
Physics Letters B 776 (2018) 217–221
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Assessing the foundation of the Trojan Horse Method

C.A. Bertulani a,b, M.S. Hussein c,d,e, S. Typel b,f

a Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429-3011, USA
b Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, D-64289 Darmstadt, Germany
c Instituto Tecnológico de Aeronáutica, DCTA, 12.228-900 São José dos Campos, SP, Brazil
d Instituto de Estudos Avançados, Universidade de São Paulo, C. P. 72012, 05508-970 São Paulo, SP, Brazil
e Instituto de Física, Universidade de São Paulo, C. P. 66318, 05314-970 São Paulo, SP, Brazil
f GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 July 2017
Received in revised form 20 November 2017
Accepted 21 November 2017
Available online 24 November 2017
Editor: W. Haxton

Keywords:
Heavy ions
Breakup reactions
Trojan Horse Method

We discuss the foundation of the Trojan Horse Method (THM) within the Inclusive Non-Elastic Breakup 
(INEB) theory. We demonstrate that the direct part of the INEB cross section, which is of two-step 
character, becomes, in the DWBA limit of the three-body theory with appropriate approximations and 
redefinitions, similar in structure to the one-step THM cross section. We also discuss the connection of 
the THM to the Surrogate Method (SM), which is a genuine two-step process.
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1. Introduction

The recent upsurge of interest in two-step nuclear reactions 
stems from two reasons: the application of indirect methods in 
reactor technology and nuclear astrophysics [1]. The main aim is 
to extract cross sections of reactions of interest by studying more 
complex transfer reactions under favorable experimental condi-
tions. In the first application, the surrogate method, (d, p) reac-
tions are employed to gain information on neutron induced com-
pound reactions with 238U, 232Th and other nuclei in the actinide 
region, see, e.g. Refs. [5,4,6,3,2]. The second application is in the 
field of nucleosynthesis of light and intermediate-mass nuclei dur-
ing Big Bang and stellar evolution. Since the cross sections of these 
reactions at the astrophysical energies of interest, of a few keV’s, 
are very small, one relies on the so-called Trojan Horse Method 
(THM) [7,9,8,12–15,10,11]. Within this method involving the reac-
tion of a projectile, a = b + x, with a target, A, one is interested in 
the cross section σ of, say, the direct rearrangement reaction

x + A → y + B . (1)

Then the THM cross section is written as
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σTHM(a + A → b + y + B)

= KTHM × |φ(kb)|2 × σ(x + A → y + B) , (2)

where KTHM is a kinematic factor, φ is the momentum-space, in-
ternal wave function of the primary projectile, the Trojan horse a, 
and kb is the momentum of the spectator fragment, b. The merit 
of the THM resides in the premise that since x is brought to the 
target position by the surrogate ion, a, most of the hindering ef-
fect of the Coulomb barrier is gone and the reaction (1) proceeds 
more effectively above the Coulomb barrier. The other problem 
that complicates the measurement of the reaction (1) at low ener-
gies for use in nuclear astrophysics is electron screening present if 
x were a primary projectile [16]. However the THM supplies a sec-
ondary x projectile at above barrier energies, as explained above, 
and accordingly the electron screening problem is avoided. These 
conditions, no Coulomb barrier to surpass, and no electron screen-
ing, allows the extraction of the desired cross section of reaction 
(1) through the reaction

a + A → b + x + A → b + y + B (3)

with relative ease even at the extremely low energies required to 
simulate the conditions of the astrophysical environment. The THM 
has been very useful in supplying astrophysical S-factors of rel-
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evant reactions in different scenarios and energies at which the 
direct measurements are either not feasible or do not exist.

In this work we give the general structure of the inclusive non-
elastic breakup cross section which is the basis of both the Tro-
jan Horse Method and the Surrogate Method (SM) as argued in 
Ref. [17]. The motivation behind our use of the theory of inclu-
sive breakup cross section as developed by [18] and [19] is that 
it supplies a natural framework to investigate pieces of the cross 
section associated with particular processes. The THM aims at cal-
culating a cross section associated with a direct process where the 
projectile bring in the desired fragment whose direct interaction 
with the target is sought for. The SM aims at calculating the cross 
section for a process where the projectile brings in a neutron or 
another fragment which subsequently forms a compound nucleus 
as it interacts with the target. All these processes are contained in 
the Inclusive Non-Elastic Breakup (INBU) cross section of the IAV 
theory [18,25], which we describe next.

2. Inclusive non-elastic breakup

The THM deals with a cross section which is a part of the Inclu-
sive Non-Elastic Breakup Cross Section (INEB) [17]. To exhibit this 
we recall the INEB cross section, [20,21],

d2σ INEB
b

dEbd�b
= σ̂ x

R ρb(Eb), (4)

where σ̂ x
R is the total reaction cross section of the interacting frag-

ment, x, and

ρb(Eb) ≡ [dkb/(2π)3]/[dEbd�b] = μbkb/[(2π)3h̄3] (5)

is the density of state of the observed, spectator fragment, b. The 
reaction cross section σ̂ x

R is given by

σ̂ x
R = − kx

Ex
〈ρ̂x(rx) |W x(rx)| ρ̂x(rx)〉, (6)

where W x is the imaginary part of the complex optical potential, 
Ux , of the interacting fragment, x, in the field of the target, A. The 
source function, ρ̂x(rx) is given by,

ρ̂x(rx) = (χ
(−)

b |�(+)
3B 〉 . (7)

The wave function, |�(+)
3B 〉 is the exact three-body (x + b + A) wave 

function within the spectator model. Within the DWBA, this wave 
function acquires, in the post representation of Ichimura–Austern–
Vincent (IAV) [18], the form

|�(+)
3B 〉 = (E − Kb − Ub − Kx − Ux + iε)−1 V xb|φaχ

(+)〉 . (8)

In the prior form of the Udagawa–Tamura (UT) approach [22], V xb

is replaced by (Ux + Ub − Ua). Accordingly, the source function 
ρ̂x(rx) becomes, in the post form,

ρ̂ IAV
x (rx) = G(+)

x (Ex)(χ
(−)

b |V xb|φaχ
(+)
a 〉, (9)

and, in the prior form,

ρ̂UT
x (rx) = G(+)

x (Ex)(χ
(−)

b |(Ub + Ux − Ua)|φaχ
(+)
a 〉, (10)

where Ex = E − Eb and

G(+)
x (Ex) = (Ex − Kx − Ux + iε)−1 (11)

is the Green’s function of particle x. The connection between the 
two forms
ρ̂ IAV
x (rx) = ρ̂UT

x (rx) + ρ̂HM
x (rx), (12)

is the non-orthogonality condition, or Hussein–McVoy (HM) source 
function [23,24],

ρ̂HM
x (rx) = (χ

(−)

b |φaχ
(+)
a 〉 . (13)

It has been verified that the INEB cross section (4) calculated 
with the UT source function (10) corresponds to the physical pro-
cess of elastic breakup followed by fusion (capture) of x with the 
target always remaining in the ground state. The full cross sec-
tion calculated with the IAV source function (9) contains the UT 
term plus all other processes where the target is excited or other 
channels in the x + A system are reached, accounted for by the 
HM contribution. Accordingly, we shall use the IAV description 
to discuss the nature of the THM. For this purpose we write for 
the imaginary part of the optical potential of the interacting frag-
ment x,

ImUx ≡ W x = W D
x + W C N

x , (14)

where we have designated the direct processes in the x + A system 
by D , and the compound nucleus processes by C N . Considering 
only the direct processes, we have, within the post form IAV the-
ory, using the corresponding source function Eq. (9),

d2σ
INEB,(D)

b

dEbd�b
= −ρb(Eb)

kx

Ex
〈ρ̂(+)IAV

x |W D
x |ρ̂(+)IAV

x 〉. (15)

At this point we recall the general structure of W D
x . If we call the 

projector of the direct non-elastic x + A channels, P (D)
x , and the 

elastic one by P (0)
x , then (see Eqs. (A.11), (A.18) in the Appendix A)

−W D
x = π P (0)

x V P (D)
x δ(Ex − P (D)

x Hx P (D)
x )P (D)

x V P (0)
x

= π
∑

f

∫
dk f

(2π)3
V (0, f )|χ(−)

f (k f )〉〈χ(−)

f (k f )|V ( f ,0)

× δ(Ex − E f ) (16)

with a sum over intermediate channels f and integration over the 
corresponding momenta. We have simplified the notation through 
the introduction of V 0, f ≡ P (0)

x V P (D)
x ≡ P (0)

x H (eff)
x P (D)

x upon the 
use of complete set of intermediate channels spanned by P (D)

x , and 
used the spectral representation of the delta function as shown in 
the Appendix A. Thus the structure of the direct part of INEB cross 
section becomes,

d2σ
INEB,(D)

b

dEbd�b
= πρb(Eb)

kx

Ex

×
∑

f

∫
dk f

(2π)3
δ(Ex − E f )|〈χ(−)

f (k f )|V (0, f )|ρ̂(+)IAV
x 〉|2. (17)

Consider one particular final x + A channel, say y + B , then its 
contribution to the above cross section is

d4σ
INEB,(D)

(b,y)

dEbd�bdE yd�y

= πρb(Eb)ρy(E y)
kx

Ex
|〈χ(−)

y (ky)|V (x,y)|ρ̂(+)IAV
x 〉|2

= πρb(Eb)ρy(E y)
kx

Ex

× |〈χ(−)
y (ky)|V (x,y)G(+)

x (χ
(−)

b |V xb|φaχ
(+)
a 〉|2, (18)
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using Eq. (9). Thus, within the spectator model, the cross section 
for the process (3) is described by an amplitude which is the prod-
uct of the effective elastic breakup interaction, (χ(−)

b |V xb|φaχ
(+)
a 〉

(in the post representation) times the Green’s function of the in-
teracting fragment, G(+)

x (Ex), times the interaction V (x, y) for the 
transition (1). It is instructive to use an eikonal/Glauber-type ap-
proximation for the distorted wave of the projectile,

χ
(+)
a (rb, rx) = χ

(+)

b (rb)χ
(+)
x (rx) . (19)

Then defining the elastic breakup potential

V (ebu) ≡ 〈χ(−)

b |V xb|χ(+)

b φa〉 , (20)

the amplitude of the process involved in the THM has the structure

〈ky|T(a+A→b+x+A→b+y+B)|kx〉
= 〈χ(−)

y |V (x,y)G(+)
x (Ex)V (ebu)|χ(+)

x 〉, (21)

clearly showing that the process, as described by the correct post-
form IAV theory, is a two-step process. Had we used the HM source 
function, Eq. (13), we would have obtained for the amplitude of 
process (3),

〈ky|T(a+A→b+x+A→b+y+B)|kx〉
= 〈χ(−)

y V (x,y)|(χ(−)

b |χ(+)

b φaχ
(+)
x 〉

= 〈χ(−)
y |V (x,y) Ŝb(rx)|χ(+)

x 〉, (22)

where the intrinsic projectile wavefunction modified b-fragment 
elastic S-matrix element is given by

Ŝb(rx) ≡ 〈χ(−)

(b,k′
b)

(rb)|φa(rb, rx)χ
(+)

(b,kb)
(rb)〉

=
∫

drb

[
χ

(−)

(b,k′
b)

(rb)
]∗

χ
(+)

(b,kb)
(rb)φa(rb, rx)

=
∫

drb S(k′
b,kb)(rb)φa(rb, rx) . (23)

The apparent one-step process of the HM version of the THM is 
quite clear!

Since we are considering the direct part of the inclusive non-
elastic breakup, the UT process, which is a manifestly a compound 
nucleus (of the x + A system) process, does not contribute. Accord-
ingly, the general IAV cross section which has the form, cf. Eq. (12)
and Eq. (17),

σ(IAV) = σ(UT) + σ(HM) + σ(Interference), (24)

where the interference term, which is a pseudo cross section 
as it can be negative is of the general structure σ(interference) =
2Re[A† A], where A is proportional to the “expectation” value 
〈ρ̂(+)UT|W x|ρ̂(+)HM〉. The direct part of the cross section, however, 
is

σ(IAV,D) = σ(HM,D). (25)

Thus we reach the important result,

σ(IAV,D,2−step) = σ(HM,D,1−step). (26)

Accordingly a two-step process “collapses” into a one-step process!
In the HM one-step process the modified elastic S-matrix of 

b, Ŝb(rx) appears in the amplitude Eq. (22) multiplying the in-
teraction V (x,y) in the x + A → y + B amplitude. Therefore, the 
corresponding cross section will have the general form,
d2σ(HM)

dEbd�b
= ρb(Eb)

kx

Ex
|〈χ(−)

y |V (x,y) Ŝb(rx)|χ(+)
x 〉|2. (27)

This is similar to the THM cross section if an effective V (eff)
(x,y) =

Ŝb(rx)V (x,y) is introduced, and a further approximation is made 
with respect to the b-fragment modified elastic S-matrix Ŝb(rx) ≈
φ(kb), implying a maximum survival probability of b. Then we re-
cover the THM cross section

d2σTHM

dEbd�b
= ρb(Eb)

kx

Ex
|〈χ(−)

y |V (eff)
(x,y)|χ(+)

x 〉|2

= K(THM)|φ(kb)|2σ(x+A→y+B) (28)

as a product of a kinematic factor, the momentum distribution of 
the spectator, and a two-body reaction cross section.

3. The THM as derived by Baur and collaborators, [7,12]

In 1986, Baur [7] suggested “Breakup reactions as an indirect 
method to investigate low-energy charged-particle reactions rele-
vant for nuclear astrophysics”. This suggestion was fully developed 
with the use of direct reaction theory in 2003 [12]. In Ref. [12]
Typel and Baur use the post form of the DWBA to describe the 
desired cross section for the direct process at hand, (3).

T(Baur) = 〈χ(−)

b,yB�
(−)
yB φb|Vbx|�(+)

bxAφaφA〉, (29)

where �
(+)

bxA is the full three-body scattering wave function in 
the incident channel. To proceed further, in Ref. [12] the DWBA 
approximation was employed for this three-body wave function, 
�

(+)

bxA ≈ χ
(+)
aA . With appropriate use of a surface dominated �(−)

yB , 
which allows using its asymptotic form, and setting the interior 
of it to zero, one obtains Baur’s one-step T-matrix. In a way this 
work which describes the THM as a one-step process, is similar to 
that of HM [19]. Within the three-body approach of Ref. [25], the 
full three-body wave function of the initial channel is used, and its 
three Faddeev components are resolved,

�
(+)
aA = �

(+)
3B φa (30)

where,

�
(+)
3B = �

(+)

xb + �
(+)
xA + �

(+)

b A . (31)

The dominant Faddeev component above has the general form

�
(+)

xb = G(+)
0 V xb�

(+)
3B , (32)

and thus the three-body wavefunction becomes,

�
(+)
3B = G(+)

x,b V xb�
(+)

x,b , (33)

whose DWBA approximation is

�
(+)
3B ≈ G(+)

x,b V xbχ
(+)
a . (34)

Thus the amplitude for the reaction (3) is

T(Baur) = 〈χ(−)

b,yB�
(−)
yB φb|

[
Vb,y G(+)

x,b V x,b

]
|χ(+)

a φa〉, (35)

with the optical, x + b Green’s function

G(+)

x,b = [E − Kb − Kx − Ux − Ub + iε]−1 , (36)

where the kinetic energy operators are denoted by K and the op-
tical potentials by U . Luckily, as we have shown for the direct 
TH, x + A → y + B , process, the direct DWBA two-step process 
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is formally equal to the one-step process. Accordingly, we can use 
Eq. (26) to write

σ(IAV,D,2−step) = σ(HM,D,1−step) ≈ σ(THM). (37)

Several approximations are required to show that σ(IAV,D,2−step) →
σTHM, and σ(HM,D,1−step) → σTHM. Clearly these approximations 
must be assessed in the future.

4. Discussion, conclusions and outlook

In this Letter we have discussed the foundation of the Tro-
jan Horse Method within the general framework of the Inclusive 
Non-Elastic Breakup reaction theory. We accomplished this by ex-
tracting the cross section for the exclusive process described by the 
THM. This is made possible by inspecting the direct component of 
the imaginary part of the optical potential of the interacting frag-
ment, x, in the inclusive reaction a + A → b + (x + A). The resulting 
cross section of the exclusive a + A → b + x + A → b + y + B was 
found to be that of a one-step process. This is true as long as 
the THM is purely direct. By the same reasoning, the Surrogate 
Method, if an exclusive reaction is considered proceeding through 
the compound nucleus, is a genuine two-step process. In obtaining 
our results, we have relied on the exact, spectator model-based 
three-body theory of Ichimura–Austern–Vincent [18] of the in-
clusive breakup process. We have analyzed the structure of the 
imaginary part, W x , of the participant fragment, x, an important 
theoretical element in the IAV theory, into its direct and compound 
pieces. We identified the THM cross section as being one compo-
nent of the direct piece of W x . This allowed us to arrive at the 
THM cross section of Baur [12].

We consider our results a potential vehicle for improvements 
in the THM theory. One important point to mention is that we 
have avoided using the Baur approximation of the final y + B wave 
function of being surface dominated with zero norm in the inte-
rior. Further we supplied means where clear improvements can be 
made, such as including, even in an approximate way, the internal 
a wave function modified Sb-matrix which enters in the desired 
cross section of the process x + A → y + B , Eq. (27). Therefore a 
comparison of our description with Baur’s approximation can serve 
as an error estimate of the latter.
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Appendix A. The reactive content of the imaginary part, W x of 
the x + A optical potential

To exhibit the detailed reactive content of W x we consider the 
x + A scattering system. We introduce projection operators P x and 
Q x , such that P x + Q x = 1, P x Q x = Q x P x = 0, and P 2

x = P x and 
Q 2

x = Q x . P x is defined such that it projects out the open x + A
channels, while Q x projects out the closed, compound nucleus x +
A channels. Denoting the Hamiltonian that describes the dynamics 
of the x + A subsystem by Hx , we have as usual, for the open 
channels (the direct reactions coupled equations)

(Ex − P x Hx P x)P x|�(+)〉 = P x Hx Q x Q x|�(+)
xA 〉, (A.1)

and for the closed, compound nucleus channels,

(Ex − Q x Hx Q x)Q x|�(+)
xA 〉 = Q x Hx P x|�(+)

xA 〉. (A.2)

The closed channels equations above can be formally solved to 
give,

Q x|�(+)
xA 〉 = 1

Ex − Q x Hx Q x
Q x Hx P x|�(+)

xa 〉. (A.3)

Accordingly, we have for the open x + A channels,(
Ex − P x Hx P x

− P x Hx Q x
1

Ex − Q x Hx Q x
Q x Hx P x

)
P x|�(+)

xA 〉 = 0. (A.4)

The above equation is exact and useless! The Q x propagator, (Ex −
Q x Hx Q x)

−1, has poles whenever a compound x + A resonance is 
excited. This very strong energy dependence is removed by intro-
ducing the energy average Q x propagator, (Ex − Q x Hx Q x + i I)−1, 
where I is a large energy that encompasses many x + A compound 
nucleus resonances. Thus calling the optical x + A open channels 
wave function by |�(+)

xA 〉, and the effective, complex, optical poten-
tial that accounts for the coupling to the closed x + A compound 
nucleus channels, by U (C N)

x , we have

(Ex − P x Hx P x − U (C N)
x )|�(+)

xA 〉
≡ (Ex − P x H (eff)

x P x)|�(+)

xA 〉, (A.5)

where we have introduced the effective P x projected Hamiltonian 
H (eff)

x = Hx + U (C N)
x . At this point we split the projection operator 

P x into the elastic x + A channel projector (which corresponds to 
the elastic breakup channel in the full b + x + A system), P 0

x , and 
the projector onto all the open non-elastic, direct channels, P D

x . 
The resulting coupled channels equations are,

(Ex − P (0)
x H (eff)

x P (0)
x )P (0)

x |�xA〉
=

[
P (0)

x H (eff)
x P (D)

x

]
P (D)

x |�xA〉 (A.6)

and

(Ex − P (D)
x H (eff)

x P (D)
x )P (D)

x |�xA〉
=

[
P (D)

x H (eff)
x P (0)

x

]
P (0)

x |�xA〉 . (A.7)

Solving for the non-elastic direct channels, P (D)
x |�xA〉, we obtain 

for Eq. (A.6)(
Ex − P (0)

x H (eff)
x P (0)

x

− P (0)
x H (eff)

x P (D)
x G(+),D

x P (D)
x H (eff)

x P (0)
x

)
P (0)

x |�xA〉
= 0 (A.8)

after defining the Green’s function

G(+),D
x ≡ [Ex − P (D)

x H (eff)
x P (D)

x + iε]−1 . (A.9)

The imaginary part of the average optical potential of the x frag-
ment is thus

−W x = Im
[

H (eff)
x + H (eff)

x P (D)
x G(+),D

x P (D)
x H (eff)

x

]
. (A.10)
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We are now in a position to analyze the reactive content
of W x . Clearly, Im[H (eff)

x ] is the compound nucleus absorption
contribution. We call this W (C N)

x . The second contribution,
Im[H (eff)

x P (D)
x G(+),D

x P (D)
x H (eff)

x ], accounts for the direct non-elastic 
absorption, W (D)

x . Note that the couplings P (0)
x H (eff)

x P (D)
x are com-

plex owing to the complexity of H (eff)
x . However, we make the 

assumption the compound nucleus absorption (fusion) has only 
diagonal couplings. Accordingly,

−W (D)
x ≈ H (eff)

x P (D)
x Im[G(+),D

x ]P (D)
x H (eff)

x . (A.11)

The imaginary part of the Green’s function G(+),D
x is

Im[G(+),D
x ] = Im

[
1

Ex − P (D)
x H (eff)

x P (D)
x + iε

]
(A.12)

where the P (D)
x projected effective Hamiltonian is non-Hermitian. 

Thus the imaginary part of the Green’s function must involve this 
feature. To simplify the notation we call the P (D)

x projected effec-
tive Hamiltonian, K0 + V , where K0 is the kinetic energy operator 
in the P (D)

x projected space. Then, following Ref. [26],

ImG(z) = Im

[
1

z − K0 − V + iε

]
= −π [1 + G(−)V †]δ(z − K0)[1 + V (G(−))†]

− (G(+))†Im[V ]G(+), (A.13)

where

G(−) =
[

z − K0 − V † − iε
]−1

, (A.14)

and the Möller operator [1 + G(−)V †] generates a distorted wave 
when operating on a plane wave, or more generally a Coulomb 
distorted wave when K0 is replaced by the Coulomb Hamiltonian 
K0 + V C (r). Using the spectral decomposition of the delta function,

δ(z − K0) =
∫

dk

(2π)3
|k〉δ(z − Ek)〈k| , (A.15)

then ImG becomes

ImG(z) = −π

∫
dk

(2π)3
|χ(−)

k 〉δ(z − Ek)〈χ(−)

k |
− (G(+))†Im[V ]G(+) . (A.16)
The above identity, when used in the context of Im[G(+),D
x ], gives

Im[G(+),D
x ] = −π

∑
D

∫
dkD

(2π)3
|χ(−)

kD
〉δ(Ex − EkD )〈χ(−)

kD
|

− [G(+),D
x ]†Im[P (D)

x H (eff)
x P (D)

x ]G(+),D
x . (A.17)

The last term in the above equation represents, when used in the 
cross section formula, compound nucleus (fusion) coupling effects 
in the non-elastic direct channels projected out by P (D)

x . These pro-
cesses are of the type x + A → c + C → C N , and accordingly we 
ignore them. Thus the final form of Im[G(+),D

x ], used in the deriva-
tion of Eq. (16), is

Im[G(+),D
x ] = −π

∑
D

∫
dkD

(2π)3
|χ(−)

kD
〉δ(Ex − EkD )〈χ(−)

kD
| . (A.18)
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