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Abstract

A theory of short-range correlations in two-nucleon removal due to elastic breakup (diffraction dissocia-
tion) on a light target is developed. Fingerprints of these correlations will appear in momentum distributions
of back-to-back emission of the nucleon pair. Expressions for the momentum distributions are derived and
calculations for reactions involving stable and unstable nuclear species are performed. The signature of
short-range correlations in other reaction processes is also studied.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A primary goal of nucleus–nucleus scattering has been to learn about nuclear structure. This
has become even more critical in recent years, when many groups became very active in the
investigation of the physics of nuclei far from the stability, mainly using nucleus–nucleus scatter-
ing processes at intermediate energies (Elab � 100 MeV/nucleon). The theoretical complexity
of such collisions has given rise to the use of a number of different approximations. The ad-
equate theoretical tool for this purpose is Glauber’s multiple-scattering theory [1]. It has long
been known both for its simplicity and amazing predictive power. One can find copious exam-
ples in the literature where the Glauber theory allows for a simple physical interpretation of
experimental results as well as their quantitative analysis [2–4]. In fact, fragmentation reactions
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of the type discussed here have already been successfully analyzed in the framework of Glauber’s
theory: in one-nucleon-removal reactions, the momentum distribution of the outgoing fragment
has been shown to reflect the momentum distribution of the nucleon which is removed from
the surface of the projectile nucleus [3]. However, because of complications involving multiple
scattering processes in nucleus–nucleus collisions, a full Glauber multiple scattering expansion
is impracticable. Fortunately, the study of many direct nuclear processes, e.g. nucleon knockout,
or stripping, elastic breakup (diffraction dissociation), etc., are possible using the optical limit
of the Glauber theory, in which the nuclear ground-state densities and the nucleon–nucleon total
cross sections are the main input. In fact, this method has become one of the main tools in the
study of nuclei far from stability [5]. When departures from the optical limit are observed, mul-
tiple nucleon–nucleon collisions and in-medium effects of the nucleon–nucleon interaction and
nucleon–nucleon correlations become relevant.

Very peripheral collisions, with impact parameters just around the sum of the nuclear radii
(grazing collisions), or larger, are well established tools for studying nuclear properties with in-
termediate energies and relativistic heavy ion collisions [6–8]. These collisions lead to excitation
of giant resonances through both electromagnetic and strong interactions. At intermediate energy
collisions (Elab � 100 MeV/nucleon), or higher, the collision time is short and the action of the
short-range nuclear interaction can excite the surface region of the colliding nuclei. This excita-
tion can equilibrate forming a compound nucleus, and/or give rise to pre-equilibrium emission
or other fast dissipation processes.

An interesting reaction mechanism in high-energy peripheral nucleus–nucleus collisions was
suggested by Feshbach and Zabek [9,10]. This mechanism has been applied in Refs. [11–16] to
the calculation of pion production in heavy ion collisions from subthreshold to relativistic en-
ergies. It is assumed that pions are produced in peripheral processes through the excitation of
the projectiles to a �-isobar giant resonance. The results of these calculations were compared
to inclusive pion production data for incident energies from 50 MeV to 2 GeV per nucleon. As
emphasized by those authors, this comparison is not very meaningful at high energies where pe-
ripheral processes are expected to contribute very little to the total pion production. However, at
subthreshold energies, coherent pion production should dominate the cross section. This mecha-
nism is known as the nuclear Weizsäcker–Williams method. It works as follows.

The uncertainty relation associated to the variation of the time-dependent nuclear field on a
scale �z leads a relation between the energy, �E, and momentum transfer, �p:

�E � h̄

�t
= h̄v

�z
, �p � h̄

�z
�⇒ �E = v�p.

The last equation on the right is the dispersion relation of a phonon. For typical situations, �z is
a few fermi and the nuclear interaction pulse carries several hundred MeV. This relation can also
be directly obtained from the collision kinematics. Let (Ei,pi ) be the initial momentum of the
projectile and (�E,�p) the energy–momentum transfer in the reaction. One has

Pf = Pi − �p, Ef = Ei − �E.

From these relations one finds

Pi · �p
Ei

− �E = −(�E)2 + (�p)2 + (M2
i − M2

f )c4

2Ei

.

Neglecting the term on the right-hand side, one gets

�E = v · �p = v�pz, (1)
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where �pz is the momentum transfer along the longitudinal direction.
The above relation can only be satisfied for nuclear excitations of very small momentum

transfers, even for moderately large energy transfers. This is the case for the excitation of giant
resonances. Thus, the nuclear interaction in grazing nuclear collisions is an effective tool to probe
giant resonances (for a review see, e.g., Ref. [17]). For very large impact parameters (larger than
the sum of the nuclear density radii) only the electromagnetic interaction is present, and Eq. (1)
(with v � c) is just the energy–momentum relation of a real photon. In fact, relativistic Coulomb
excitation is another useful tool for investigating giant resonances [6,8].

The phonon-like relation, Eq. (1), is also a tool for studying nucleon–nucleon short-range
correlations. The energy in Eq. (1) could hardly be absorbed by a single nucleon since it would
carry the momentum ∼√

2m�E, which is appreciably larger than that of Eq. (1). However, the
phonon could be absorbed by a correlated nucleon pair, which can have large kinetic energy
and small total momentum, when the nucleons move in approximately opposite directions. This
mechanism has been exploited by previous authors to study the emission of correlated pairs in
relativistic heavy ion collisions [25,26]. Remarkably, Refs. [9,10] do not treat properly the nu-
clear absorption at small impact parameters, leading to very large cross sections for the emission
of correlated pairs in peripheral collisions.

In many-body physics the word correlation is used to indicate effects beyond mean-field the-
ories. In nuclear physics one distinguishes between short- and long-range correlations. Nuclear
collective phenomena such as vibrations and rotations are known to be ruled by long-range cor-
relations. These effects are relatively well known. Short-range correlations is also a subject of
intensive studies in nuclear physics (see, e.g., [18–23]). The sources of short-range correlations
are the strong repulsive core of the microscopic nucleon–nucleon interaction at short internu-
cleon distances. The nucleon–nucleon interaction becomes strongly repulsive at short distances.
The phase shifts for 1S0 and 3S1 are positive at low, and become negative at higher energies [30].
This indicates a repulsive core at short distances and attraction at long distances. In the nuclear
medium this repulsive interaction is strongly influenced by Pauli blocking. The search for nu-
clear phenomena showing short-range correlations effects is one of the most discussed topics in
the nuclear structure community. For the nuclear reaction community, the importance of Pauli
correlations in high energy nucleus–nucleus collisions has prompted the consideration of effects
of dynamical short-range correlations. When one treats nucleus–nucleus collisions at high ener-
gies with an optical phase shift function one can include both the center-of-mass correlations and
two-body correlations in a straightforward manner to obtain a rapidly converging series for the
physical observables.

It would be proper at this time to look for fingerprints of short-range correlations in high-
energy collisions involving rare nuclear isotopes. Recent experiments on knockout reactions
seem to indicate a quenching of the spectroscopic factor relative to shell-model predictions in
neutron-rich nuclei [5]. This reduction is thought to be a consequence of short-range correlations
which spread the single particle strength to states with higher energies. In fact, systematic studies
with the A(e, e′p) reaction have provided ample evidence for this quenching phenomenon [24].
In this context, two-proton knockout reactions with exotic nuclear beams seem to be a promis-
ing tool to investigate short-range correlations in neutron- (proton-) rich nuclei [27]. Indeed, for
decades two-proton knockout has been considered a valuable tool to study short-range corre-
lations in proton–nucleus and electron–nucleus processes (for recent work, see, e.g., [22,23]).
In high-energy nucleus–nucleus collisions, the phonon mechanism, proposed by Feshbach and
Zabek, is a useful guide for the investigation of short-range correlations.
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The plan of this paper is as follows. In this work I treat the effects of short-range correla-
tions on heavy-ion scattering at high energies. In Section 2 the Glauber formalism for diffraction
dissociation is reviewed. In Section 3 this formalism is shown to lead to the same result as
the traditional DWBA calculations under the proper conditions. This is an important point, as
diffraction dissociation and DWBA approaches are commonly referred to as distinct reaction
mechanisms in the literature. In Section 4 the role of absorption and Lorentz boosts is discussed.
In Section 5 the formalism is applied to heavy-ion collisions in the presence of two-body cor-
relations, showing the connection with the Feshbach and Zabek method. The significance of
short-range correlations is further discussed. In Section 6 the formalism is applied to carbon-
carbon and 11Li + 9Be collisions. In Section 7 some concluding remarks are made.

2. Diffraction dissociation

Let us consider high energy scattering, so that the energy transfer in the collision, �E, is much
smaller than the kinetic energy of the colliding nuclei, E. In most cases, one is also interested
in processes for which the fragments fly in the forward direction, i.e., we will also assume that
�θ � 1. In such situations the particle wavefunctions are well described by eikonal waves [28],
i.e., a plane wave distorted by an interaction, V , so that the S-matrix is given by the simple
formula S(b) = exp[−(i/h̄v)

∫
dZ V (R)], with v equal to the projectile velocity and R = (b,Z)

the distance between projectile and target (V is assumed to be spherically symmetric). Extending
this approach to account for scattering of bound particles, the initial and final states are given by

Ψi = φi(r) exp(ik · R), Ψf = φf (r)S(b) exp(ik · R), (2)

where φi,f (r) are the initial and final probability amplitudes (wavefunctions) that a particle in
the projectile is at a distance r from the center of mass. The particle’s S-matrix, S(b), accounts
for the distortion due to the interaction.

For a projectile with two-body structure (e.g., a core + valence particle)

Ψi = φi(r) exp
[
i(kc · rc + kv · rv)

]
,

Ψf = φf (r)Sc(bc)Sv(bv) exp
[
i
(
k′

c · rc + k′
v · rv

)]
, (3)

where now φi,f (r) are the initial and final intrinsic wavefunctions of the (core+valence particle)
as a function of r = r1 − r2. The relation between the intrinsic, r, and center of mass, R, coordi-
nates is given in terms of the mass ratios βi = mi/mP . Explicitly, rv = R+βcr and rc = R−βvr.
The core and valence particle S-matrices, Sc(bc) andSv(bv), account for the distortion due to the
interaction with the target.

The probability amplitude for diffraction dissociation is the overlap between the two wave-
functions above, i.e.,

A(diff) =
∫

d3rc d3rv φ∗
f (r)φi(r)δ(zc + zv)Sc(bc)Sv(bv) exp

[
i(qc · rc + qv · rv)

]
, (4)

where qc = k′
c −kc is the momentum transfer to the core particle, and accordingly for the valence

particle. The above formula yields the probability amplitude that the projectile starts the collision
in a bound state and ends up as two separated pieces. The S-matrices, Sc and Sv carry all the
information about the dissociation mechanism. The delta-function δ(Z) in Eq. (4) was introduced
to account for the fact that the S-matrices calculated in the eikonal approximation only depend
on the transverse direction.
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It is instructive to follow another argument to obtain Eq. (4). If only the core scatters elasti-
cally, whereas the valence particle remains in its unaltered plane wave state, the final projectile
wavefunction is given by

Ψ
(scatt)
f = φf (r)

[
1 − Sc(bc)

]
exp

[
i
(
k′

c · rc + k′
v · rv

)]
. (5)

The factor [1 − Sc(bc)] is the amplitude for elastic scattering of the core. The same relation
can be applied for the valence particle. The diffraction dissociation occurs by subtracting the
simultaneous scattering of the core + valence particle, represented by [1 − Sc(bc)][1 − Sv(bv)],
from the independent scattering of core and the valence particle, i.e.,

Ŝ(diff) = [
1 − Sc(bc)

][
1 − Sv(bv)

] − [
1 − Sc(bc)

] − [
1 − Sv(bv)

]
= Sc(bc)Sv(bv) − 1. (6)

The factor (−1) is not relevant because of the orthogonality of the wavefunctions φi(r) and
φf (r). Using A(diff) = 〈φiϕk1,k2 |Ŝ(diff)|φf ϕk′

1,k
′
2
〉, with ϕk1,k2 equal to plane waves, we regain

Eq. (4). We thus see that diffractive dissociation (or elastic nuclear breakup) arises from the
momentum transfer to each particle due to elastic scattering, subtracting the momentum transfer
to their center of mass.

The cross section for the diffraction process φi(r) → φf (r) is given by

dσ = ρ(E)

∣∣∣∣
∫

d3rc d3rv φ∗
f (r)φi(r)δ(zc + zv)Sc(bc)Sv(bv) exp

[
i(qc · rc + qv · rv)

]∣∣∣∣
2

,

(7)

where ρ(E)is the density of final states, ρ(E) = δ(Qz)d3qc d3qv/(2π)5, where Q = qc + qv is
the momentum transfer to the center of mass of the projectile. The delta function accounts for
the conservation of the longitudinal momentum of the projectile arising from the use of eikonal
wavefunctions (i.e., no dependence on the longitudinal c.m. scattering).

It is important to notice that the above formula is somewhat different than Eq. (8) of Ref. [29].
In that reference the coordinates r, R were used from the start. One can transform the in-
tegral of Eq. (7) to those variables. The Jacobian of the transformation is equal to one and
d3rc d3rv = d3r d3R, d3qc d3qv = d3q d3Q, where q = βcqv − βvqc is the momentum trans-
fer to the intrinsic coordinates of the projectile. Thus, in the coordinates r, R, Eq. (7) reduces
to

dσ = d3q d2Q

(2π)5

∣∣∣∣
∫

d3r d2bφ∗
f (r)φi(r)Sc(bc)Sv(bv) exp

[
i(q · r + Q · b)

]∣∣∣∣
2

. (8)

The above formula reduces to Eq. (8) of Ref. [29] if one sets βv = 1 and βc = 0. In this
equation, φf (r) can be taken as any final state of the projectile. Thus, it is not only appro-
priate to calculate diffraction dissociation, but also diffraction excitation. Diffraction excitation
occurs when the final state φf (r) is a bound state. If it is a state in the continuum (diffraction
dissociation), then φf (r) should be set to the unity,1 since the part of the wavefunction given
by ScSv exp[i(k′

c · rc + k′
v · rv)] already accounts for the proper wavefunction of the projectile.

A natural improvement of Eq. (7) is to include final state interactions between the core and the
valence particle in the coordinate dependence of φf (r).

1 Neglecting final state interactions. If final state interactions are important, φf (r) is the distortion correction to the
plane wave.
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Since I claim here that Eq. (8) can also be used for calculating excitation cross sections, it
is adequate to show the relation of this approach to the traditional DWBA and semiclassical
methods for nuclear excitation in nucleus–nucleus collisions. We will see that the latter are per-
turbative expansions of the Eq. (8).

3. DWBA and semiclassical methods

On can factorize the S-matrices defined in Section 2 for the interaction of the core and valence
particle with the target in terms of their phase-shifts

χ = − 1

h̄v

∞∫
−∞

dZ V (R). (9)

In the weak interaction limit, or perturbation limit, the phase-shifts are very small so that

Sc(bc)Sv(bv) = exp
[
i(χc + χv)

] � 1 + iχc + iχv

= 1 − i

h̄v

∫
VcT (rc) dzc − i

h̄v

∫
VvT (rv) dzv. (10)

The factor 1 does not contribute to the breakup. Thus, inserting the result above in Eq. (4),
one obtains

A(PWBA) � 1

ih̄v

∫
d3rc d3rv φ∗

f (r)φi(r)
[
VcT (rc) + VvT (rv)

]
exp

[
i(qc · rc + qv · rv)

]
,

(11)

where the integrals over zc and zv in Eq. (10) were absorbed back to the integrals over rc and
rv after use of the delta-function δ(zc + zv). The above equation is nothing more than the plane-
wave Born-approximation (PWBA) amplitude. However, absorption is not treated properly. For
small values of rc and rv the phase-shifts are not small and the approximation used in Eq. (10)
fails. A better approximation is to assume that for small distances, where absorption is important,
Sc(bc)Sv(bv) � S(b), where the right-hand side is the S-matrix for the projectile scattering as a
whole on the target. Using the coordinates r and R, and defining Uint(r,R) = VcT (rc)+VnT (rn),
one gets

T(DWBA) = ih̄vA(DWBA)

�
∫

d3r d3R φ∗
f (r) exp[iq · r]φi(r)Uint(r,R)S(b) exp[iQ · R]. (12)

In elastic scattering, or excitation of collective modes (e.g., giant resonances), the momentum
transfer to the intrinsic coordinates can be neglected and the equation above can be written as

T(DWBA) = 〈
χ(−)(R)φf (r)

∣∣Uint(r,R)
∣∣χ(+)(R)φi(r)

〉
, (13)

which has the known form of the DWBA T -matrix. The scattering phase space now only depends
on the center of mass momentum transfer Q. When the center of mass scattering waves are
represented by eikonal wavefunctions, one has

χ(−)∗(R)χ(+)(R) � S(b) exp[iQ · R]. (14)

This shows that the PWBA and the DWBA are perturbative expansions of the diffraction disso-
ciation formula (4).
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In DWBA (or in the eikonal approximation, Eq. (14)), b does not have the classical meaning
of an impact parameter. To obtain the semiclassical limit one goes one step further. By using
Eq. (12) and assuming that R depends on time so that R = (b, z = vt), the semiclassical scatter-
ing amplitude is given by A

(i→f )

(semiclass) = ∫
d2b a

(i→f )

(semiclass)(b) exp(iQ · b), where

a
(i→f )

(semiclass)(b) = 1

ih̄
S(b)

∫
dt d3r exp(iωif t)φ∗

f (r)Uint(r,t)φi(r), (15)

where Eq. (1) was used (QzZ = ωif t).
The semiclassical probability for the transition (i → f ) is obtained from the above equa-

tion after squaring and integrating it over Q. One gets σ (i→f ) = ∫
d2bP

(i→f )

(semiclass)(b), where

P
(i→f )

(semiclass)(b) = |a(i→f )

(semiclass)(b)|2, with b having now the explicit meaning of an impact parame-

ter. Thus, a
(i→f )

(semiclass)(b), is the semiclassical excitation amplitude. Eq. (15) is well known (for
example, in Coulomb excitation at low energies) except that the factor S(b) is usually set to one.
In high energy collisions it is crucial to keep this factor, as it accounts for refraction and ab-
sorption at small impact parameters: |S(b)|2 = exp[2iχ(imag)], where χ(imag) is calculated with
the imaginary part of the optical potential. The derivation of the DWBA and semiclassical limits
of eikonal methods can be easily extended to higher orders in the perturbation V . The eikonal
method includes all terms of the perturbation series in the sudden-collision limit.

4. Role of absorption and of Lorentz boosts

At this point it is interesting to consider the calculation performed by Feshbach and Zabek [9].
In that work, Eq. (15), or its equivalent PWBA form, Eq. (11), without a proper account of the
strong absorption at small impact parameters (described in Eq. (15) by S(b)), was used to calcu-
late the total cross section for emission of a correlated nucleon pair in peripheral collisions with
heavy ions. Also, interactions without imaginary parts were used. As a consequence, they found
extremely large cross sections; ∼1 barn for 16O + 16O collisions at energies ∼1 GeV/nucleon.
This is certainly inconsistent with perturbation theory. As seen schematically in Fig. 1, the prod-
uct of the S-matrix and the interaction potential implies that the reaction occurs in a narrow
region at “grazing” impact parameters. The width of this region is approximately Δ � 1–2 fm.
The cross section might be written as σ � 2πΔ(RP +RT )P , where P is the average probability

Fig. 1. Schematic diagram showing how the product of the S-matrix and the interaction potential (weighted by the
wavefunction) would limit the cross section to grazing impact parameters.
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for this reaction to occur within the impact parameter interval Δ, and RP (RT ) is the projectile
(target) radius. For light nuclei 2πΔ(RP + RT ) � 300–600 mb. Thus, the probability P violates
unitarity (perturbation theory is invalid) if cross sections of the order of 1 barn are obtained.

Ref. [9] also introduced relativistic corrections to the nuclear potential. This relativistic prop-
erty is most easily seen within a folding potential model for a nucleon–nucleus collision:

V (r) =
∫

dr ′3ρT (r′)vNN(r − r′), (16)

where ρT (r′) is the nuclear density of the target. In the frame of reference of the projectile, the
density of the target looks contracted and particle number conservation leads to the relativistic
modification of Eq. (16) so that ρT (r′) → γρT (r′⊥, γ z′), where r′⊥ is the transverse component
of r′ and γ = (1 − v2/c2)−1/2 is the Lorentz contraction factor, with v equal to the relative
velocity of projectile and target. But the number of nucleons as seen by the target (or projectile)
per unit area remains the same. In other words, a change of variables z′′ = γ z′ in the integral
of Eq. (16) seems to restore the same Eq. (16). However, this change of variables also modifies
the nucleon–nucleon interaction vNN. Thus, relativity introduces non-trivial effects in a potential
model description of nucleus–nucleus scattering at high energies.

Colloquially speaking, nucleus–nucleus scattering at high energies is not simply an incoherent
sequence of nucleon–nucleon collisions. Since the nucleons are confined within a box (inside
the nucleus), Lorentz contraction induces a collective effect: in the extreme limit γ → ∞ all
nucleons would interact at once with the projectile. This is often neglected in pure geometrical
(Glauber model) descriptions of nucleus–nucleus collisions at high energies, as it is assumed that
the nucleons inside “firetubes” scatter independently.

Assuming that the nucleon–nucleon interaction is of very short range so that the approxima-
tion vNN(r − r′) = J0δ(r − r′) can be used, one sees from Eq. (16) that V (r), the interaction
that a nucleon in the projectile has with the target nucleus, also has similar transformation prop-
erties as the density: V (r) → γV (r⊥, γ z), i.e., V (r) transforms as the time-component of a
four-vector. In this situation, the Lorentz contraction has no effect whatsoever in the diffraction
dissociation amplitudes, described in the previous sections within the eikonal approximation.
This is because a change of variables Z′ = γZ in the eikonal phases leads to the same result as
in the non-relativistic case, as can be easily checked from Eq. (9). Of course, the delta-function
approximation for the nucleon–nucleon interaction means that nucleons will scatter at once, and
Lorentz contraction does not introduce any additional collective effect. This is not the case for
realistic interactions with finite range. Thus, nuclear structure studied with high-energy nucleus–
nucleus collisions is immensely complicated by retardation effects and is not well understood.

5. Emission of correlated pairs in peripheral reactions

Lets us now consider the emission of correlated pairs in peripheral collisions. The projectile
is now a three-body system, with notation for the coordinates as shown in Fig. 2. Following the
same arguments used in Section 2, the wavefunction of a three-body projectile in the initial and
final states is given by

Ψi = φi(r1, r2) exp
[
i(Kc · rc + k1 · r1 + k2 · r2)

]
,

Ψf = φf (r1, r2)Sc(bc)S1(b1)S2(b2) exp
[
i(K′

c · rc + k′
1 · r1 + k′

2 · r2)
]
, (17)

where now φi,f (r1, r2) are the initial and final intrinsic wavefunctions of the correlated nucleon–
nucleon pair as a function of their intrinsic coordinates r1, r2. Assuming that the nucleon mass
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Fig. 2. Coordinates used in text for the three-body projectile interacting with the target. The coordinate r1 is not shown
for simplicity.

is much smaller than that of the core, one can replace rc � R, where R is the center of mass of
the projectile.

Following the same steps as before, a relation similar to Eq. (8) can be obtained for the cross
section for the energy absorption by a correlated pair (when final state interactions are neglected):

dσ = d3q1 d3q2 d2Q

(2π)8

×
∣∣∣∣
∫

d3r1 d3r2 d2bφ∗
f (r1, r2)φi(r1, r2)S(b)S1(b1)S2(b2)

× exp
[
i(q1 · r1 + q2 · r2 + Q · b)

]∣∣∣∣
2

, (18)

where Q = K′
c − Kc. If the intrinsic nucleon coordinates are denoted by r′

i = ri − R, one has

bi =
√

b2 + r2
i sin2 θi + 2rib sin θi cos(φ − φi).

The above relation can be used for the emission of the nucleon pair. Neglecting final state
interactions and assuming that the core is not observed (i.e., integrating over Q), one gets

dσ = d3q1 d3q2

(2π)6

∫
d2b

∣∣S(b)
∣∣2

×
∣∣∣∣
∫

d3r1 d3r2 φi(r1, r2)S1(b1)S2(b2) exp
[
i(q1 · r1 + q2 · r2)

]∣∣∣∣
2

. (19)

In order to proceed further one needs a model wavefunction for the correlated pair, φi(rn, rn′).
The wavefunction used will have the form

φi(r1, r2) = φα(r1)φβ(r2)fcorr(r, rc), (20)

where r = r1 − r2, φα(r) = φnljm(r) are single particle wavefunctions with quantum numbers
α = nljm, and fcorr(r, rc) is a function for the nucleon pair distance r, which also depends on
a two-particle correlation parameter rc so that fcorr(r, rc) → 0 as rc → 0. The effective corre-
lation function fcorr(r, rc), the so-called Jastrow factor [32], is a statistical average of the Pauli
correlation function [31] and the correlation function for the dynamical short-range (e.g., hard
core) correlation.
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As argued in Ref. [33], the true ground-state wave function of the nucleus containing corre-
lations coincide with the independent particle, or Hartree–Fock wavefunction, for interparticle
distances r � rheal, where rheal � 1 fm is the so-called “healing distance”. This behavior is a
consequence of the constraints imposed by the Pauli principle. Nucleons are kept apart at short
distances, while for distances beyond several K−1

F ’s there is little effect. Consequently, nucleon–
nucleon collisions at short distances are rare in nuclear matter, and because the strongest part of
the interaction is at short distances, the effective force between the nucleons is much less than
in free space. For example, if a nucleon in 16O felt the cumulative sum of 16 nucleon–nucleon
potentials, it would feel a potential of ∼1400 MeV; yet empirically it is known that the effective
potential felt by the nucleon in the middle of the nucleus is only ∼40–50 MeV deep.

Although, in general, the correlation function fcorr(r, rc) may depend on the isospin and spin
quantum numbers of the two-body channel, we will assume for simplicity that it is a plain,
state independent, Jastrow factor [32]. The effects of nucleon–nucleon correlations in nucleus–
nucleus collisions have also been studied in several works. For example, in Ref. [34] short-range
correlations were shown to play an important role in nucleon–nucleus collisions at intermediate
and high energies.

The two-particle correlation distance, rc, is a combination of four contributions [34]

rc = rPauli + rSRD + rPSR + rCM, (21)

where rPauli is due to Pauli exclusion-principle correlations, rSRD is related to short-range dy-
namical correlations, rPSR is due to a combination of the Pauli and the short-range dynamical
term, and rCM is due to center-of-mass correlations [35]. An approximate set of expressions for
each of these terms is given by

rPauli = 1

2

(
1 − 5

A
+ 4

A2

)
3π

10KF

1

1 + 8
5BK2

F

,

rSRD = 1

2

(
1 − 2

A
+ 1

A2

)√
π

b3

b2 + 8B
,

rPSR = 1

2

(
1 − 5

A
+ 4

A2

)
3π

10

(
K2

F + 5

b2

)−1/2[
1 + 8B

(
K2

F

5
+ 1

b2

)]−1

,

rCM =
(

1 − 2

A
+ 1

A2

)
lc, (22)

where A and KF = (1.5π2ρ)1/3 � 1.36 fm−1 are the target number and the Fermi momentum
of the target nucleus, respectively. b is a short-range dynamical correlation, b � 0.4 fm, B is
the finite-range parameter of the nucleon–nucleon elastic t-matrix, B � 0.62 fm2 (for collisions
around 200 MeV/nucleon), and lc is the effective “correlation length”, lc � 1.3A−5/6 fm. For
proton+12C collisions at 200 MeV/nucleon this set of parameters yields, rPauli � 0.3 fm, rSRD �
0.01 fm, rPSR � 0.0016 fm, rCM � 0.18 fm, and rc � 0.5 fm. This in fact overestimates the
correlation distance. A more detailed calculation, using the parameters B , b and lc from Ref. [34]
shows that rc has an appreciable dependence on the collision energy, as shown in Fig. 3 for
protons incident on 12C. Thus, in nuclear reactions, rc can vary substantially with the collision
energy and with mass numbers.

The estimates done above show that the main contribution to the correlation distance arises
from the Pauli principle. Let us assume a correlation function of the form

fcorr(r) = 1 − exp

[
− (r1 − r2)

2

2

]
. (23)
rc
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Fig. 3. Dependence of the short-range correlation distance, rc , on the proton energy in the reaction p + 12C.

This correlation function implies that the pair wavefunction decreases for small relative distances,
r = |r1 − r2| � rc. The correlation function fcorr(r, rc) goes to one for large values of r and to
zero for r → 0. In nuclear structure calculations, the effect of correlation, introduced by the
function fcorr(r, rc), becomes large when the correlation distance parameter rc becomes large,
and vice versa. Here, only the effects of short-range correlations are studied and it would be man-
ifest in momentum distributions of highly energetic nucleons, as discussed in the introduction,
and explicitly shown in the next section. It is important to notice that the Gaussian correlation
function, Eq. (23), is unrealistic. Indeed, the short-range repulsion is at the origin of the decrease
of the pair wavefunction for small relative distances. At the same time, there will be an increased
probability to find the nucleon pair at medium internucleon distances. A two-Gaussian parame-
terization is needed to quantify this well-known effect of short-range correlations. For simplicity,
only the simple parameterization of Eq. (23) is used in this work.

Inserting Eqs. (20) and (23) in Eq. (19) and integrating over the pair momenta, one gets

σSR = (C2S)lj (C
2S)l′j ′

(2j + 1)(2j ′ + 1)

∑
m,m′

∫
d2b

∣∣S(b)
∣∣2

×
∫

d3r1 d3r2
∣∣φnljm(r1)S1(b1)φn′l′j ′m′(r2)S2(b2)fcorr(r, rc)

∣∣2
. (24)

The cross section has been averaged over the initial magnetic quantum numbers of the nucleons.
If the correlation function were equal to the unity, the integrand would be the product of the prob-
abilities to remove an uncorrelated nucleon, with quantum numbers nljm. The later probability
is given by

∫
d3r |φnljm(r)Si(b)|2.

The spectroscopic factors in Eq. (24) have a complex dependence on the angular momenta of
the nucleon pair. The correlations arising from angular momentum coupling have been studied
in Ref. [37]. Here we will assume a simple combinatorics so that (C2S)lj = n(n − 1)/2, where
n is the number of nucleons in the valence shell.

We see from the equations above that the cross section for the emission of a correlated pair
is smaller than that for the emission of independent particles, since fcorr(r, rc) � 1. Most part
of the integrand will have fcorr(r, rc) ∼ 1, except for the small region of volume N r3

c , where
N is a number of order of one. Conservative estimates (using rc = 0.3–1 fm), imply that the
cross section for emission of a correlated pair could not exceed 100 mb, in contrast to the results
obtained in Refs. [9,10]. I will show this for specific reactions in the following section.
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6. Results and discussions

The numerical calculations have been carried out for the systems 12C + 12C at 250 MeV/

nucleon and 11Li + 9Be at 287 MeV/nucleon. In both cases, there are some experimental data
available for two-nucleon removal. This also allows for the study of the influence of a halo
wavefunction (11Li) in the results. The wavefunctions were calculated by using a Woods–Saxon
potential with a spin-orbit and Coulomb potential,

V (r) = Ur(r) + Us(r) + UC(r), (25)

where

Ur(r) = Vr

(
1 + eρr

)−1
, Us(r) = Vs(l · s)

(2 fm2)

r

d

dr

(
1 + eρs

)−1
, (26)

UC(r) is the potential for a uniformly charged sphere with charge Z − 1 (0, for neutrons) and
radius RC , and ρi = (r − Ri)/ai .

For protons in the 1p3/2 orbital of 12C the separation energy is 15.96 MeV (the two-proton sep-
aration energy is 27.18 MeV), which can be reproduced with the parameters Vr = −57.41 MeV,
Vs = −6.0 MeV, Rr = RC = Rs = 3.011 fm, ar = 0.52 fm and as = 0.65 fm.

The reactions and structure of the two-neutron halo nucleus 11Li have attracted much interest.
It is a Borromean system in the sense that although the three-body system, consisting of 9Li
and two neutrons, forms a bound state, none of the possible two-body subsystems have bound
states. Hence the stability of 11Li is brought about by the interplay of the core–neutron and
the neutron–neutron interactions, which must lead to a strongly correlated wave function with
the two neutrons spatially close together. For the calculation here we will approximate the 11Li
ground state by an inert 9Li core coupled to a neutron pair in a (2s 1

2 )2 state, although the most
probable configuration is an admixture of neutron pairs in (2s 1

2 )2, (1p 1
2 )2, and (1d 5

2 )2 states
[38,39]. However, the former assumption allows for a simpler calculation of the correlated-pair
emission. The potential parameters are adjusted to obtain the single-particle wave functions,
reproducing the effective neutron separation energies. The two-neutron separation energy is 0.3
MeV. From the systematics in Fig. 6 of [40], the estimated 10Li average excitation energies is 0.2
MeV for the single-particle state. Taking this value for two-neutron coupling to the 9Li core, one
arrives at an effective neutron separation energy of 0.5 MeV. This binding energy for the n + 10Li
system can be reproduced with the potential parameters Vr = −42.93 MeV, Vs = −6.0 MeV,
Rr = RC = Rs = 3.25 fm and ar = as = 0.65 fm.

The single-particle wavefunctions obtained in this way were used in Eq. (19) to calculate the
momentum distributions of the correlated pair. The integrals in Eq. (24) were performed using
a method similar to that described in the appendix of Ref. [39]. The S-matrices (and optical
potentials) were calculated by using the “t–ρρ” interaction, as described in Refs. [34,36]. This is
the same approximation used in Ref. [5].

In heavy ion physics it is common to define a correlation function by means of

C(q1,q2) =
(

dσ

d3q1 d3q2

)/(
1

σ

dσ

d3q1

dσ

d3q2

)
, (27)

where the cross sections in the denominator are for the emission of a single nucleon. An accu-
rate measurement of rc requires the measurement of this correlation function for back-to-back
(or nearly) pair emission. Until now, heavy ion data refer mainly to small relative momentum
transfers. Data would only be interesting for the present purposes if the triggering conditions
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Fig. 4. Contour plots of dσ/dq1 dq2 for the collision 12C + 12C at 250 MeV/nucleon (upper panels) and 11Li + 9Be at
287 MeV/nucleon (lower panels), as a function of p1 = h̄q1 and p2 = h̄q2. The left (right) panels are for rc = 0.4 (1) fm.
The numbers in the plots indicate the cross section, dσ/dq1 dq2, in units of 10−5 [mb/(MeV/c)]2.

were changed and if special attention was paid to back-to-back emission. In the present work,
dσ/dq1 dq2, instead of C(q1,q2), will be used for the study of emission of correlated nucleons.

In Fig. 4 contour plots for dσ/dq1 dq2 are presented for the collision 12C + 12C at 250
MeV/nucleon and 11Li + 9Be at 287 MeV/nucleon, as a function of p1 = h̄q1 and p2 = h̄q2.
The nucleons are assumed to be emitted back-to-back, the nucleon 1 at 0◦ and nucleon 2 at 180◦
with respect to the beam axis, respectively. The upper panels are for the C+C collision, while the
lower panels are for the Li + Be collisions. The left (right) panels are for rc = 0.4 fm (rc = 1 fm).
The numbers in the plot indicate the cross section, dσ/dq1 dq2, in units of 10−5 [mb/(MeV/c)]2.
One notices a strong correlation between the nucleon momenta, resulting from the phonon rela-
tionship, Eq. (1). The effect of the phonon dispersion relation is to produce a ridge in the cross
section.

To obtain a greater physical insight, I will now use the PWBA approximation as in Eq. (12)
(with S(b) = 1), so that, instead of the integrals in Eq. (19), one needs now to calculate

T(PWBA) =
∫

d3r1 d3r2 φi(r1, r2)
[
V1(r1) + V2(r2)

]
exp

[
i(q1 · r1 + q2 · r2)

]
. (28)

Let us assume that the potentials V1,2 are given by Gaussian functions, i.e., V1,2 = V
(0)
1,2 ×

exp(−r2
1,2/λ

2) and similarly for the wavefunctions, i.e., φα,β = N exp(−r2
1,2/Δ

2). In this case it
is straightforward to perform analytically all the integrals in Eq. (28). If one further assumes that
the correlation distance, rc , is much smaller than the dimensions of the uncorrelated wavefunc-
tions and of the potential, i.e., if rc � Δ,λ, one gets



168 C.A. Bertulani / Nuclear Physics A 767 (2006) 155–170
T(PWBA) = (
V

(0)
1 + V

(0)
2

) (πN2rcΔ/
√
A )3

8

[
exp

(
−q2

1 r2
c

4

)
+ exp

(
−q2

2 r2
c

4

)]

× exp

[
− Δ2

16A |q1⊥ + q2⊥|2
]

exp

[
− Δ2

16A

(
q1z + q2z − ω

v

)2]
,

where B is the separation energy of the pair and A =(1 + Δ/λ)/2. Therefore, the cross section
is given by

dσ

dq1 dq2
∝ q2

1q2
2 exp

[
−Δ2

8A

(
q1z + q2z − ω

v

)2]

× exp

[
−Δ2

8A |q1⊥ + q2⊥|2
][

exp

(
−q2

1 r2
c

4

)
+ exp

(
−q2

2 r2
c

4

)]2

. (29)

Now one can easily understand the physics in Fig. 4 by identifying the terms of the above
equation. The first term is due to conservation of the momentum along the beam direction, which
yields the dispersion relation, Eq. (1). Note that in the derivation of Eq. (19) it was assumed that
the core recoils with the same momentum, i.e., QZ � ω/v = −(q1z + q2z). The second term
is due to elastic scattering of the pair on the target in the direction transverse to the beam. In
Eq. (29) both the first and the second terms imply that the momentum distribution of correlated
pair is such that q1 + q2 = ω/v, i.e., q1 � −q2, as expected for small rc . Also according to these
terms, the distribution is smeared by the range of the independent wavefunctions of the pair,
i.e., 〈q2

1,2〉 � 1/Δ2. However, the last term implies a smearing, or spreading, of the momentum

distribution by a much larger factor (assuming rc � Δ), i.e., 〈q2
1,2〉 � 1/r2

c . This explains all
physics presented in Fig. 4. The second exponential term in Eq. (29) plays no role in the results
presented in Fig. 4, since it is identical to one.

As discussed above, the location of the ridges in Fig. 4 is a kinematical property of the phonon
absorption mechanism, which is independent of the collision energy. Thus, it should be ob-
servable in intermediate energy collisions (Elab � 100 MeV/nucleon), as well as in relativistic
collisions. One also observes that the momentum distributions are narrower for correlated-pair
emission from a halo nucleus. This is due to the low binding energy, which yields an extended
wavefunction of the nucleons in the halo. This is also seen from the first exponential term of
Eq. (29), since the two-proton separation energy for 12C is 27.16 MeV, while the two-neutron
separation energy in 11Li is 0.3 MeV. The effective value of Δ is much smaller for the first case,
leading to a larger spreading of the momentum distributions. However, the last term in Eq. (29)
is still the dominant one.

It would be interesting to try to observe the contribution of the emission of correlated pairs
in singles spectra. This can be obtained by integrating dσ/dq1 dq2 over one of the two nucleon
momenta. This is shown in Fig. 5 for C + C and Li + Be collisions, using rc = 0.7 fm. One
observes that the peak in the singles spectra occurs at p � h̄/rc , as expected from the arguments
presented above. This should be visible in the spectra of nucleons from knockout reactions as
a bump at high nucleon momenta. The position of the bump would be a direct reading of the
short-range correlation distance. Notice, however, that such a bump might not be noticeable
because it is superposed to a large background of knockout nucleons from stripping reactions.
Only by doing a measurement of back-to-back pair emission, this signature of short-range pair-
correlations could be assessed.

The total cross section for the emission of correlated pairs arising from short-range corre-
lations can be calculated from Eq. (24). Assuming rc = 0.7 fm, the total cross section for the
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Fig. 5. Singles spectra for the momentum distribution of a nucleon due to the correlated-pair mechanism.

emission of high-energy correlated pairs in C + C collisions at 250 MeV/nucleon is σcorr =
0.61 mb. The experimental value for two-proton knockout in this collision is 5.88 ± 9.70 mb.
For 11Li + 9Be at 287 MeV/nucleon the correlated-pair cross section is σcorr = 4.1 mb. These
cross sections are much smaller than those obtained in Refs. [9,10]. For reasons which were ex-
plained in the paragraph preceding Eq. (16), the results obtained here are much more reasonable.
These cross sections are also much smaller than those for one-nucleon knockout reactions (see,
e.g., Ref. [5]). They are also only one of the contributions (i.e., only from diffraction dissociation)
of the two-proton removal cross section. Another contribution (stripping) has not been consid-
ered here. Stripping would not contribute to back-to-back nucleon emission, with nearly zero
total momentum of the pair, but is responsible for the largest part of the two-nucleon knockout
total cross section.

In conclusion, I have shown that when a projectile reacts with a light nuclear target, the short-
range correlations contribute to the emission of high-energy nucleons which can be visible in
measurements of back-to-back emission of nucleon pairs. More experiments and also the de-
velopment of a more complete reaction theory are interesting challenges. The theoretical results
suggest that the pattern and absolute magnitudes of the partial cross sections can provide spe-
cific information on the detailed nature of the states involved. This is particularly important in
the case of reactions involving neutron-rich and proton-rich nuclei, far from the stability valley,
for which only nuclear reactions are presently capable of probing their internal structure. The
results presented here will be valuable as a guide to extend these studies towards drip line nuclei
and look for effects which cannot be probed in (e, e′) scattering due to the lack of experimental
facilities for electron scattering on drip line nuclei.
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