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Electronic stopping in astrophysical fusion reactions
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Abstract

The stopping power of protons and deuterons in low energy collisions with helium gas targets is investigated
numerical solution of the time-dependent Schrödinger coupled-channels equations using molecular orbital wavefun
is shown that at low projectile energies the energy loss is mainly due to nuclear stopping, charge exchange, and the
of low energy levels in the target. The second and third mechanisms, called electronic stopping, dominate forElab � 200 eV.
At lower energies it is also shown that a threshold effect is responsible for a quick drop of the energy loss. This inve
sheds more light on the long-standing electron screening problem in fusion reactions of astrophysical interest.
 2004 Published by Elsevier B.V.

PACS: 26.20.+f; 34.50.Bw
ex-
in
if-
arti-
mb
en-
the
rved
ex-
reat
nu-
pro-
the
pro-
ince
jec-

er
red
er-

ergy

om
loss
rgy
ve

dis-
ac-

le
ex-

han
sis.
ich

ping
ac-
by
Nuclear fusion reactions proceed in stars at
tremely low energies, e.g., of the order of 10 keV
our sun [1,2]. At such low energies it is extremely d
ficult to measure the cross sections for charged p
cles at laboratory conditions due to the large Coulo
barrier. Moreover, laboratory measurements of low
ergy fusion reactions are strongly influenced by
presence of the atomic electrons. One has obse
experimentally a large discrepancy between the
perimental data and the best models available to t
the screening effect by the electrons in the target
clei [3]. The screening effect arises because as the
jectile nucleus penetrates the electronic cloud of
target the electrons become more bound and the
jectile energy increases by energy conservation. S
fusion cross sections increase strongly with the pro
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tile’s energy, this tiny amount of energy gain (of ord
of 10–100 eV) leads to a large effect on the measu
cross sections. However, in order to explain the exp
imental data it is necessary an extra-amount of en
about twice the expected theoretical value [3].

In order to extract the fusion cross sections fr
experiment one needs to correct for the energy
in the target to assign the correct projectile ene
value for the reaction. The authors in Refs. [4,5] ha
shown that a possible solution to the long-standing
crepancy between theory and experiment for the re
tion 3He(d, p)4He could be obtained if the projecti
energy loss by electronic excitations and charge
change with the target atoms would be smaller t
previously assumed in the experimental data analy
There have been indeed a few experiments in wh
evidences of smaller than expected electronic stop
power were reported (see, e.g., Ref. [6]). Other re
tions of astrophysical interest (e.g., those listed in
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Rolfs and collaborators [7,8]) should also be correc
for this effect. Whereas at higher energies the stopp
is mainly due to the ionization of the target electro
at the astrophysical energies it is mainly due to ex
tations of the lowest levels, charge-exchange betw
the target and the projectile, and the nuclear stopp
power.

In this Letter I address the problem of the stopp
of very low energy ions in matter. I consider th
systems p+ 4He and d+ 3He, for which there are
experimental data available. A previous work [
studied the energy loss of protons on hydrogen
targets and showed that the stopping at very
proton energies is indeed smaller than what would
expected from extrapolations based on the Ande
and Ziegler tables [10]. The case of helium targ
is more complicated due to the electron–elect
interaction.

The present approach is based on the solutio
the time-dependent Schrödinger equation for the e
tron in a dynamical two-center field. The transiti
from the separated atoms (H+ + He) and the united
atom (Li+) is obtained in the adiabatic approxim
tion, i.e., by assuming that the electronic motion
fast compared to the nuclear separation motion so
the molecular orbitals (MO) are those for the distan
R(t) between the nuclei. The atomic wavefunctio
φµ = ∑

j cjµφ
Slat
j , are constructed as a linear com

nation of Slater-type orbitals (STO) [11] of the for
φSlat
n = Nrn−1 exp(−ζ r)Ylm(r̂), where the Slater co

efficientsn andζ are chosen to best approximate t
exact atomic wavefunctions (see, e.g., Ref. [11]). T
molecular orbital wavefunctions for the p+ He sys-
tem, are obtained with theφµ’s chosen so that half o
the STO’s are centered on the proton(A) and the other
half are centered on the helium nucleus(B). The to-
tal wavefunction for the two-electron system is fina
written as a Slater determinant of the molecular orb
wavefunctions,

(1)

ψe(r1, r2,R) = 1√
2

∣∣∣∣φ
MO
1 (1)α(1) φMO

2 (1)β(1)

φMO
1 (2)α(2) φMO

2 (2)β(2)

∣∣∣∣ ,

whereα, β denote the spin state of the electron. Co
figuration interaction with double excitation config
rations were included in the calculation, with the c
efficientsn and the Slater parametersζ chosen in a
variational method to obtain the lowest energy sta
of the system.

Using these conditions and variation method, o
obtains the following Hatree–Fock equation:F ⊗
C = O ⊗ C ⊗ E, whereF is the “Fock” matrix

Fµν =Hµν

+
∑
λσ

Pλσ

[
〈µν| 1

r12
|λσ 〉 − 1

2
〈µλ| 1

r12
|νσ 〉

]
,

(2)Pλσ = 2
occ∑
i=1

cλicσ i,

in which “occ” refers to the occupied molecul
orbital,

(3)

Hµν =
∫ ∫

φµ(1)

[
−1

2
∇2 −

∑
L=A,B

1

r1L

]
φν(1) dτ1,

is the one-electron integral and

〈µν| 1

r12
|λσ 〉

(4)=
∫ ∫

φµ(1)φν(1)
1

r12
φλ(2)φσ (2) dτ1dτ2,

are the two-electron integrals. TheC matrix is the
coefficient matrixcµν and O is the overlap matrix
〈φµ(1)|φν(1)〉. E is a diagonal matrix with eac
diagonal element corresponding to the energy of
associated molecular orbital. Solving the Hartre
Fock equations one obtains the coefficientscij which
give the proper linear combination of atomic orbita
to form the molecular orbital. The energy of th
molecular orbitals are then given by

(5)

E(R) =
∑
µν

PµνHµν + 1

2

∑
µνλσ

PµνPλσ

[
〈µν| 1

r12
|λσ 〉

− 1

2
〈µλ| 1

r12
|νσ 〉

]
.

Table 1 shows the states involved in the calculat
where it is shown how the states in the separa
hydrogen and helium atoms become molecular st
in the united atom system. For large distances betw
the nuclei,R > 15 a.u. (1 a.u. of length= 0.53 Å)
the energy levels for the 1s, 2s, and 2p states
H and He are reproduced to within 2% and 4%
the spectroscopic data, respectively. The energie
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Table 1
Lowest states in the p+ He molecule

Separated atom United ato

H+ + He(1s2) 0Σ
H(1s)+ He+(1s) 1Σ
H+(1s)+ He(1s2s) 2Σ
H(n= 2)+ He+(1s) 1Π
H(n= 2)+ He+(1s) 3Σ
H(n= 2)+ He+(1s) 4Σ
H+ + He(1s1p) 5Σ
H+ + He(1s1p) 2Π

Fig. 1. Adiabatic energies (1 a.u. of energy= 27.2 eV, 1 a.u.
of length= 0.53 Å) for the electronic orbitals for the (H–He)+
system as a function of the internuclear separation. As the a
approach each other slowly curves of same symmetry repel
other. A transition between states s and s′ can occur in a slow
collision. In a fast collision a diabatic transition, with the sta
crossing each other, will occur. This is shown in the inset.

these states are shown in Fig. 1 as a function of
internuclear distanceR.

At very low proton energies (Ep � 10 keV) it is fair
to assume that only the low-lying states are involv
in the electronic dynamics. Only for bombardi
energies larger than 25 keV the proton velocity w
be comparable to the electron velocity,ve � αc. Thus,
the evolution of the system is almost adiabatic
Ep � 10 keV. Also shown in Fig. 1 (inset) are th
intersection points of the states with same symme
In a fast collision these states would cross (diab
collisions), whereas in collisions at very low energ
(adiabatic collisions) they obey the von Neuman
Wigner non-crossing rule.

In the dynamical case the full time-depend
wavefunction for the system can be expanded in te
of two-center states,ψn(r1, r2, t), given by Eq. (1),
with expansion coefficientsan(t). It is further assumed
that the nuclei follow a classical straight-line trajecto
determined by an impact parameterb, so that the
time dependence of the molecular wavefunction
determined by the conditionR = √

b2 + v2t2, where
v is the collision velocity. The dynamical evolutio
of the H+ He system is calculated using the sa
approach as described in Ref. [9]. We solve the se
linear coupled equations

(6)iS · dA
dt

= M · A,

where the column matrixA represents the time
dependent expansion coefficients,S is the overlap ma
trix with the elementsSij = 〈ψi |ψj 〉 and M is the
coupling matrix with the elementsMij = 〈ψi |Hel −
i∂/∂t|ψj 〉, whereHel is the electronic Hamiltonian
The solutions are obtained starting from initial inte
nuclear distance of 15 a.u. for the incoming traject
and stopped at the same value for the outgoing tra
tory. The probability for the capture in the proton
obtained by a projection of the final wavefunction in
the wavefunctions of the 1s, 2s and 2p states of the
drogen atom

(7)Pexch=
∣∣∣∣
∑
m

am(∞)〈ψH |ψm(∞)〉
∣∣∣∣
2

.

Resonant charge-exchange in atomic collisions
first observed by Everhart and collaborators [12].
these experiments it was determined that the excha
probability in homonuclear atomic collisions osc
lates with the incoming energy for a collision with
given impact parameter, or scattering angle. This
interpreted [13] as due to transitions between dege
ate states of the system at large internuclear separ
distance. In the simplest situation of a p+H the degen-
erate states are the symmetric and antisymmetric s
obtained from the linear combination of the (H+H)
and (HH+) wavefunctions. This effect was studied
Ref. [14], where a relation between the damping of
oscillatory behavior of the exchange probabilities a
the Landau–Zener effect was established. The p+ H
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Fig. 2. Probability of charge exchange in the collision p+ 4He
showing the resonant behavior as a function of the impact param
and for proton energyEp = 10 keV.

collisions at small energies was recently studied
Ref. [9] and the oscillatory effect was shown to be
lated to the Sommerfeld quantization rule for the in
gral from t = −∞ to t = ∞ of the energy difference
between the symmetric and antisymmetric state.
electron tunnels back and forth between the pro
tile and the target during the ingoing and the outgo
parts of the trajectory. When the interaction time is
exact multiple of the oscillation time, a minimum
the exchange probability occurs.

A similar situation occurs for p+ He collisions, as
shown in Fig. 2 for the electron capture probabil
by the proton at 10 keV bombarding energy. The
oscillations are due to the electron exchange betw
the ground state of the hydrogen and the first exc
state in He(1s2s). But, in contrast to the H+H system,
the oscillations are strongly damped. Following t
work of Lichten [14] we interpret this damping effe
as due to the interference between the particip
states and a band of states of average energy〈Ea〉 and
width 2Γ , as seen in Fig. 1. The important regio
where the diabatic level cross occurs is shown in Fi
inside the encircled areas. The damping mechan
is best understood using the Landau–Zener theory
level crossing. At the crossing there is a particu
probability (1− P ) of an adiabatic transition wher
P is given by the Landau–Zener formula

(8)Pexch= exp

[
2πH 2

ss′
v(d/dR)(Es −Es′)

]
,

Fig. 3. Charge-exchange cross sections for the p+ 4He as a function
of the proton energy. The solid line was obtained by solving
coupled-channels Eq. (6), and using Eq. (7) for the excha
probability. The experimental data are from Ref. [15].

wherev is the collision velocity andHss′ is the off-
diagonal matrix element connecting states s and′.
The oscillatory behavior shown in Fig. 2 is du
to the many level transitions at the crossing, e
time governed by the probability of Eq. (8). Th
interference with the neighboring states introduce
damping in the charge exchange probability, i.e.,

Pexch(b, t)� cos2
( 〈Ea〉b

v

)
exp

[
−2πΓ 2b

v〈Ea〉
]
,

where〈Ea〉 � 1. a.u. is the average separation ene
between the 0Σ level and the bunch of higher-ener
levels shown in Fig. 1. The exponential damping fac
agrees with the numerical calculations if one u
Γ � 5 eV, which agrees with the energy interval
the band of states shown in Fig. 1.

The total cross section for charge exchange
calculated from

σ = 2π
∫

Pexchb db.

The numerical results for the p+ He system is shown
in Fig. 3 as a function of the proton energy. The so
line is the result of using the coupled-channels Eqs
and (7) for the exchange probability. The experim
tal data are from Ref. [15]. We observe that the cal
lation reproduces the trend of the experimental d
But, whereas the maximum of the cross section
Ep � 20 keV is rather well described, the calcu
tions underestimate the cross sections at smaller
ergies. The low energy slope of the cross sectio
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Fig. 4. Stopping cross section for proton incident on gas4He targets,
as a function of the proton energy. The experimental data are
Refs. [15,16].

nonetheless well reproduced. At energies higher t
the Bragg peak (Ep � 20 keV) the numerical result
should not be trusted as the adiabatic approxima
for the molecular orbitals and also the inclusion
only the lowest energy levels are not adequate (con
uum states should also be included). ForEp → 0, the
charge exchange cross section must go to zero s
the higher binding of the electrons in He prevents
capture by the incident proton in an extreme adiab
collision. This feature is correctly reproduced by t
numerical calculations.

In Fig. 4 we show the stopping cross section
the proton. The experimental data are from Refs. [
16]. The stopping cross section is defined asS =∑

i /Eiσi , where /Ei is the energy loss of th
projectile in a process denoted byi. The stopping
power,SP = dE/dx, the energy loss per unit leng
of the target material, is related to the stopping cr
section byS = SP/N , whereN is the atomic density
of the material. In the charge exchange mechan
one of the electrons in He is transferred to incom
proton and the energy loss by the proton is giv
by /E = mev2/2, where v is the proton velocity
Assuming that there are few free electrons in
material (e.g., in the helium gas) only one mo
stopping mechanism at very low energies should
considered: the nuclear stopping power,Sn. This is
simply the elastic scattering of the projectile o
the target nuclei. The projectile energy is partia
transferred to the recoil energy of the target ato
The stopping cross section for this mechanism
been extensively discussed in Ref. [17]. The to
stopping power is given byS = Sexch + Sn. In units
of 10−5 eV cm2 the nuclear stopping for the p+ 4He
system atEp < 30 keV is given by

(9)Sn = S0
ln(1+ 1.1383ε)

(ε + 0.01321ε0.21226+ 0.19593ε0.5)
,

whereS0 = 0.779 andε = 5.99Ep, with the proton
incident energyEp given in keV.

The dashed line in Fig. 4 gives the energy tra
fer by means of nuclear stopping, while the solid l
shows the results for the electronic stopping mec
nism, i.e., due to charge-exchangeand excitation in
helium target. We see that the nuclear stopping do
nates at the lowest energies, while the electronic s
ping is larger for proton energies greater than 200
We do not consider the change of the charge s
of the protons as they penetrate the target mate
The exchange mechanism transforms the protons
H atoms. These again interact with the target ato
They can loose their electron again by transferrin
back to a bound state in the target.

At very low energies the only possibility that th
electron is captured by the proton is if there is
transition 1s2(1S0) → 1s2s(3S) in the helium target
Only in this case the energy of one of the electro
in helium roughly matches the electronic energy
the ground state in H. This resonant transfer eff
is responsible for the large capture cross secti
When this transition is not possible the electrons pre
to stay in the helium target, as the energy of
whole system is lowest in this case. Another poss
mechanism for the stopping is the excitation of
helium atom by the transition 1s2(1S0) → 1s2s(3S).
Thus, there must be a direct relationship between
energy transfer to the transition 1s2(1S0) → 1s2s(3S)
and the minimum projectile energy which enab
electronic changes. Ref. [18] reported for the first ti
this effect, named by threshold energy, which can
understood as follows. The momentum transfer in
projectile-target collision,/q , is related to the energ
transfer to the electrons by/q = /E/v, where v is
the projectile velocity. In order that this momentu
transfer absorbed by the electron, induces an ato
transition, it is necessary that̄h2/q2/2me ∼ /E.
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Fig. 5. Energy loss of deuterons in3He gas as a function of deutero
energy. Data are from Ref. [18]. The solid curve is the calcula
for the electronic stopping power, while the dashed curve shows
nuclear stopping.

Solving these equations for the projectile energy
finds

(10)Ethres
p ∼ mp

4me
/E.

This is the threshold energy for atomic excitatio
and/or charge exchange. If the projectile energy
smaller than this value, no stopping should occ
The energy for transition 1s2(1S0) → 1s2s(3S) in He
is /E = 18.7 eV. Thus, for p+ He collisions, the
threshold energy isEthres

p ∼ 9 keV. This roughly
agrees with the numerical calculations presented
Fig. 4 (solid curve).

Fig. 5 shows the energy loss of deuterons in3He
gas as a function of deuteron energy. The data are f
Ref. [18]. The solid curve is the numerical calculati
for the electronic stopping power, while the dash
curve shows the nuclear stopping. For this sys
the coefficients in Eq. (9) areS0 = 1.557 andε =
4.491Ed, respectively. As discussed in Ref. [18] t
threshold deuteron energy in this reaction is of
order of 18 keV, which agrees with the estimate ba
on Eq. (10). However, the numerical calculatio
based on the electronic stopping (solid curve of Fig
indicate a lower threshold energy for this syste
Nonetheless, the agreement with the experimental
is very good forEd > 20 keV. The threshold effec
is one more indication that the extrapolationS ∼ v,
based on the Andersen–Ziegler tables is not applic
to very low energies.

The steep rise of the fusion cross sections
astrophysical energies amplifies all effects leading
a slight modification of the projectile energy [19]. T
results presented in this article show that the stopp
mechanism does not follow a universal pattern for
systems. The threshold effect reported in Ref. [
is indeed responsible for a rapid decrease of
electronic stopping at low energies. It will occ
whenever the charge-exchange mechanism and
excitation of the first electronic state in the targ
involve approximately the same energy. However,
drop of the electronic stopping is not as sharp
expected from the simple classical arguments given
Eq. (10).

The experiments on astrophysical fusion reacti
have shown that the screening effect is much lar
than expected by theory. The solution to this probl
might be indeed the smaller stopping power, due
a steeper slope at low energies induced, e.g., by
threshold mechanism. This calls for improved th
retical studies of the energy loss of ions at extrem
low energies of and for their independent experime
verification. The present situation is highly disturbi
because if we cannot explain the laboratory screen
effect, most likely we cannot explain it in stellar env
ronments.
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