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Electromagnetic interaction of ultrarelativistic heavy ions
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The validity of aé-function approximation for the electromagnetic interaction of relativistic heavy ions is
investigated. The production ef"e™ pairs, with electron capture, is used as a test of the approximation.
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The production ofe™e™ in peripheral collisions of rela-

PACS nuniber34.90+q

approximation in a solvable problem, namely, the production

tivistic heavy ions has attracted a great amount of theoreticalf e* e~ pairs, in which the electron is captured in an orbit
interest due to its nonperturbative character. The calculationsround one of the nuclébound-free pairs

are hard to perform, and it is common to find substantial

Using the Bethe integrd3], potential(3) can be written

differences between the cross sections calculated within sevn the form

eral approachegl]. A good simplification of the problem
was been found by Baltz and co-worké&. They showed

that if one makes a gauge transformation in the wave func-

tion of the formy=exp{—ix(r,t)} ', where

x(r,t)= Zv—aln[y(z—vt)Jr JbZ+ yz(z—vt)z], (D)

the interaction induced by the electromagnetic field of a
ultrarelativistic particle is gauge transformed(iio our units
hA=c=my=1)

V(p,z,t)=p(p,z,0)(1—va,) — (p=0,z,t)(1— a,/v),
2

where ¢(p,z,t) is the Lienard-Wiechert potential at a point

r=(p,z), generated by a relativistic particle with velocity
=pz and impact parametdr:

d)(p,z,t):,yza[(b_p)2+,y2(z_vt)2]71/2. (3)

In these expressiong=(1—v?)~ 2 is the Lorentz contrac-
tion factor, ande, is the third of the Dirac matrices.

The second part of Eq2) acts as a regularization term of
the modified potential. It removes the divergencebatO.

e—iq-ueiq-r

a*—via;

1
d(pzt)=Za—; f d*q (5)
2
whereu=b+vt andgq=(q;,q,). For relativistic particles we

can replace (+va) and (1 a/v) by (1— a) in interaction
(2). As shown in Ref[3] this amounts to neglecting a very

nsmall[~O(1/y2)] piece of the longitudinal part of the in-

teraction. However, it is important to keep the othdactors
in their respective places, as they give rise to important com-
binations ofy factors in the matrix elements. Moreover, the
integral in Eq.(5) diverges logarithmically as—1.

The exact interaction is then given by

[eiq~r_eiqzz:|

qi+ a2y

(6

where the denominator of the integrand in E8). has been
rewritten in terms ofy. The interaction given by Ed4) is a
limit of this integral when we seqi/yzzo. It is clear from
the above equation that neglecting this factor yields the
S-function in Eq.(4). However, to emphasize the restrictions
on ¢, andq, let us define

-1 .
V(p,Z,t)=Za(1—az)—J d3geiau
272

This potential is very useful, since the Lorentz contraction

yields aé-function in the longitudinal variables wheye1,
andb is not too large. Evidently, this is a great simplification

since S-function interactions always lead to a considerable
decrease of integration steps in perturbative as well as non-

perturbative calculations. In Ref2] a formal derivation of

the S-function interaction was obtained by expanding the

gauge transformed potentifEq. (2)] into multipoles. Fur-

ther manipulation of the multipole expansion and compari-

son with numerical calculations have shown that &).can
be expressed as

b— 2
( bzp) _ @

V(p,z,t)=8(z—t)Za(1— a,)In

We will show that this expression can be obtained in

a

V(p,z,t)

Plzt= Ty

_1fd2 1 ab
- th_tgeXF(_Wt' )

x[expligy: p)—1]D(q.zt),  (7)
where
2 i9,(z—vt)
q ez vO: B
(DZ(Qt-Z,t):ﬁf dqzm:fe Yailz U’(‘_ (8)
z

Now, using lim __(A/2)e*M=5(x), we see that fory

simpler way. The derivation is useful to study the validity of —«, ®, does not depend oq, and assumes the form of a

the s-function approximation. In particular we will test the
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o-function: @ ,(z,t) = 6(z—vt).
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In this limit, we can write Eq(7) as - iZa e idrb
ar=i | dteYe+|V|te- =—f d? F(ap),
Bt 82000 o i) e Vv = Gt (@
, (13
with
where the integral over time yields
1 1
® ,t=—fd2 —exp—ig,-b)[expig- p)—1 z
ApO= T | da_gexpt i b)lexiliap)=1] F(qt):fdsr exp(i% Cexpliae p)—1]
dq A
=2 5~ Uolalp—bD = Jo(ab)}, (10 X (Yo | (1= @) | e, (14)

and ¢ is now given byé=w/yv.

Using plane waves for the positron wave function and a
ﬁydrogenicK—orbital function for the electron, the above ma-
trix element is given by

wherelJ, is the cylindrical Bessel function. The integral over

To show this we regularize the integrals by using

J a2y an, (11) Fan=f(av(1-agu, 9
X2+ k2

where
whereK, is the modified cylindrical Bessel function. Taking

the limit k— 0, and usingK (ak) =In(ak), for small values of f(q) 8\/—(2 )52 1
ak, we obtain Q) =ovmiza [1/a2+]|Q—p|2?
b— 2
O(pt)=in— 2" (12 1
b2 — . (16)
[1/af+]Qo—p|*]?

This is the solution of the Coulomb potential of a unit charge _ )
in two dimensions. An easy way to see this is to use Gaus¥) these equationa,=1/a=5.29<10" fm is the Bohr ra-
law for the electric field in two dimensions. One obtafs ~dius,v(u) is the positrorelectron spinor,p= ye“—1 is the
~1/b, where b is the distance to the charge. SinEe=  POsitron momentumQ=(q;,w/v), andQy=(0,w/v). Inte-
—d®/ab, the logarithmic form of® is evident. grating the square modulus of E(L3) over b yields a o
The above derivation illustrates the validity of the ap-function 8(q;—q;). Furthermore, performing the spin aver-
proximation in terms of the transverse momentum transfefges, for the differential cross section in terms of the positron
g - It should fail for very soft processes, i.e., those for whichenergy we obtain
g;— 0. Also, it requires thatj, be small compared tg. As
shown in Ref[3], g, values in the range of one unit up 40 do  (Za)? 42 |f(q0]?
units of the electron mass contribute appreciably to the inte- dedQ 3 (6= 1)pf Ot 24 g2y2°
, . : 2m (qg+&°)
grals involved in the production of free, and of bound-free,
e"e” pairs. It is thus important to check the validity of ap- The integral over the positron scattering angle can be done
proximation(4) in a concrete case. We will do this for the analytically, as well as the remaining integral owgr

production of bound-free pairs. The full calculation uses the Tg test thes-function interaction, we define the function
interaction given by Eq(6). For comparison, a similar cal-

(17

culation with the termé=q,/y replaced by zero in the de- A(e)=[(do/de);—o—do/de]/(do/de) -, (18
nominator of Eq.6) is equivalent to the use of the interac-
tion (4). which does not depend on

In Ref. [4] it was shown that the Coulomb distortion of  In Fig. 1 we plot the functiom\(e) for SPS, RHIC, and
the positron wave function is an important effect in calcula-LHC heavy ion energies. The positron energies are given in
tions of bound-free pair production. The right magnitude ofMeV units. For SPS the above formulation applies directly,
the differential cross sections depends on this effect. This igssuming that the electron is captured in the target and ne-
not relevant in our case, since we are only interested in thglecting the atomic screening effects. For RHIC and LHC a
relative change of the cross sections and probabilities by ugransformation of Eq(17) back to the laboratory system was
ing the exact and the-function interaction, respectively. performed. We note that thé-function interaction works
Therefore, for simplicity, we will use plane waves for the very well for positron energies of the order of MeV for SPS
positron wave function and first-order perturbation theory.and RHIC, and up to 100 MeV for LHC. The approximation
The energy transfer from the field to the created pair is givenworsens abruptly at a certain positron energy. The value of
by w=e+1, wheree is the positron energy, neglecting the where this occurs is a function of. In fact, we expect that
atomic binding energy of the captured electron. Using ar(do/de).— starts to differ substantially frordo/de for &
interaction in the form of Eq(6), the amplitude for bound- of the order of 1, i.e, foe/y=1. It is thus more appropriate
free pair production is given by to plotA as a function ot/ y. This is shown in Fig. 2 for the
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FIG. 3. Relative difference between the bound-free pair produc-

FIG. 1. Relative difference between the bound-free pair product ion probabilities calculated with thé-function approximation and

tion spectrum calculated with thé-function approximation and
with the exact interaction, respectivékee Eq(18)]. The compari-

with the exact interaction, respectivdlsee Eq(21)]. The compari-
son is done for SPS, RHIC, and LHC heavy-ion energies and for

son is done for SPS, RHIC, and LHC heavy-ion energies. The pos two different positron energies. The impact parameter divided by

itron energies are given in MeV units in the laboratory system.

same laboratory energies as before. In this figae is

given in units of the electron mass. We see that all curves
collapse into approximately a single one. The differences
between the results for RHIC and LHC are imperceptible.

the Lorentz factorp/y, is given in units of the electron Compton
wavelengthz/mc.

(Qt)
t+§2

dP(b,s) (Za)?

ded()

(s—l)pjdzqe 1G¢b-
(19

These results show that the calculations with #heinction
interaction differ from the calculations with the exact poten- ) e . . )
Inserting the term inside brackets in Efj6) into the integral

tial for positron energies=0.1ymc?. For SPS and RHIC,
this implies positron energies of the order of a few MeV, an o

for LHC energies of a few hundred MeV.

dabove, and neglecting terms of ordeaﬁ/, one obtains the
sult

In the frame of reference of the nucleus where the elec- )
tron is captured, the positrons move in a very forward direc- 27l 1
ron s Bap b e 5[ EK1(b) — 7K (D)1= 5 Ko(£b)
tion, within an angle of the order of 4/along the projectile E—p? | E— P
incident direction[4]. Thus, to study the impact parameter
dependence of the production probabilities, we can safely i é b
usep=p,. The differential probability for pair production is B U_KO@ ), (20
given by
whereé=w/yv and n=w/v —p.
12 We define another functioa(b, ) to test the impact pa-
' rameter dependence of tléefunction interaction,
1 L
A(b,e)=[(dP/dedQ),_o—dP/dedQ]/(dP/ded);—,.
0s | @
4 06 In Fig. 3 we plot the functiom\(b,e) for SPS, RHIC, and
LHC heavy-ion energies, as a functionkofy. For compari-
04 | son we use two values of the positron energy:1 and 10
' MeV. Fore=1 MeV all curves agree, and one observes that
o2 | the approximation is good up to impact parameters of the
order of b=0.1y/e. This is confirmed by looking at the
curves fore=10 MeV. Then the agreement at SPS bom-

ely

barding energies is not perfect, even for the smaller impact
parameters. However, for RHIC and LHC energies, the re-
sults are basically equal. These results originate from the

FIG. 2. Same as in Fig. 1, but as a function of the positronfunction given in Eq.(20), which drops sharply to zero at
energies divided by the Lorentz factor. The positron energies are £=1, i.e., at positron energies of the ordetbef y/e. This is

given in units of the electron rest mass. the so-called adiabatic limit. The electromagnetic field has
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photon energy components up tat;d/, wheret;,, is the The basic idea of theS-function interaction is that the
interaction time. This time is equals td/(y)/v=Db/y for  electromagnetic field of a relativistic charge looks like a very
relativistic collisions[3]. thin pancake. Those processes which do not involve energy

In conclusion, the present study has shown thainction  transfers that are too large, will not be sensitive to the spatial
interaction yields reasonable results as longuidy<0.1.  variation of the field. Then thé-function is a good approxi-
As seen in Fig. 3, this amountshes0.1y/w. As observed in  Mation. For typical energy transfers of the order of 10-100
Ref. [3], the most effective impact parameters for this pro_MeV in nuclear fragmentation, the approximation works

cess are of the order bf=1/m. We also see in Figs. 1 and 2 Well for b=(0.01-0.1)y fm. To calculate total cross sec-
that the differential cross sectiods/dw are well described 1ONS LIS always necessary to account for those'large Impact
up to energies of the order of G;1 parameters at which thé-function approximation fails.

For other situations, e.g., nuclear fragmentation due to thSimiIar conclusions were drawn in a recent paper on
o €9, 1 frag . . projectile-electron loss in relativistic collisions with atomic
electromagnetic interaction in relativistic heavy ion colli-

sions, the most effective impact parameter is givenbby targets{S}.

=R, whereR=10 fm. We thus expect that thefunction The author is grateful to Francois Gelis and Tony Baltz
interaction works well foe<0.1y MeV. Note thaty is the  for useful discussions. This work was authored under Con-
Lorentz factor in the frame of reference of one of the nucleitract No. DE-AC02-98CH10886 with the U.S. Department
i.e., y=2y2—1, wherey, is the collider Lorentz factor. of Energy. Partial support from the Brazilian funding agency
Thus vy is huge for RHIC and LHC energies, and the ap-MCT/FINEP/CNPQPRONEX, under Contract No.
proximation works well for all energies of practical interest 41.96.0886.00, is also acknowledged. The author is grateful

in nuclear fragmentation. to the John Simon Guggenheim Foundation for its support.
[1] U. Eichmann, J. Reinhardt, and W. Greiner, Phys. Re®.1A (1994; A.J. Baltz,ibid. 52, 4970(1995.
062710 (2000; A. Baltz, F. Gelis, L. McLerran, and A. [3] C.A. Bertulani and G. Baur, Phys. Rep63 299 (1988.
Peshier, e-print nucl-th/0101024. [4] C.A. Bertulani and D. Dolci, Nucl. Phys. 883 635(200J.
[2] A.J. Baltz, M.J. Rhoades-Brown, and J. Weneser, Phys. Rev.[5] A.B. Voitkiv, C. Muller, and N. Grum, Phys. Rev. A62,
A 44, 5569(1991); 48, 2002(1993; 47, 3444(1993; 50, 4842 062701(2000.

062706-4



