. Pole structure

In this subsection, we discuss the pole structure of theS-matrix in the unnatural case.
Neglecting terms suppressed byMlo/Mhi, the equation determining the poles is, from the
amplitude (18),

− 1

a1
+ r1

2
κ2− iκ3= 0. (19)

For definiteness, we concentrate on the casea1, r1 < 0 that is relevant tonα scattering.
Other cases can be examined as easily. The solutions are one poleκ1 on the positive
imaginary axis and two complex-conjugated poles in the lower half-plane. They have the
structure

κ1= iγ1 and κ± = i(γ ± iγ̃ ), (20)

where

γ1= 1

6

(
|r1| + |a1|1/3|r1|2

v
+ v

|a1|1/3

)
,

γ = 1

6

(
|r1| − |a1|1/3|r1|2

2v
− v

2|a1|1/3

)
,

γ̃ =−
√

3

12

( |a1|1/3|r1|2
v

− v

|a1|1/3

)
,

v =
(
108+ |a1||r1|3+ 108

√
1+ |a1||r1|3/54

)1/3
. (21)

This pole structure is illustrated in Fig. 3. This general structure remains qualitatively
unchanged in the limit|r1| → 0.

Thep-wave contribution to theS-matrix can be written as

S1= e2iδ1 =−k+ κ1

k− κ1

k + κ+
k − κ+

k + κ−
k − κ−

=−k + iγ1

k − iγ1

E −E0− i
2Γ (E)

E −E0+ i
2Γ (E)

, (22)

where we have defined

E = k2

2µ
, E0= γ 2+ γ̃ 2

2µ
and Γ (E)=−4γ

√
E

2µ
, (23)

with µ the reduced mass of the system. The phase shift can therefore be written as

δ1= 1

2i
lnS1= δs(E)− arctan

(
Γ (E)

2(E −E0)

)
. (24)
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Fig. 3. The pole structure of theS-matrix for ap-wave resonance.

Here

δs(E)= 1

2
arctan

(
2
√
EB

E −B

)
, (25)

is the contribution from the bound state with binding energyB = γ 2
1 /2µ. It changes by

π/2 as the energy varies acrossB. δs(E) is a relatively smooth function of the energyE.
The two complex-conjugated polesκ± generate the resonance that is given by the second
term in Eq. (24). This term changes byπ as the energy varies acrossE0.

In the case ofs-waves, the EFT determines in leading order the position of a shallow
real or virtual bound state. In thep-waves the physics is richer: the two leading-order
parameters provide the position and width of a resonance (in addition to the position of a
bound state).

3. Application to elastic nα scattering

We are now in position to extend the EFT for shallowp-wave states from the previous
section to then-4He system, including the spin of the nucleon. We calculate the leading-
and next-to-leading-order contributions to low-energy elasticnα scattering. First, we
briefly review the structure of the cross section and scattering amplitude.

3.1. Cross section and scattering amplitude

The differential cross section for elasticnα scattering in the center-of-mass frame can
be written as

dσ

dΩ
= ∣∣F(k, θ)

∣∣2+ ∣∣G(k, θ)
∣∣2, (26)
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wherek andθ are the magnitude of the momentum and the scattering angle, respectively.
The so-called spin-no-flip and spin-flip amplitudesF andG can be expanded in partial
waves as

F(k, θ) =
∑
l�0

[
(l + 1)fl+(k)+ lfl−(k)

]
Pl(cosθ), (27)

G(k, θ) =
∑
l�1

[
fl+(k)− fl−(k)

]
P 1
l (cosθ), (28)

wherePl is a Legendre polynomial and

P 1
l (x)=

(
1− x2)1/2 d

dx
Pl(x). (29)

The partial wave amplitudesfl± are related to the phase shiftsδl± via

fl±(k)= 1

2ik

[
e2iδ± − 1

]= 1

k cotδl± − ik
. (30)

The total cross section can be obtained from the optical theorem,

σT = 4π

k
ImF(k,0). (31)

TheT -matrix calculated in EFT is related to the amplitudesF andG via

T = 2π

µ
(F + iσ · n̂G), (32)

whereµ=mαmN/(mα +mN) is the reduced mass,n̂= k× k′/|k× k′| with k andk′ the
initial and final momenta in the center-of-mass frame, andσ = (σ1, σ2, σ3) is a three-vector
of the usual Pauli matrices.

For nα scattering at low energies only thes- andp-waves are important. There is one
s-wave: l± = 0+ with lj = s1/2, and twop-waves:l± = 1+ and 1− corresponding to
lj = p3/2 andp1/2, respectively. In the remainder of the paper, we use thel± notation for
the partial waves. In Ref. [19], a phase-shift analysis including the 0+, 1−, and 1+ partial
waves was performed and the effective-range parameters were extracted. The effective-
range expansion for a partial wave with orbital angular momentuml was given in Eq. (2).
The effective-range parameters extracted in Ref. [19] are listed in Table 1. The 1+ partial
wave has a large scattering length and somewhat small effective range, as expected from
Eq. (11). Indeed, the phase shift in this wave has a resonance corresponding to a shallowp-
wave state [19]. As a consequence, the 1+ partial wave has to be treated non-perturbatively
using the formalism for shallowp-wave states developed in the previous section. In the 0+
wave, on the other hand, the scattering length and effective range are clearly of natural size.
The 0+ partial wave can be treated in perturbation theory. The situation is less clear in the
1− wave. Although the pattern is similar to the 1+ wave, the phase shifts in the 0+ and
1− partial waves show no resonant behavior at low energies [19]. We therefore expect that
perturbation theory can be applied to the 1− partial wave as well.

These points can be made slightly more precise. We can estimate the scalesMlo and
Mhi from the effective-range parameters. Using the parameters for the 1+ partial wave
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Table 1
The values of the scattering lengthal±, the effective rangerl±, and the shape parameter
Pl± in elasticnα scattering for the 0+, 1−, and 1+ partial waves from Ref. [19]. The
numbers in parenthesis indicate the error in the last quoted digits. All values are given in
units of the appropriate powers of fm as determined by the orbital angular momentuml

of the partial wave

Partial wavel± al± [fm1+2l ] rl± [fm1−2l ] Pl± [fm3−2l ]

0+ 2.4641(37) 1.385(41) –
1− −13.821(68) −0.419(16) –
1+ −62.951(3) −0.8819(11) −3.002(62)

from Table 1, we find forMlo 50 MeV from the scattering length and 90 MeV from the
effective range. The average value isMlo ≈ 70 MeV. From the shape parameter, we extract
Mhi ≈ 260 MeV. This is consistent with the hierarchyMlo�Mhi ∼mπ ∼√mNEα , where
Eα = 20.21 MeV is the excitation energy of theα core [21], and suggests that our power
counting is appropriate for the 1+ partial wave. We would expect that the scale of all
effective-range parameters in the remaining channels is set byMhi. Extracting the numbers,
however, we find forMhi the scales 80 MeV froma0+, 280 MeV fromr0+, 80 MeV from
a1−, and 40 MeV fromr1−. While some spread is not surprising given the qualitative
nature of the argument, these numbers suggest that, even though the 1− phase shift is
small, this partial wave might also be dominated byMlo. For the moment we will assume
this is not the case and treat the 1− wave in perturbation theory. We can certainly improve
convergence by resumming 1− contributions. We return to this point in Section 3.4.

3.2. Scattering amplitude in the EFT

A real test of the power counting comes only by calculating the amplitude at various
orders and comparing the results among themselves and with data. In the following, we
will computenα scattering to next-to-leading order in the EFT. For characteristic momenta
k ∼Mlo, the leading-order contribution to theT -matrix is of order 12π/mMlo. The EFT
expansion is inMlo/Mhi and the NLO and N2LO contributions are suppressed by powers
of Mlo/Mhi andM2

lo/M
2
hi, respectively. The parameters in the effective Lagrangian will

be determined from matching to effective-range parameters. We then compare our results
with the phase-shift analysis [19] and also directly with low-energy data.

We represent the nucleon and the4He core by a spinor/isospinorN field and a
scalar/isoscalarφ field, respectively. We also introduce isospinor dimeron fields that can
be thought of as bare fields for the variousNα channels. In the following we will employ
s, d , andt , which are spinor, spinor and four-spinor fields associated with thes1/2, p1/2,
andp3/2 channels, respectively.

The parity- and time-reversal-invariant Lagrangians for LO and NLO are4

4 We make a particular choice of fields here. TheS-matrix is independent of this choice. One can, for example,
redefine thet field so as to remove theg′1+ term. In this case, its contribution (see Eq. (47) below) is reproduced

by a t†Nφ(+ H.c.) interaction with three derivatives.
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LLO = φ†
[
i∂0+

−→∇ 2

2mα

]
φ +N†

[
i∂0+

−→∇ 2

2mN

]
N

+ η1+t†
[
i∂0+

−→∇ 2

2(mα +mN)
−∆1+

]
t

+ g1+
2

{
t†S† · [N−→∇φ − (

−→∇N)φ
]+H.c.− r

[
t†S† · −→∇(Nφ)+H.c.

]}
, (33)

LNLO = η0+s†[−∆0+
]
s + g0+

[
s†Nφ + φ†N†s

]+ g′1+t†
[
i∂0+

−→∇ 2

2(mα +mN)

]2

t,

(34)

wherer = (mα − mN)/(mα + mN). The notation is analogous to that in Eq. (13). The
Si ’s are the 2× 4 spin-transition matrices connecting states with total angular momentum
j = 1/2 andj = 3/2. They satisfy the relations

SiS
†
j =

2

3
δij − i

3
εijkσk, S

†
i Sj =

3

4
δij − 1

6

{
J

3/2
i , J

3/2
j

}+ i

3
εijkJ

3/2
k , (35)

where theJ 3/2
i are the generators of theJ = 3/2 representation of the rotation group, with[

J
3/2
i , J

3/2
j

]= iεijkJ
3/2
k . (36)

These Lagrangians generate contributions in the 1+ and 0+ partial waves. There are no
contributions in N2LO, and the 1− partial wave enters first at N3LO.

The propagator for theφ field is

iSφ(p0,p)= i

p0− p2/2mα + iε
, (37)

while the nucleon propagator is

iSN(p0,p)abαβ =
iδαβδab

p0− p2/2mN + iε
. (38)

In Eq. (38),α andβ (a andb) are the incoming and outgoing spin (isospin) indices of the
nucleon, respectively. The bare propagator for the 1+ dimeron is

iD0
1+(p0,p)abαβ =

iη1+δαβδab
p0− p2/2(mα +mN)−∆1+ + iε

, (39)

with α andβ (a andb) the incoming and outgoing spin (isospin) indices of the dimeron,
respectively. Note thatδαβ is a 4× 4 unit matrix, since the dimeron carriesj = 3/2. The
bare propagator for the 0+ is slightly different because its kinetic terms do not appear until
higher order:

iD0
0+(0,0)abαβ =−

iη0+δαβδab
∆0+

, (40)

with δαβ now a 2× 2 unit matrix. The bare propagator for the 1− dimeron is the same as
for the 0+ dimeron, with the index 0+ replaced by 1− where appropriate.

The leading contribution to thenα scattering amplitude fork ∼ Mlo is of order
12π/mMlo and comes solely from the 1+ partial wave with the scattering-length and
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effective-range terms included to all orders. The next-to-leading order correction is sup-
pressed byMlo/Mhi and fully perturbative. It consists of the correction from the shape pa-
rameterP1+ in the 1+ partial wave and the tree-level contribution of the scattering length
a0+ in the 0+ partial wave. The 1− partial wave still vanishes at next-to-leading order.

First, we calculate the leading-orderT -matrix elementT LO. As demonstrated for
spinless fermions in the previous section, this is most easily achieved by first calculating
the full dimeron propagator for the 1+ dimeron and attaching the external particle lines
in the end. Apart from the spin/isospin algebra, the calculation is equivalent to the one
for spinless fermions that was discussed in detail in the previous section. The proper self
energy is given by

−iΣ1+(p0,p)abαβ

= g2
1+
∫

ddl

(2π)d

(l− rp/2)i(S
†
i )βγ (l− rp/2)j (Sj )γ αδab(p0

2 + l0− (p/2+l)2
2mα

+ iε
)(p0

2 − l0− (p/2−l)2
2mN

+ iε
)

=−ig2
1+
(
S

†
i Sj

)
βα

δba

∫
dd−1l

(2π)d−1

(l− rp/2)i(l− rp/2)j
p0− (p2/4+ l2− rp · l)/2µ+ iε

, (41)

where we have performed thedl0 integral via contour integration. Evaluating the remaining
integral using dimensional regularization with minimal subtraction for simplicity, we
obtain

Σ1+(p0,p)abαβ =−δαβδab
g2

1+µ
6π

[
2µ

(
−p0+ p2

2(mα +mN)
− iε

)]3/2

. (42)

Using Eq. (16), the full dimeron propagator is then given by

iD1+(p0,p)abαβ

= iη1+δαβδab

(
p0− p2

2(mα +mN)
−∆1+

+ η1+µg2
1+

6π
(2µ)3/2

[
−p0+ p2

2(mα +mN)
− iε

]3/2

+ iε

)−1

.

(43)

The leading-orderT -matrix element in the center-of-mass system is obtained by setting
(p0,p)= (k2/2µ,0) and attaching external particles lines to the full dimeron propagator.
This leads to

T LO(k,cosθ) = 2π

µ
k2(2 cosθ + iσ · n̂ sinθ)

×
(
η1+

6π∆1+
µg2

1+
− η1+

6π

µ2g2
1+

k2

2
− ik3

)−1

. (44)

Using Eqs. (2) and (27)–(32), we find the matching conditions

a1+ =−η1+
µg2

1+
6π∆1+

and r1+ =−η1+
6π

µ2g2
1+

, (45)
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which determine the parametersg1+, ∆1+, and the signη1+ in terms of the effective-range
parametersa1+ andr1+. Then,

F LO(k, θ)= 2k2 cosθ

−1/a1+ + r1+k2/2− ik3 ,

GLO(k, θ)= k2 sinθ

−1/a1+ + r1+k2/2− ik3
. (46)

At next-to-leading order, we include all contributions that are suppressed byMlo/Mhi
compared to the leading order. These contributions come from the shape parameterP1+
and thes-wave scattering lengtha0+. Using the Lagrangian (33) and (34), we find for the
T -matrix element:

T NLO = η0+g2
0+

∆0+
+ 3πg′1+

2µ3g2
1+

2π

µ

k6(2 cosθ + iσ · n̂sinθ)

(−1/a1+ + r1+k2/2− ik3)2
. (47)

The first term in Eq. (47) corresponds to the scattering length in the 0+ wave, while
the second term corresponds to the 1+ amplitude with the shape parameter treated as a
perturbation. Using Eqs. (2) and (27)–(32), we find

a0+ =−
η0+g2

0+µ
2π∆0+

and P1+ =
6πg′1+
µ3g2

1+
. (48)

Note that to this orderη0+, g0+, and∆0+ are not independent and only the combination
appearing in Eq. (48) is determined. The next-to-leading-order pieces ofF andG are then

FNLO(k, θ)=−a0+ + P1+
4

2k6 cosθ

(−1/a1+ + r1+k2/2− ik3)2
,

GNLO(k, θ)= P1+
4

k6 sinθ

(−1/a1+ + r1+k2/2− ik3)2
. (49)

3.3. Phase shifts and cross sections in the EFT

In order to see how good our expansion is, we need to fix our parameters. In principle we
could determine the parameters by matching our EFT to the underlying EFT whose degrees
of freedom are nucleons (and possibly pions and delta isobars), but no core. Unfortunately,
calculations with the latter EFT have not yet reached systems of five nucleons [6]. For
the time being, we need to determine the parameters from data. For simplicity, we use the
effective-range parameters from Table 1 together with Eqs. (45), (48).

In Fig. 4, we show the phase shifts for elasticnα scattering in the 1+ partial wave as a
function of the neutron kinetic energy in theα rest frame. The filled circles show the phase-
shift analysis of Ref. [19]. The dashed line shows the EFT result at leading order. The LO
result already shows a good agreement with the full phase-shift analysis. As expected,
the agreement deteriorates with energy. NLO corrections improve the agreement: the EFT
result at NLO shown by the solid line reproduces the phase-shift analysis exactly. If better
data were available and a more complete phase-shift analysis were performed, some small
discrepancies would survive, to be remedied by higher orders.
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Fig. 4. The phase shift fornα scattering in the 1+ partial wave as a function of the neutron kinetic energy in the
α rest frame. The dashed (solid) line shows the EFT result at LO (NLO). The filled circles show the phase-shift
analysis [19] which the EFT at NLO reproduces exactly. The dotted line shows the contribution of the scattering
length alone.

The sharp rise in the 1+ phase shift pastπ/2 denotes the presence of a resonance.
To LO, the pole structure of theS-matrix is given in Section 2.3. We findγ1 = 99 MeV,
γ = −6 MeV, andγ̃ = 34 MeV. Using Eq. (23), the position and width of the resonance
areE0= 0.8 MeV andΓ (E0)= 0.6 MeV, respectively. The two virtual states that produce
the resonance are indeed at|k| ∼ Mlo. The real bound state, for reasons that cannot
be understood from the EFT itself, turns out numerically to be at considerably higher
momentum, where the EFT can no longer be trusted. This is consistent with the known
absence of a real5He bound state.

We also illustrate in Fig. 4 an important aspect of the power counting. The dotted
line shows the result from iteratingCp

2 alone. In other words, it is the contribution of
the scattering length only. This curve, which would come from a naive application of the
power counting fors-waves [9,10], does not correspond to any order in the power counting
developed here, and clearly fails to describe the resonance nearEn = 1 MeV.

In Fig. 5, we show the phase shifts for elasticnα scattering in the 0+ partial wave as
a function of the neutron kinetic energy in theα rest frame. In LO the phase shift is zero.
The solid line shows the EFT result at next-to-leading order. The NLO result already shows
good agreement with the full phase-shift analysis [19], depicted by the filled circles.

The phase shifts in the 1− and all other partial waves are identically zero to NLO. The
first non-zero contribution appears at N3LO in the 1− channel. All other waves appear at
even higher orders. That they are indeed very small one can conclude from their absence
in the phase-shift analysis [19].

Obviously, not all partial waves are treated equally in our power counting. In order
to further assess if the power counting is appropriate, we compare the EFT predictions
directly to some observables. In Fig. 6, we compare the EFT predictions with data for the
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Fig. 5. The phase shift fornα scattering in the 0+ partial wave as a function of the neutron kinetic energy in the
α rest frame. The solid line shows the EFT result at NLO; at LO this phase shift is zero. The filled circles show
the result of the phase-shift analysis [19].

total cross section as a function of the neutron kinetic energy in theα rest frame. The
diamonds are “evaluated data points” from Ref. [22]. In order to have an idea of the error
bars from individual experiments we also show data from Ref. [23] as the black squares.
The dashed line shows the EFT result at LO which already gives a fair description of
the resonance region but underestimates the cross section at threshold. The NLO result
given by the solid curve gives a good description of the cross section from threshold up to
energies of about 4 MeV.

We can also calculate other observables. As another example, we show in Fig. 7
the center-of-mass differential cross section at a momentumkCM = 49.6 MeV. (This
corresponds to a neutron kinetic energyEn = 2.05 MeV in theα rest frame.) The diamonds
are evaluated data from Ref. [22].5 The dashed line shows the EFT results at LO, which
is purep-wave. At NLO, shown as a solid line, interference with thes-wave term gives
essentially the correct shape.

If we carry out the EFT to a sufficiently high order, we will have included all terms used
in the phase-shift analysis [19], and more. At this order, the high quality of our fit is purely
a consequence of the high quality of that fit. Note, however, that this is by no means true at
the lower orders explicitly displayed above. In particular, it is perhaps surprising that our
1− wave does not appear until relatively high order. The fact that the EFT converges fast to
data shows that the power counting developed here is reasonable. The 1− wave is further
discussed in the next section.

5 In order to obtain the differential cross section from the NNDC neutron emission spectra we divide by 2π

and multiply by the total cross section.
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Fig. 6. The total cross section fornα scattering in barns as a function of the neutron kinetic energy in theα

rest frame. The diamonds are evaluated data from Ref. [22], and the black squares are experimental data from
Ref. [23]. The dashed and solid lines show the EFT results at LO and NLO, respectively. The dash-dotted line
shows the LO result in the modified power counting where the 1− partial wave is promoted to leading order.

Fig. 7. The differential cross section fornα scattering in the center-of-mass frame in barn/sr as a function of the
scattering angleθCM at a momentumkCM = 49.6 MeV. The diamonds are evaluated data from Ref. [22]. The
dashed and solid lines show the EFT results at LO and NLO, respectively. The dash-dotted line shows the LO
result in the modified power counting where the 1− partial wave is promoted to leading order.
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3.4. Further discussion of the power counting

As we have shown, the EFT describes the data pretty well at least up toEn = 4 MeV
or so. One way to improve the convergence at higher energies is to take the scale of non-
perturbative phenomena in the 1− wave as a low scale. We can modify the power counting
and count the 1− parameters the same as the 1+ parameters. The LO Lagrangian from
Eq. (33) then has an additional term

LALO = η1−d†
[
i∂0+

−→∇ 2

2(mα +mN)
−∆1−

]
d

+ g1−
2

{
d†σ † · [N−→∇φ − (

−→∇N)φ
]+H.c.− r

[
d†σ † · −→∇(Nφ)+H.c.

]}
.

(50)

The calculation of theT -matrix for the 1− partial wave proceeds exactly as for the 1+
partial wave. The amplitudesF andG acquire the following additional contributions at
leading order

FALO(k, θ)= k2 cosθ

−1/a1− + r1−k2/2− ik3 ,

GALO(k, θ)=− k2 sinθ

−1/a1− + r1−k2/2− ik3
. (51)

In Fig. 8, we show the phase shifts fornα scattering in the 1− partial wave obtained
in this alternative power counting. The filled circles show the result of the partial-
wave analysis of Ref. [19] which is exactly reproduced by the leading-order EFT with
the modified power counting given by the dash-dotted line. The dotted line shows the
contribution of the scattering length only. The next-to-leading order in the modified
counting cannot be easily computed at present becauseP1− is not known.

The cross sections corresponding to the leading order in the modified power counting
are shown by the dash-dotted curve in Figs. 6 and 7. In the total cross section, promoting
the 1− partial wave to leading order gives almost no improvement compared to the original
counting except at higher energies, but even there the NLO result in the original counting
gives better results. In the differential cross section atkCM = 49.6 MeV (corresponding to
En = 2.05 MeV in theα rest frame), the alternative power counting gives no improvement
over the LO result (compare the dashed and dash-dotted lines in Fig. 7). We did not
find a significant improvement in the differential cross section over the leading order by
promoting the 1− partial wave for neutron energies up toEn ≈ 4 MeV. For reproducing
the differential cross section, the interference betweens1/2- andp3/2-waves is much more
important than the additionalp1/2 contribution. As a consequence, we deem the original
power counting most appropriate for elasticnα scattering atk ∼Mlo.

Finally, note that fork � Mlo the power counting has to discriminate between
momentumk and the low-energy scaleMlo. Thep-waves, for example, die faster than
thes-waves. That is the reason our results for the cross section in this region are not good
until we get to NLO. It is easy to adapt the power counting fork�Mlo: in fact, the full
amplitude—all waves, that is—can be treated in perturbation theory, as in Section 2.1. For
more details, see Ref. [9].
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Fig. 8. The phase shift fornα scattering in the 1− partial wave as a function of the neutron kinetic energy in
theα rest frame. The filled circles show the result of the phase-shift analysis [19] which is exactly reproduced
by leading-order EFT with the modified power counting given by the dash-dotted line. The dotted line shows the
contribution of the scattering length only.

4. Conclusion and outlook

In this paper we have examined the problem of the interaction between a neutron and
an α particle at low energies. We showed that a power counting can be formulated that
leads to consistent renormalization. In leading order, two interactions have to be fully
iterated. These two interactions generate a shallowp3/2-wave resonance near the observed
energy and width. In subleading orders the phase shifts in all waves can be systematically
improved. Observables calculated directly are very well reproduced.

The crucial ingredient for the applicability of the EFT to bound states and resonances
of halo type is their low characteristic energies. In this sense, the deuteron can be thought
of as the simplest halo nucleus whose core is a nucleon.nα scattering plays an analogous
role here asnp plays in the nucleons-only EFT. It is clear now how to extend the EFT
to more complicated cores: one simply introduces an appropriate field for the core under
consideration, extends the power counting to the relevant channels, and determines the
strength of interactions order-by-order from data.

With the parameters of the nucleon–core interaction fixed in lowest orders, we can
proceed to more-body halos. The simplest example is6He. In addition to thenα interaction,
thenn interaction has also been determined from data.6He, like the triton, can be described
as a three-body system of a core and two neutrons. The role of a three-body interaction can
be addressed by renormalization group techniques [13,18].

Note that the EFT approach is by no means restricted to neutron halos. The Coulomb
interaction can be included in the same way as in the nucleons-only sector [24], allowing
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for the analysis of nuclei such as8B. Radiative capture on halo nuclei, such asp+ 7Be→
8B+ γ , can then be calculated much liken+ p→ d + γ .

Our approach is not unrelated to traditional single-particle models. In the latter, the
nucleon–core interaction is frequently parametrized by a simple potential with central
and spin-orbit components [25]. The parameters of the potential are adjusted to reproduce
whatever information is accessible experimentally. In the EFT, we make the equivalent to
a multipole expansion of the underlying interaction. The spin–orbit splitting, in particular,
results from the different parameters of the dimeron fields with different spins. In the EFT
the nucleon–nucleon interaction is treated in the same way as the nucleon–core interaction,
mutatis mutandis. ContactNN interactions have in fact already been used in the study
of Borromean halos [26]. It was found that density dependence, representing three-
body effects, needed to be added in order to reproduce results from more sophisticated
parametrizations of theNN interaction. In the EFT, the need for an explicit three-body
force can be decided on the basis of the renormalization group before experiment is
confronted. A zero-range model with purelys-waveNN and nucleon–core interactions
was examined in Ref. [27].

The EFT unifies single-particle approaches in a model-independent framework, with the
added power counting that allows for an a priori estimate of errors. It also casts halo nuclei
within the same framework now used to describe few-nucleon systems consistently with
QCD [6,8]. Therefore, the EFT with a core can in principle be matched to the underlying,
nucleons-only EFT. Nuclei near the drip lines open an exciting new field for the application
of EFT ideas. It remains to be seen, however, whether these developments will prove to be
a significant improvement over more traditional approaches.

Acknowledgements

We would like to thank Martin Savage for an interesting question, and Henry Weller and
Ron Tilley for help in unearthingnα scattering data. H.-W.H. and U.v.K. are grateful to the
Kellogg Radiation Laboratory of Caltech for its hospitality, and to RIKEN, Brookhaven
National Laboratory and to the US Department of Energy (DE-AC02-98CH10886) for
providing the facilities essential for the completion of this work. This research was
supported in part by the National Science Foundation under Grant No. PHY-0098645
(H.-W.H.) and by a DOE Outstanding Junior Investigator Award (U.v.K.).

References

[1] B.A. Brown, A. Csótó, R. Sherr, Nucl. Phys. A 597 (1996) 66;
H. Esbensen, G.F. Bertsch, Nucl. Phys. A 600 (1996) 37.

[2] M.V. Zhukov, B.V. Danilin, D.V. Fedorov, J.M. Bang, I.J. Thompson, J.S. Vaagen, Phys. Rep. 231 (1993)
151;
K. Riisager, Rev. Mod. Phys. 66 (1994) 1105.

[3] Scientific opportunities with fast fragmentation beams from RIA, NSCL-report, March 2000.
[4] C.A. Bertulani, M.S. Hussein, G. Münzenberg, Physics of Radioactive Beams, Nova Science Publishers,

Huntington, NY, 2002.



58 C.A. Bertulani et al. / Nuclear Physics A 712 (2002) 37–58

[5] G.P. Lepage, in: T. De Grand, D. Toussaint (Eds.), From Actions to Answers, TASI’89, World Scientific,
Singapore, 1990;
D.B. Kaplan, nucl-th/9506035.

[6] P.F. Bedaque, U. van Kolck, nucl-th/0203055, Annu. Rev. Nucl. Part. Sci., in press;
S.R. Beane, P.F. Bedaque, W.C. Haxton, D.R. Phillips, M.J. Savage, in: M. Shifman (Ed.), Boris Ioffe
Festschrift, World Scientific, Singapore, 2001.

[7] P.F. Bedaque, M.J. Savage, R. Seki, U. van Kolck (Eds.), Nuclear Physics with Effective Field Theory II,
World Scientific, Singapore, 1999;
R. Seki, U. van Kolck, M.J. Savage (Eds.), Nuclear Physics with Effective Field Theory, World Scientific,
Singapore, 1998.

[8] S. Weinberg, Phys. Lett. B 251 (1990) 288;
S. Weinberg, Nucl. Phys. B 363 (1991) 3;
M. Rho, Phys. Rev. Lett. 66 (1991) 1275;
C. Ordóñez, U. van Kolck, Phys. Lett. B 291 (1992) 459.

[9] U. van Kolck, in: A. Bernstein, D. Drechsel, T. Walcher (Eds.), Proceedings of the Workshop on Chiral
Dynamics 1997, Theory and Experiment, Springer, Berlin, 1998, hep-ph/9711222;
U. van Kolck, Nucl. Phys. A 645 (1999) 273.

[10] D.B. Kaplan, M.J. Savage, M.B. Wise, Phys. Lett. B 424 (1998) 390;
D.B. Kaplan, M.J. Savage, M.B. Wise, Nucl. Phys. B 534 (1998) 329.

[11] J.-W. Chen, G. Rupak, M.J. Savage, Nucl. Phys. A 653 (1999) 386;
S.R. Beane, M.J. Savage, Nucl. Phys. A 694 (2001) 511.

[12] J.-W. Chen, M.J. Savage, Phys. Rev. C 60 (1999) 065205;
G. Rupak, Nucl. Phys. A 678 (2000) 405.

[13] P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. Lett. 82 (1999) 463;
P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 646 (1999) 444.

[14] P.F. Bedaque, U. van Kolck, Phys. Lett. B 428 (1998) 221;
P.F. Bedaque, H.-W. Hammer, U. van Kolck, Phys. Rev. C 58 (1998) R641;
F. Gabbiani, P.F. Bedaque, H.W. Grießhammer, Nucl. Phys. A 675 (2000) 601.

[15] P.F. Bedaque, H.-W. Hammer, U. van Kolck, Nucl. Phys. A 676 (2000) 357;
H.-W. Hammer, T. Mehen, Phys. Lett. B 516 (2001) 353.

[16] H.-W. Hammer, Nucl. Phys. A 705 (2002) 173.
[17] D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 697 (2002) 783.
[18] C.A. Bertulani, H.-W. Hammer, U. van Kolck, in preparation.
[19] R.A. Arndt, D.L. Long, L.D. Roper, Nucl. Phys. A 209 (1973) 429.
[20] D.B. Kaplan, Nucl. Phys. B 494 (1997) 471.
[21] D.R. Tilley, H.R. Weller, G.M. Hale, Nucl. Phys. A 541 (1992) 1.
[22] Evaluated Nuclear Data Files, National Nuclear Data Center, Brookhaven National Laboratory,

http://www.nndc.bnl.gov/.
[23] B. Haesner, et al., Phys. Rev. C 28 (1983) 995;

M.E. Battat, et al., Nucl. Phys. 12 (1959) 291.
[24] X. Kong, F. Ravndal, Nucl. Phys. A 665 (2000) 137.
[25] S. Ali, A.A.Z. Ahmad, N. Ferdous, Rev. Mod. Phys. 57 (1985) 923.
[26] G.F. Bertsch, H. Esbensen, Ann. Phys. 209 (1991) 327;

H. Esbensen, G.F. Bertsch, K. Hencken, Phys. Rev. C 56 (1997) 3054.
[27] A.E.A. Amorim, T. Frederico, L. Tomio, Phys. Rev. C 56 (1997) R2378;

A. Delfino, T. Frederico, M.S. Hussein, L. Tomio, Phys. Rev. C 61 (2000) 051301.

http://www.nndc.bnl.gov/

