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Abstract

We investigate induced oscillations by the gravitational field of a fast stellar object, such as a neutron
star or a black-hole in a near miss collision with another star. The non-adiabatic collision condition
leads to possible large amplitude oscillations in the star. We show that for a solar-type star a resonant
condition can be achieved by a fast moving stellar object with velocity in the range of 100 km/s to 1000
km/s, passing at a distance of a few multiples of the star radius. Although such collisions are rare, they
are more frequent than head-on collisions, and their effects could be observed through a visible change
of the star luminosity within a few hours.

In addition, we have studied a set of equations of state for the description of neutron stars. This will
be useful for an extension of the present work to stellar collision models which include the dependence
of the stellar oscillations on the compressibility of compact stars.
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1 Introduction and Motivation

1.1 Existing Stellar Oscillation Models

There have been a number of attempts to model stellar oscillations in astrophysics [1] [2] [3]. Most of these
methods are descriptive rather than predictive, and attempts to predict stellar oscillations caused by an
interaction between two or more stars have been relatively unexplored. What research has been done in
predicting oscillations is mostly dealing with the interactions between two stars in a binary system or the
process of binary formation [4] [5] [6]. In this study, we predict stellar oscillations induced during a close
collision between stars, or between a black-hole and a star. This phenomenon has not been much explored
in existing literature.

There are a variety of very precise models to describe stellar oscillations which include a full hydrody-
namical treatment of a star’s matter. By using such models one can for example track small oscillations in
the Sun, where they can be observed to a very high precision (over 1000 separate oscillation modes have
been observed [7]). However, if a close collision with a fast stellar object were to occur with our Sun, it
would almost certainly emit enough radiation or alter the Earth’s to destroy life on the planet. We are here
for a long time, thus such close encounters are rare and our concern is really with the probabilistic distri-
bution of such events in the galaxy and beyond it. The high degree of accuracy obtained with elaborated
hydrodynamical models is not necessary since we have been so far unable to observe such collision-driven
oscillations, and any observation would be restricted at best to very dramatic phenomena with the emission
of large amounts of radiation. For this reason, and for computational simplicity, we consider a simple model
for “bulk stellar oscillations” based on a incompressible fluid, rather than borrowing one of the previousy
developed hydrodynamical models.

1.2 Kepler Orbits

There are three types of Kepler orbits which describe the trajectories of two gravitationally interacting
massive objects. These three trajectories are differentiated by a parameter called eccentricity, e, which
describes how “curved” the path is:

1. Elliptical Orbit (e < 1)

2. Parabolic Trajectory (e = 1)

3. Hyperbolic Trajectory (e > 1).

As the names suggest, the elliptical orbit follows the shape of an ellipse, the parabolic trajectory a parabola,
etc. A circular orbit is the most “curved” orbit possible, and is a special type of elliptical orbit where e = 0.
As e takes on higher values, the trajectory becomes less curved, eventually looking like a straight line. This
is important, first of all, because while the first forms a closed loop, the latter two are called “open” or
“unbound” and objects involved in such trajectories will continue moving out to an infinite distance. As
mentioned earlier, the prediction of stellar oscillation has up until now been almost exclusively confined to
the first two (more about this in Section 2.6).

1.3 Stars

Since we are interested in a largely unexplored phenomenon, we will use a much simplified stellar model.
In our model, stars are assumed to be homogenous and composed of incompressible matter. Although this
is not the most physically accurate stellar model, it will vastly reduce the complexity of the problem and
give a reasonable estimate for the bulk properties of stars involved in the collision. Our adopted model is
developed in the most general way so that it can be applied to any stellar object, including compact stars such
as white dwarfs and neutron stars. Although in the case of a nearby collision of neutron stars, the gravitation
may be so high that relativity would be required to solve the problem accurately. We do not consider such
relativistic corrections, implying that our results for neutron stars collisions may be significantly less accurate
than results for other types of star. The scope of this project covers the following different types of stars,
each of which has a unique size, mass, and composition:
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1.3.1 Main Sequence (MS) Star

Main sequence stars make up the majority of stars in the universe. MS stars vary widely in size and mass
(masses ≈ 0.1 − 40M�, radii ≈ 0.1 − 18R�). For the most part, MS stars follow the laws of an ideal gas,
and have an equation of state based on the ideal gas law. However, some MS stars in the high and low size
ends have a slightly different structure and equation of state than their average counterparts. For instance,
extremely large stars are supported strongly by radiation pressure, and solar-type stars are more supported
by gas pressure. Consequently, there is much variation in the masses and radii of MS stars.

1.3.2 White Dwarf (WD)

Much smaller and more dense than a MS star (mass ≈ 0.6− 1.4M� , radius ≈ 0.01R�), a white dwarf is the
eventual end product when an average-sized MS star exhausts all its hydrogen and helium fuel. In all but
the most massive stars, at this point nuclear reactions cease to occur, so the star cools and contracts. Unlike
MS stars, which are supported against gravity by gas pressure, white dwarfs are supported by degenerate
particle pressure from quantum mechanics. In short, the Pauli exclusion principle states that no two electrons
may occupy the same space. As gravity compresses the particles in the star, the electrons are forced closer
and closer together, but their resistance against occuping the same state opposes the attractive force of
gravity. This results in a star with very different properties and a different density distribution than the
main sequence.

1.3.3 Neutron Star (NS)

Even more dense than a white dwarf (mass ≈ 1.4 − 3M�, radius ≈ 12km), a neutron star is the eventual
end product in the lifecycle of a very large star. Similar to WD, NS are supported against gravity by the
degenerate pressure of nuclear matter, and follow a unique equation of state. The matter in neutron stars is
so dense that the non-relativistic equation of hydrostatic support is no longer valid. Instead, a specialized
equation called the Tolman-Oppenheimer-Volkoff (TOV) equation has been derived from Einstein’s field
equations to produce a solution with relativistic corrections which is applicable to a NS.

Our initial intention was to focus on modeling neutron star oscillations. However, preliminary results
showed us that the effect on NS would be small, due to the high stiffness (incompressibility) of such stars.
With this realization, we shifted the focus onto sun-like main sequence stars, which are far less dense and
therefore respond more to the interactions of interest. I should note that conditions inside a NS are so exotic
that nothing like NS matter can be duplicated on Earth, so much of the internal dynamics of these objects
remains a mystery. As such, NS are really the most interesting of the stars considered here, although their
limited response to oscillation slightly shadows this fact. My interest in neutron stars began long before
this project was initialized, when I worked with Dr. Bertulani and Dr. Newton on modeling the large-scale
properties of NS based on the equation of state. Since the equation of state determines certain large-scale
properties (mass and radius) of NS, and also has an impact on the oscillations studied here, a summary of
my previous work on equations of state for neutron stars has been included in Section 4.

1.3.4 Black Hole (BH)

Although not technically a star, a black hole is a massive astronomical object which is suspected to be a
remnant from the core collapse of an extremely massive star, with ms & 8M�. In general, BH are defined
by their famous property that the escape velocity of any particle (including light) has to be greater than
the speed of light. That is, a BH is so massive that even light cannot escape its gravity. According to the
No-Hair Theorem, the only observable properties of BH are mass, electric charge, and rotation. Black hole
oscillations (if they occur) are therefore impossible to observe, so a black hole can only serve as the passing
massive object in our model, where it is characterized only as a point mass with some translational velocity.

1.4 Hypervelocity Stars

Several stars in our galaxy have been observed with velocities of 1000 km/s or faster [8]. This is to be
compared with the average stellar velocity, which is on the order of 100 km/s. When one of these hypervelocity
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Figure 1: Schematic view of the effect of gravitation on a mass element of a star due to the passage of a fast
stellar object.

stars passes nearby another main sequence star, interesting things can happen. Because in this case (see
estimates below) the natural harmonic oscillation frequency of the star is around the same value as the
inverse of the collision time of a hypervelocity star, the oscillations due to this interaction will be closer in
resonance with the gravitational interaction than in a collision with a smaller stellar velocity.

2 Forced Oscillations by a Time-Dependent Gravitational Force

2.1 Tidal Force

To begin with, we consider Newton’s equation for universal gravitation between two bodies

F(r) = −GMdms

|r|2
r̂, (1)

where G is the gravitational constant, M is the mass of the fast stellar object (FSO), dms is the mass the
volume element within the star, and r is the vector coordinate between M and dms.

The gravitational potential is the potential energy per unit mass at a certain location in the system, i.e.,

V (r) = −GM
|r|

. (2)

As shown in figure 1, we define the vector R(t) as the distance between the center of mass of the FSO and
the star, and x to be the distance from the center of the star to the mass element dms of the star. This
allows us to express the gravitational potential at position x inside the star as

V (x, t) = − GM

|R(t)− x|
. = − GM√

R2(t)− 2x ·R(t) + x2
. (3)

Since R > x at all times (the FSO does not pass inside in the star), this equation can be expanded into
a series of Legrende polynomials of degree l,

V (x, t) = −GM
∞∑
l=0

xl

Rl+1(t)
Pl(cos γ). (4)

According to the addition theorem of spherical harmonics,

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y ∗lm(R̂)Ylm(r̂), (5)

5



where Ylm are the spherical harmonic functions. Combining these two equations,

V (x, t) = −GM
l∑

m=−l

4π

2l + 1
Ylm(R̂(t))

xl

Rl+1(t)
Y ∗lm(x̂). (6)

This is a sum of terms with multipole of degree (or order) l, following the convention of spherical harmonics.
The lower multipoles are named according to 2l: monopole, dipole, quadrupole, octopole, etc. In general,
the lower multipoles have a larger magnitude (due to the 1/Rl term). Hence, we will focus on the lowest
multipole orders as we will consider small amplitude oscillations (in fact, only the quadrupole, l = 2). The
zero-th order can be negelected because it will only induce the center of mass motion of the whole star. For
cylindrically symmetric mass distributions, the l = 1 dipole term, will also disappear. Thus, the lowest order
term is l = 2, quadrupole or tidal potential. Higher multipole degrees are possible, such as the octupole, but
they are orders of magnitude smaller and therefore will be neglected in this study.

We give an idea on how the tidal force shows up from Eq. (6). It is easy to see from this equation that
for the quadrupole order1 only the squares of the intrinsic coordinates x ≡ (x, y, z) with show up,

V (x, t) ∼ GMx2

R3(t)
, (7)

which leads to the potential energy dU of masses M and dms

dU(x, t) = V (x, t)dms ∼
GMx2dms

R3(t)
, (8)

from which we can calculate the force on the mass element dms, using the fact that dFx = ∂x(dU):

dF (x, t) ∼ GMxdms

R3(t)
. (9)

The force per unit mass dms, will then be given by

f(x, t) ∼ GMx

R3(t)
. (10)

This is the origin of the tidal force, which tends to elongate the mass distribution towards the poles [9]. The
same treatment can be used for all cartesian components.

A proper account for all factors appearing in Eq. (6) can be obtained by applying F = −∇U directly to
it after integration over the whole density of the star, i.e.,

Ftot(t) = −∇ξ
∫
V (x, t)ρ(x, t)d3x, (11)

where x denotes the intrinsic coordinate of the mass element dms ≡ ρ(x)d3x and ξ denotes the average
displacement of mass within the whole star. For an incompressible fluid, only the parts of the star near the
poles with contribute to the effective mass for the oscillations (as shown in figure 2). In fact, ξ will measure
the mass displacement from the star’s spherical shape equilibrium. The exact value of this effective mass and
displacement from equilibrium depends on the model one adopts for the star, including its hydrodynamical
behavior. Eq. (10) will reduce to a force per effective mass. In the incompressible fluid model the effective
mass Ml is given below. To alleviate the notation, we next will use x instead of ξ for its displacement from
equilibrium.

2.2 Driven Oscillator Model

We consider the material within a star being pulled away from its equilibrium position to undergo harmonic
oscillation like a mass attached to a spring. The relevant forces acting on this “spring” are:

1Here we only discuss one dimension for simplicity.
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Figure 2: Schematic diagram illustrating the meaning of effective mass M and effective displacement x in
the case of an exaggerated deformation.

• Fg, the gravitational force exerted by the passing object pulling the mass apart from their equilibrium
position - Eq. (9);

• Fs, the combination of internal forces pulling the star’s matter back into equilibrium;

• Fv, the frictional force caused by the viscosity of stellar gas and radiation, which acts to slow down
the oscillation.

During the collision event, these forces are unbalanced, which causes a net acceleration a on the matter in
the star. According to Newton’s 2nd Law:

Fg − Fs − Fv = ma, (12)

where m is the amount of mass in the star involved in the oscillation (the effective mass, mentioned above).
According to Hooke’s Law for a driven damped harmonic oscillator, the restorative force Fs is defined as

being proportional to the displacement, or

Fs(t) = −kx(t), (13)

where k is called the stiffness parameter, and is dependent on the internal properties of the star. The
frictional force is given by

Fv(t) = −γẋ(t), (14)

where γ is the frictional parameter and the notation ẋ = ∂
∂t (x).

Using the definitions of each of the forces in equation (12), we have

Fg(t) = mẍ(t) + γẋ(t) + kx(t), (15)

where ẍ = ∂2x/∂t2 = a(t). Now, if we define the force per unit mass f(t) = Fg(t)/m, and the variables

β = γ/2m and ω0 =
√
k/m, then we get

f(t) = ẍ(t) + 2βẋ(t) + ω2
0x(t). (16)

This equation describes a driven damped harmonic oscillator which will be the basis of our stellar oscillation
model.
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2.3 Inertial and Stiffness Parameters

In our simplified stellar model, a star is assumed to be composed of incompressible matter with a uniform
density of ρ = 3ms/(4πr

3
s), where ms is the mass and rs is the radius of the star at equilibrium. This model,

originally due to Lord Kelvin can be used to describe multipole oscillations in an incompressible homogenous
sphere [10]. At multipole order l, the natural harmonic frequency is given by

ω2
0 =

Kl
Ml

=
2l(l − 1)

2l + 1

Gms

r3s
, (17)

where Ml is the inertial parameter (effective mass, see Section 2.1), and Kl is the stiffness parameter. For
the quadrupole order l = 2, we get the following in terms of the star’s average density ρ0,

ω2
0 =

4

5

Gms

r3s
=

16πGρ0
15

. (18)

For small amplitude multipole oscillations the inertia parameter has been deduced in Ref. [11],

Ml =
3

l(2l + 1)
msr

2
s . (19)

which implies an effective mass equal to

M2 =
3msr

2
s

10
. (20)

The stiffness parameter becomes

K2 = ω2
0M2 =

6Gm2
s

25rs
. (21)

These values of the effective mass and stiffness parameter can now be used in equation (16) with m→M2.
The stiffness parameter is intrinsic to ω0.

2.4 Friction Parameter

Inside the star, there are a number of sources of friction [12],

• Gas Viscosity: γg ∼ T 5/2,

• Radiative (Jeans) Viscosity: γr ∼ T 4,

• Turbulence: γt = Reγr/3,

where T is the local temperature of the star and Re is the Reynolds number, which is dependent on the
mean free path and velocity of individual particles. The total friction parameter γ is the sum of all three
contributions. For typical main sequence stars, the radiative portion dominates over the gas portion in
the star’s interior, but these two parts are more balanced in the outer layers. At high Reynolds numbers
(Re ∼ 103 − 104), turbulence can occur which will then dominate all other forms of friction. In short,
these equations require a much more precise stellar model which includes a radial temperature gradient and
information on the motion of individual particles for the star. Instead, we adopt a simpler model of the form

γ = AγM2ω0, (22)

with Aγ taken as a free parameter. We are then free to choose value for Aγ which resembles approximately
the conditions in a star. In the case of the results presented here, we use Aγ = 0.1 and the results do not
change appreciably much in the range Aγ = 0.1− 0.5.
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Figure 3: Collision diagram for a hyperbolic trajectory.

2.5 Displacement Amplitudes and Energy Transfer

We now define a 2D coordinate system consisting of two orthogonal directions denoted longitudinal l and
transverse t such that the l-direction is parallel to the FSO’s trajectory at time t = 0, and the t direction is
perpendicular to it and runs through the center of the star, as shown in figure 3. We then split the force f
in Eq. (16) into longitudinal and transverse components, denoted by fl and ft, respectively. The magnitude
of these forces are fl = f cosφ and ft = f sinφ, where φ(t) is the angle between the longitudinal direction
and R. In general, we will use the subscript n to refer to both the l and t components.

In order to deal with the multiple derivatives of x included in equation (16), we perform a Fourier
transform on xn(t) and fn(t). The full derivation is described in detail in Appendix A. We Fourier transform
f(t) and x(t) so that

f̃n(ω) =
1√
2π

∫ ∞
−∞

fn(t)eiωtdt, (23)

which leads to the solution of Eq. (16) as

f̃n(ω) = [ω2
0 − ω2 − 2iβω]x̃n(ω), (24)

or

x̃n(ω) =
f̃n(ω)

ω2
0 − ω2 − 2iβω

. (25)

Its magnitude squared is

|x̃n(ω)|2 =
f̃n(ω)

(ω2
0 − ω2 − 2iβω)

f̃∗n(ω)

(ω2
0 − ω2 + 2iβω)

=
|f̃n(ω)|2

(ω2
0 − ω2)2 + 4β2ω2

. (26)

The values of ω carried by the time-dependent gravitational field close to ω0 will have a much larger (res-
onating) effect on the star, while values of ω far from ω0 have little significance.

The total energy transferred onto the star in the collision is given by

∆E =
∑
n=l,t

∫ ∞
−∞

Fn(t)ẋn(t)dt. (27)

In terms of the Fourier transform F̃ and x̃, (see Appendix B) we obtain

∆E =
1

π

∑
n=l,t

∫ ∞
0

ωRe
[
iF̃n(ω)x̃∗n(ω)

]
dω. (28)

Now we have all the information required to describe the collision and resulting oscillation, except for a
model of the trajectory itself, which will give us values for R(t) and φ(t) as required by equation (6) and

9



Figure 4: Collision diagram for a straight-line motion.

the definitions of the l and t components of F . In the following two sections, we will consider two different
trajectory models: first a hyperbolic trajectory and second a straight-line approximation. The hyperbolic
trajectory follows Kepler’s laws and is the more accurate. But the equations for hyperbolic motion are
parametrized such that only a numerical solution is possible. The straight-line approximation, on the other
hand, is analytically soluble, and captures most of the physics of the problem.

2.6 Hyperbolic Trajectories

From Kepler’s laws, three parameters define the hyperbolic orbit:

• e, Eccentricity of the orbit, e > 1 for hyperbolic orbit;

• α, Semi-major axis, α is negative for hyperbolic orbit;

• k, Gravitational parameter, k = G(M +m).

We define an angle θ characterizing the angle along the orbital motion such that θ = 0 is at the point of
closest approach. There is no explicit equation to give R as a function of t, but by using θ as a parameter,
we can formulate parametric equations that yield R and t as functions of θ, thereby giving a method to find
discrete values of R(t).

According to Kepler’s Law, the distance R between the two objects is given by:

R(θ) =
α(1− e2)

1 + e cos(θ)
. (29)

Since θ = 0 at periapsis, the distance of closest approach is a = α(1 − e) [13]. For a collision with impact

parameter b the relationship with these variables is obtained through a = 2b/(β +
√
β2 + 4) where β =

GMm/(Eb), E = µv2/2 is the collision energy and µ = Mm/(m+M) is the reduced mass.
The time dependence of the orbit is obtained from the equations

H = cosh−1
(
e+ cos(θ)

1 + e cos(θ)

)
(30)

and
t− t0 = [(−α)3/k]1/2 (e sinh(H)−H) , (31)

where H is called the hyperbolic anomaly.
We can now use this trajectory, along with equations (6) and (25) to model the oscillations of a star

induced by the passage of a massive object.
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2.7 Straight-Line Approximation

The straight line trajectory is a reasonable approximation when the eccentricity of the hyperbolic orbit is
large.

In using the assumption of a straight line, the velocity is constant throughout the collision, so the distance
away from the point of closest approach (where t = 0) is given by vt. Also, in this approximation the impact
parameter b remains unchanged, and is simply defined as the distance of closest approach. As such, the
distance R between the two objects has a simple formula using the Pythagorean theorem (see figure 4):

R(t) =
√
b2 + v2t2. (32)

Additionally, the sine and cosine of angle φ(t) are easily defined (see figure 4):

cosφ =
vt√

b2 + v2t2
; sinφ =

b√
b2 + v2t2

. (33)

Hence, we can easily separate the longitudinal and transverse components of the force using equation (10).
Specifically, fhe longitudinal portion of the force is given by

fl(t) = f(t) cosφ =
GMvt

(b2 + v2t2)
3/2

. (34)

Performing a Fourier transformation, we have

f̃l(ω) =
1√
2π

∫ ∞
−∞

GMvt

(b2 + v2t2)
3/2

(cosωt+ i sinωt)dt. (35)

The integrand of this function has an even and an odd portion. The odd term drops out, and

f̃l(ω) = i

√
2

π

∫ ∞
0

GMvt sinωt

(b2 + v2t2)
3/2

dt, (36)

which can be solved analytically to give

f̃l(ω) =

√
2

π

iGMω

v2
K0

(
ωb

v

)
=

√
2

π

iGM

bv
ξK0(ξ), (37)
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Figure 6: Oscillation amplitudes in units of the stellar radius as a function of time. The collision parameters
are the same as in figure 5.

where K0 is the modified Bessel function of the second kind with order zero, and ξ = ωb/v.
For the transverse portion of the force,

ft(t) = f(t) sinφ =
GMb

(b2 + v2t2)
3/2

, (38)

which undergoes a Fourier transform and similar odd/even elimination, resulting in

f̃t(ω) =

√
2

π

∫ ∞
0

GMb cosωt

(b2 + v2t2)
3/2

dt. (39)

This integral has the analytical solution

f̃t(ω) =

√
2

π

GMbω

v2
K1

(
ωb

v

)
=

√
2

π

GMm

bv
ξK1(ξ), (40)

where K1 is the modified Bessel function of the second kind with order one.

3 Results

3.1 Main Sequence Star

To model the response of a typical main sequence star, we chose solar-type star with mass and radius values
ms ∼ M� and rs ∼ R�. As discussed in Section 1.4, let us make an estimate of the parameters for the
resonant condition. For a collision with an impact parameter b, the “collision time”, i.e. the time during
which the gravitational force is most effective, is given tcoll ∼ b/v. For a collision with b = 5r� and v = 1000
km/s, one gets tcoll ∼ 1 h. The period of the oscillations associated with Eq. (17) for a solar-type star is
given by tosc = 2π/ω0 ∼ 3 h. Hence, we expect a large resonating response for oscillations in this system for
impact parameters in the range of a few times rs.

Figure 5 shows the response of the star to oscillations at a specific wavelength ω. The amplitudes |x̃|2 are
multiplied by 1022 (m2 s2 units) and shown for longitudinal (dashed blue line) and transverse (solid red line)
oscillations. In this collision, M = 2M�, v = 1000 km/s, b = 5R�, ms = M�, rs = R�, and Aγ = 0.1. The
peak at ω/ω0 is not surprising, since any system will oscillate more significantly around its natural harmonic.
One important thing which this graph shows is that oscillation cuts off sharply for values higher than 1.4ω0.
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Figure 7: Energy, in ergs, transferred to stellar oscillations along longitudinal (l, dashed blue line) and
perpendicular (t, solid red line) directions as a function of the impact parameter in units of the star radius.
The thin (lower) lines represent calculations using parametrized hyperbolic trajectories, while the thick lines
represent the straight-line approximation. The inset shows the ratio between the two energies. M = 2M�,
v = 1000 km/s, ms = M�, and Aγ = 0.1.

Also, we see from this graph that the transverse component of the oscillation is greater in magnitude than
the longitudinal portion, a feature which we will see repeated in the following results.

Figure 6 shows the total tidal displacement as a function of time. According to these results, the star
will be distorted from a spherical shape by approximately 10% at maximum distortion. This is in fact larger
than any observed stellar oscillation, and would be very significant if observed. At time t = 0, the magnitude
of these oscillations is too large for the small-amplitude assumption of our basic forced harmonic oscillator
model, which indicates that we should use a accurate non-linear model. Also, we see from this figure the
total length in time of the oscillations following the collision. As we can see from the graph, significant bulk
oscillation continues for more than 10 multiples of the collision time. The resultant oscillation would be seen
for some time after the actual collision takes place. This figure also shows that the longitudinal oscillations
are smaller in magnitude than transverse oscillations, but this difference is small.

Figure 7 contains the most interesting results of this study. This graph indicates that for an impact
parameter on the scale of 1 − 5R�, the amount of energy transferred to the stationary star is on the order
of 1042 ergs. This value is approximately the same as the total energy radiated by the Sun in one year,
and is also similar to the amount of energy released in an x-ray burst from an accreting neutron star in a
binary system [14]. If the energy is all emitted quickly (in a few hours or days), the burst of radiation would
be very significant, and possibly observable from Earth. The timescale of such emissions depends on the
internal structure of the star, so we cannot make a prediction as to the actual emission of this energy using
this model.

Figure 7 also shows the accuracy of the straight-line approximation (thin lines) as compared to the fully
hyperbolic trajectory calculation (thick lines). It is clear from the graph that for smaller impact parameters
the straight-line approach is less accurate, but the differences decreases for larger impact parameters. This
difference makes sense because a collision with a small impact parameter would distort the trajectory more
strongly.

The inset of figure 7 shows the impact parameter dependence of transverse and longitudinal components
of the oscillation. Following the same trend, it is clear that the two yield an equal contribution as the impact
parameter increases.
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3.2 Compact Stars

Now we consider compact stars (WD and NS, discussed in Sections 1.3.2 & 1.3.3) in addition to main
sequence stars. For reference, we choose a stellar mass ms = 1.4M�, since it is physically possible for all
three stellar types. We choose rs for each type of star according to accepted mass/radius relations.

First, we consider the response of each type of star to a collision at b = 5R�, the same impact parameter
used for the previous study of solar-type stars. The energy transfer and maximum effective displacement
for each of these collisions is given in Table 1. From these results, it is clear that induced stellar oscillations
not only have a far lesser magnitude in compact stars, but also impart far less energy than in collisions with
solar-type stars. Such a result makes sense because the higher density of compact stars results in a much
higher natural oscillation frequency, so we do not achieve the resonant condition as in the collisions with
solar-type stars.

rs(km) ∆El(ergs) ∆Et(ergs) xmax/rs
7 x 105 (solar-type) 0.324 x 1042 0.608 x 1042 0.128

7 x 103 (WD) 1.76 x 1032 1.88 x 1032 1.07 x 10−5

10 (NS) 1.09 x 102 2.09 x 102 0.986 x 10−22

Table 1: Induced oscillation for different types of star at impact parameter b = 5R�. M = 2M�, v = 1000
km/s, b = 5R�, ms = 1.4M�, and Aγ = 0.1.

Next we consider collisions of compact stars with a smaller impact parameter. In particular, we are
interested in b = 5rs, where rs is the radius of the compact star involved in the collision. For these
interactions, the colliding object must be a compact star or a black hole, since these impact parameters
are actually smaller than the radius of a solar-type star. A collision with a solar-type star at such close
distances would result in the smaller star passing inside the radius of the larger star, which cannot be
accurately described by our model. Also, in the case of such close collisions, the passing object’s trajectory
is significantly altered by the compact star’s gravitational field, so the straight-line approximation is no
longer valid and we must use the hyperbolic trajectory (described in Section 2.6) to model the collision. The
gravitational fields are so great in the NS collision that relativistic effects are likely to be significant. Our
model does not consider relativity, however, so the results for the NS collision at b = 5RNS are probably not
as accurate.

rs(km) b ∆El(ergs) ∆Et(ergs) xmax/rs
7 x 103 (WD) 5RWD 1.75 x 1043 3.28 x 1043 0.101

10 (NS) 5RWD 4.56 x 1027 1.92 x 1028 4.17 x 10−6

10 (NS) 5RNS 1.19 x 1046 2.27 x 1046 0.102

Table 2: Induced oscillation for different types of star at smaller impact parameters. M = 2M�, v = 1000
km/s, b = 5R�, ms = 1.4M�, and Aγ = 0.1.

As we see in Table 2, the response for compact stars at smaller impact parameters is much more significant.
In fact, the energy transfer for collisions at 5 times the stellar radius for compact stars is slightly higher
than that of solar-type stars (rows 2 & 4 of the Table 2, and row 2 of 1). The proportional change in radius
(5th column) also resembles that of a solar-type star, which is a significant finding especially for compact
stars, as their high gravity makes them very close to perfect spheres at equilibrium. Although the induced
oscillations for collisions of compact stars with small impact parameters are similar in magnitude to those
modeled for solar-type stars, collisions within such a small impact parameter would be far less common than
collisions with the previous conditions. However, the tidal excitation of a NS in particular is hypothesized
to result in sudden emissions of radiation (gamma-ray or x-ray bursts, which can be observed from Earth)
[15]. Hence, close collisions like this could have very profound effects on compact stars, despite their relative
rarity.
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4 Neutron Star Equation of State

In considering the density profile of neutron stars (NS), we have included an in-depth examination of the
equation of state (EOS). This section is a summary of the results of previous research that was presented at
a meeting of the Texas Section of the American Physical Society at Texas Tech University in Fall 2012 and
at Tarleton State University in Spring 2013.

4.1 Introduction

Continuing with the discussion from Section 1.3.3, we will give a more in-depth overview of NS. The matter
inside a neutron star is so densely packed that it becomes energetically favorable for most of the electrons to
be captured by protons, forming an extremely high proportion of neutrons (hence the name neutron star).
The following is a layer-by-layer description of the internal structure of a NS, noting the state of the protons
and neutrons (collectively nucleons) which make up the star.

The outermost layer of the NS is the outer crust, where densely packed iron and lighter nuclei dominate.
In this region, there is still significant spacing between nuclei, although it still a fraction of the distance
between nuclei in terrestrial matter.

Deeper into the crust, nuclei become heavier and more neutron-rich, as well as more densely packed.
Eventually, the nuclei become so full of neutrons that they begin to become unbound from their respective
nuclei. This point is referred to as the neutron drip line. Further in, free neutrons become more common and
nuclei become smaller and rarer under the pressure of gravity. Also, in this region there is the possibility of
interesting states of matter called pasta phases, in which first free neutrons and then nuclei become stretched
by gravity to form uniquely shaped matrices of superdense matter.

The core is defined to begin where individual nuclei disappear entirely. This leaves a “sea of neutrons”
called a neutron Fermi liquid, with few protons scattered throughout. The dominance of free nucleons in
this region leads to the term nuclear matter to describe the matter inside a neutron star. The great majority
of the star’s mass is found within the core and inner core, which makes the internal structure vital to any
accurate description of NS.

Last is the inner core, where nuclei themselves are expected to collapse under gravity. There is much
speculation about the exact nature of matter in the inner core, but it is certain to be some extremely exotic
form of matter: possibly a quark-gluon plasma, “strange” matter made up of heavier-than-nucleon baryons,
or some other unfamiliar form of matter. This is another of the interesting applications of NS research, as
finding an accurate model for NS bulk structure would yield some data about the matter in this otherwise
inexplorable region.

4.2 Structure Equations

In determining the structure of a neutron star, we consider the following differential equations:

1. Equation of Mass Conservation:
dM(r)

dr
= 4πr2ρ(r) (41)

2. Tolmann-Oppenheimer-Volkoff (TOV) Equation:

dP (r)

dr
= −G

r2

[
ρ(r) +

P (r)

c2

] [
M(r) + 4πr3

P (r)

c2

] [
1− 2GM(r)

c2r

]−1
(42)

(where M(r) is the total mass inside radius r, ρ is density, P is pressure, G is the gravitational constant,
and c is the speed of light).

In order to solve these two equations, we must also formulate an equation of state (EOS), which gives the
pressure as a function of density, P (ρ). Once an EOS is chosen, these equations can be solved numerically
using a modified Runge-Kutta method, where we choose a central density ρc and begin from the center,
integrating outwards over the entire star.

In our previous work with the collision and oscillation of NS, we simplified the problem by assuming
incompressibility and homogeneity of stellar matter. As such, we do not directly apply the above equations,
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nor any of the EOS explored here, to the stellar oscillation model. However, the mass and radius values
used in modeling NS oscillation were derived from the mass and radius values presented in the results of this
section, which were determined using the above equations and an accurate EOS. In the future, we plan to
include the results in this section to the stellar collision model described previously.

4.3 “Correct” EOS

As of the time of writing, the “correct” EOS is not known. Since nuclear matter is too exotic to duplicate
on Earth, the exact properties of this matter can only be estimated according to the known laws of physics.
Using these estimations, many possible candidates for accurate EOS have emerged. Each of these EOS
predict different large-scale properties (total mass and radius) for NS when solved in conjunction with Eqs.
(41) & (42), so observations should help to limit the range of accurate EOS.

Unfortunately, NS are difficult to observe from Earth, and their large-scale properties are only now
beginning to be observed using indirect astronomical methods with a high degree of observational and
systematic error. However limited, we can still use these observations to narrow down the search for an
accurate EOS. We have modeled several modern candidates for neutron star equations of state and compared
the resulting values to the limited astronomical observations.

4.4 Two Types of Model

There are two predominant classes of model for calculating the EOS for dense nuclear matter. Both can be
used to find semi-accurate models for NS and are accurate within known parameters according to quantum
mechanics and properties of terrestrial nuclei.

4.4.1 “Effective” Models

Since NS are mostly made up of densely packed nucleons (protons and neutrons, which make up nuclei in
normal matter) and average a density near that of an atomic nucleus, a NS can be considered like a very large
nucleus. As such, we can look to the properties of large nuclei on Earth as a basic guide for the structure of
NS. Effective models begin by determining how nuclei interact within a large atomic nucleus, and then infer
bulk properties of nuclear matter. This data can then be applied to the whole NS.

4.4.2 “Realistic” Models

Realistic models avoid the large-nucleus approximations, and instead attempt to describe the properties
of dense matter beginning with the fundamentals of quantum mechanics. That is, nuclear matter in a
neutron star is simply a large number of closely packed nucleons. The interactions between two nucleons are
well known, as described by quantum mechanics. Following the same rules, the interactions between three
nucleons can be described. Continuing outward, the properties of a large cluster of nuclear matter can be
extrapolated, and then a whole NS.

4.5 Equations Modeled

The equations considered in this study are listed below:

• APR [16]

• Glendenning [17]

• SKMS [18]

• SLY4 [19]

• FSUGold [20]

• NL3 [21]

• WFF [22]
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Figure 8: Mass as a function of central density

• BSk16 [23]

4.6 Observations

In order to compare the accuracy of proposed EOS, we need some observations of actual NS. The observations
used in this comparison are from two different studies which use different methods to find bulk NS properties.
Both have results which lie within the generally accepted probable range for NS.

4.6.1 Mass

The observed masses we use are from Ref. [25]. The observations themselves are from NS that is a part of a
binary system, with the other being a directly observable luminous star. Since the mass values are calculated
based on Kepler’s Laws, the chief inaccuracy is observational, and so values are correct to a much higher
accuracy than the radius observations discussed in the next section. These mass values are compared with
predicted mass values as a function of the star’s density in figure 8.

4.6.2 Mass and Radius

The mass and radius observations come from a certain type of binary system called x-ray burst binaries.
These binaries are composed of a neutron star and a less dense companion star, such as a main sequence star
or a white dwarf. In these systems, some of the matter of the companion star is slowly pulled away from its
original star and towards the NS due to its strong gravity, a process called accretion. As this matter reaches
the NS surface, it is subject to a very strong gravity which results in the accreted matter’s gravitational
energy being released suddenly in the form of x-rays. These sudden bursts of radiation can be measured on
Earth, and can lead to conclusions about the originating mass. In Ref. [24] one infers the radius of the NS
based on the properties of these x-ray emissions, and the mass based on Kepler’s Laws (as above). However,
this method is not well-accepted and so the systematic error is higher than usual (which is indicated in figure
9 by the large error boxes).
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Figure 9: Mass as a function of radius

4.7 Results

Colored curves on figure 8 show the masses as predicted by a particular EOS. The yellow horizontal lines
show the observed NS masses. This diagram demonstrates a feature of the TOV equation called the TOV
limit. Following the colored lines, it is clear to see that each EOS predicts a maximum possible mass, and
masses either plateau or fall slightly after this peak. This maximum mass is called the TOV limit (the
Chandresekhar limit in white dwarfs is a similar and better-known phenomenon), and is a feature of the
TOV equation, rather than the individual EOS. The TOV limit is the maximum possible mass for a NS,
and at any greater mass, nucleons will break down and the star will collapse, forming either a quark star
(whose existence is hypothesized but not confirmed) or it will collapse entirely into a black hole. As figure 8
illustrates, each EOS predicts a slightly different TOV limit. Since no NS can exist with a mass higher than
the TOV limit, any proposed EOS which has a TOV limit lower than any of the observed masses is therefore
inaccurate and can be eliminated from the search for an accurate EOS. As illustrated in this graph, many
of the proposed EOS curves fall short of highest observed mass. So now we focus only on the proposed EOS
which satisfy this constraint on mass, which are the APR, SLY4, and NL3 equations of state.

In order to narrow the search further, we consider the observed masses and radii of NS. Unfortunately,
the method of finding these two quantities together has a high uncertainty and the error bounds are wide
for each observation. As such, we will say that any EOS which roughly follows this trend is supported by
mass and radius observations. Figure 9 displays the mass-radius curves of different EOS as colored curves,
and the approximate range for observed masses and radii as yellow rectangles. Looking at the three EOS
which satisfy the previous paragraph’s restrictions on mass, we see that while the mass-radius curves for the
APR and SLY4 EOS approximately fall under the same region as the observations, the NL3 curve is clearly
outside of the accurate region. As such, we conclude that from the selection tested here, only the APR and
SLY4 EOS remain possible candidates in the search for an accurate equation of state.
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5 Appendices

5.1 Appendix A - Fourier Transform

Beginning with equation (16), we perform a Fourier transform. Let

f(t) =
1√
2π

∫ ∞
−∞

f̃(ω)e−iωtdω. (43)

So then

f̃(ω) =
1√
2π

∫ ∞
−∞

f(t′)eiωt
′
dt′ (44)

We can prove that (43) implies (44) by substituting the second into the first, as follows

f(t) =
1√
2π

∫ ∞
−∞

[
1√
2π

∫ ∞
−∞

f(t′)eiωt
′
dt′
]
e−iωtdω (45)

which can be rearranged to form

f(t) =

∫ ∞
−∞

f(t′)

[
1

2π

∫ ∞
−∞

eiω(t
′−t)dω

]
dt′. (46)

The inner integral in this equation is the delta function for t′ − t by the Fourier Integral Theorem, so

f(t) =

∫ ∞
−∞

f(t′) [δ(t′ − t)] dt′ =

{
0 if t′ 6= t

f(t′) if t′ = t
= f(t). (47)

Similarly, x(t) can be expressed as a function of t and ω as well, with x̃(ω) defined analogous to f̃(ω)

x(t) =
1√
2π

∫ ∞
−∞

x̃(ω)e−iωtdω. (48)

Using this form allows derivatives to be taken easily, yielding the first derivative

ẋ(t) =
d

dt

[
1√
2π

∫ ∞
−∞

x̃(ω)e−iωtdω

]
=
−i√
2π

∫ ∞
−∞

ωx̃(ω)e−iωtdω (49)

and the second derivate

ẍ(t) =
d2

dt2

[
1√
2π

∫ ∞
−∞

x̃(ω)e−iωtdω

]
=
−1√
2π

∫ ∞
−∞

ω2x̃(ω)e−iωtdω. (50)

Incorporating this new form for the f(t), x(t), and their derivatives, (16) can be rewritten as

0 =
−1√
2π

∫ ∞
−∞

ω2x̃(ω)e−iωtdω + 2β
−i√
2π

∫ ∞
−∞

ωx̃(ω)e−iωtdω

+ ω2
0

1√
2π

∫ ∞
−∞

x̃(ω)e−iωtdω − 1√
2π

∫ ∞
−∞

f̃(ω)e−iωtdω. (51)

After combining terms, this is

0 =
1√
2π

∫ ∞
−∞

[
−ω2x̃(ω)− 2iβωx̃(ω) + ω2

0 x̃(ω)− f̃(ω)
]
e−iωtdω. (52)

Since this is valid for every value of t, the integrand must be zero,

−ω2x̃(ω)− 2iβωx̃(ω) + ω2
0 x̃(ω)− f̃(ω) = 0 (53)

which is solved for x̃(ω) algebraically,

x̃(ω) =
f̃(ω)

(ω2
0 − ω2 − 2iβω)

. (54)

This result is the same as equation (25).
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5.2 Appendix B - Derivation of ∆E

Beginning with the energy equation (27) and using a Fourier transform on the two functions F and ẋ, we
have

Fn(t) =
1√
2π

∫ ∞
−∞

F̃n(ω)e−iωtdω (55)

ẋn(t) =
∂

∂t
xn(t) =

∂

∂t

[
1√
2π

∫ ∞
−∞

x̃n(ω)e−iωtdω

]
=

1√
2π

∫ ∞
−∞
−iωx̃n(ω)e−iωtdω. (56)

Taking the product of these two functions, we perform a double integral∫
Fn(t)ẋn(t)dt =

∫ [
−i
2π

∫ ∫
ωx̃n(ω)F̃ (ω′)e−i(ω+ω

′)tdωdω′
]
dt. (57)

The integral over t yields the delta function δ(ω − ω′). The resulting integral is

∆E =
−i
2π

∫ ∫
F̃ (ω)ω′x̃n(ω′)δ(ω − ω′)dωdω′ =

−i
2π

∫ ∞
−∞

(−ω)F̃n(ω)x̃n(−ω)dω. (58)

Since ω is real and x̃ is a Fourier function defined by

x̃(ω) ≡
∫
e−iωtx(t)dt, (59)

we see that x̃(−ω) = x̃∗(ω), where ∗ represents the complex conjugate:

x̃(−ω) =

∫
eiωtx(t)dt =

∫ {
cos(−ωt) + i sin(−ωt)

}
x(t) =

∫ {
cosωt− i sinωt

}
x(t) = x̃∗(ω). (60)

This result is true for all Fourier-type functions of real variables, so we can also extend this property to the
function F̃ (ω). Applying this property to the energy equation, we get

∆E =
i

2π

∫ ∞
−∞

ωF̃n(ω)x̃∗n(ω)dω. (61)

This integral can be further split into two parts,

∆E =
i

2π

[∫ 0

−∞
ωF̃n(ω)x̃∗n(ω)dω +

∫ ∞
0

ωF̃n(ω)x̃∗n(ω)dω

]
. (62)

We simplify the first part using the substitution ω = −ω′, and dω = −dω′. This results in∫ 0

∞
(−ω′)F̃n(−ω′)x̃∗n(−ω′)(−dω′) = −

∫ ∞
0

(ω′)F̃ ∗n(ω′)x̃n(ω′)dω′, (63)

using the conjugate property of Fourier functions as in (60). Combining this with the other part of the
equation, we have

∆E =
i

2π

∫ ∞
0

ω
[
F̃n(ω)x̃∗n(ω)− F̃ ∗n(ω)x̃n(ω)

]
dω =

1

π

∫ ∞
0

ωRe
[
iF̃n(ω)x̃∗n(ω)

]
dω, (64)

which is the same as (28).
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