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Electromagnetic interaction of ultrarelativistic heavy ions
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The validity of ad-function approximation for the electromagnetic interaction of relativistic heavy ions is
investigated. The production ofe1e2 pairs, with electron capture, is used as a test of the approximation.
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The production ofe1e2 in peripheral collisions of rela-
tivistic heavy ions has attracted a great amount of theore
interest due to its nonperturbative character. The calculat
are hard to perform, and it is common to find substan
differences between the cross sections calculated within
eral approaches@1#. A good simplification of the problem
was been found by Baltz and co-workers@2#. They showed
that if one makes a gauge transformation in the wave fu
tion of the formc5exp$2ix(r ,t)%c8, where

x~r ,t !5
Za

v
ln@g~z2vt !1Ab21g2~z2vt !2#, ~1!

the interaction induced by the electromagnetic field of
ultrarelativistic particle is gauge transformed to~in our units
\5c5me51)

V~r,z,t !5f~r,z,t !~12vâz!2f~r50,z,t !~12âz /v !,
~2!

wheref(r,z,t) is the Lienard-Wiechert potential at a poi
r5(r,z), generated by a relativistic particle with velocityv
5v ẑ and impact parameterb:

f~r,z,t !5gZa@~b2r!21g2~z2vt !2#21/2. ~3!

In these expressionsg5(12v2)21/2 is the Lorentz contrac-
tion factor, andâz is the third of the Dirac matrices.

The second part of Eq.~2! acts as a regularization term o
the modified potential. It removes the divergence atb50.
This potential is very useful, since the Lorentz contract
yields ad-function in the longitudinal variables wheng@1,
andb is not too large. Evidently, this is a great simplificatio
sinced-function interactions always lead to a considera
decrease of integration steps in perturbative as well as n
perturbative calculations. In Ref.@2# a formal derivation of
the d-function interaction was obtained by expanding t
gauge transformed potential@Eq. ~2!# into multipoles. Fur-
ther manipulation of the multipole expansion and compa
son with numerical calculations have shown that Eq.~2! can
be expressed as

V~r,z,t !5d~z2t !Za~12âz!ln
~b2r!2

b2
. ~4!

We will show that this expression can be obtained in
simpler way. The derivation is useful to study the validity
the d-function approximation. In particular we will test th
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approximation in a solvable problem, namely, the product
of e1e2 pairs, in which the electron is captured in an orb
around one of the nuclei~bound-free pairs!.

Using the Bethe integral@3#, potential~3! can be written
in the form

f~r,z,t !5Za
1

2p2E d3q
e2 iq•ueiq•r

q22v2qz
2

, ~5!

whereu5b1vt andq5(qt ,qz). For relativistic particles we
can replace (12vâ) and (12â/v) by (12â) in interaction
~2!. As shown in Ref.@3# this amounts to neglecting a ver
small @;O(1/g2)# piece of the longitudinal part of the in
teraction. However, it is important to keep the otherv factors
in their respective places, as they give rise to important co
binations ofg factors in the matrix elements. Moreover, th
integral in Eq.~5! diverges logarithmically asv→1.

The exact interaction is then given by

V~r,z,t !5Za~12âz!
1

2p2E d3q e2 iq•u
@eiq•r2eiqzz#

qt
21qz

2/g2
,

~6!

where the denominator of the integrand in Eq.~5! has been
rewritten in terms ofg. The interaction given by Eq.~4! is a
limit of this integral when we setqz

2/g250. It is clear from
the above equation that neglecting this factor yields
d-function in Eq.~4!. However, to emphasize the restriction
on qt andqz let us define

F~r,z,t ![
V~r,z,t !

Za~12âz!

5
1

pE d2qt

1

qt
2

exp~2 iqt•b!

3@exp~ iqt•r!21#Fz~qt ,z,t !, ~7!

where

Fz~qt ,z,t !5
qt

2

2pE dqz

eiqz(z2vt)

qt
21qz

2/g2
5

gqt

2
e2gqtuz2vtu. ~8!

Now, using lim
L→`

(L/2)e2Luxu5d(x), we see that forg

→`, Fz does not depend onqt , and assumes the form of
d-function: Fz(z,t)5d(z2vt).
©2001 The American Physical Society06-1
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In this limit, we can write Eq.~7! as

F~r,z,t !5d~z2t !Fr~r,t !, ~9!

with

Fr~r,t !5
1

pE d2qt

1

qt
2

exp~2 iqt•b!@exp~ iqt•r!21#

52E dqt

qt
$J0~qtur2bu!2J0~qtb!%, ~10!

whereJ0 is the cylindrical Bessel function. The integral ov
each Bessel function diverges, but their difference does
To show this we regularize the integrals by using

E dx
xJ0~ax!

x21k2
5K0~ak!, ~11!

whereK0 is the modified cylindrical Bessel function. Takin
the limit k→0, and usingK(ak). ln(ak), for small values of
ak, we obtain

F~r,t !5 ln
~b2r!2

b2
. ~12!

This is the solution of the Coulomb potential of a unit char
in two dimensions. An easy way to see this is to use Ga´
law for the electric field in two dimensions. One obtainsE
.1/b, where b is the distance to the charge. SinceE5
2]F/]b, the logarithmic form ofF is evident.

The above derivation illustrates the validity of the a
proximation in terms of the transverse momentum trans
qt . It should fail for very soft processes, i.e., those for whi
qt→0. Also, it requires thatqz be small compared tog. As
shown in Ref.@3#, qz values in the range of one unit up tog
units of the electron mass contribute appreciably to the in
grals involved in the production of free, and of bound-fre
e1e2 pairs. It is thus important to check the validity of a
proximation ~4! in a concrete case. We will do this for th
production of bound-free pairs. The full calculation uses
interaction given by Eq.~6!. For comparison, a similar cal
culation with the termj5qz /g replaced by zero in the de
nominator of Eq.~6! is equivalent to the use of the intera
tion ~4!.

In Ref. @4# it was shown that the Coulomb distortion o
the positron wave function is an important effect in calcu
tions of bound-free pair production. The right magnitude
the differential cross sections depends on this effect. Thi
not relevant in our case, since we are only interested in
relative change of the cross sections and probabilities by
ing the exact and thed-function interaction, respectively
Therefore, for simplicity, we will use plane waves for th
positron wave function and first-order perturbation theo
The energy transfer from the field to the created pair is gi
by v5«11, where« is the positron energy, neglecting th
atomic binding energy of the captured electron. Using
interaction in the form of Eq.~6!, the amplitude for bound-
free pair production is given by
06270
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dt eivt^ce1uVuce2&5
iZa

p E d2qt

e2 iqt•b

qt
21j2

F~qt!,

~13!

where the integral over time yields

F~qt!5E d3r expS i
vz

v D @exp~ iqt•r!21#

3^ce1u~12âz!uce2&, ~14!

andj is now given byj5v/gv.
Using plane waves for the positron wave function and

hydrogenicK-orbital function for the electron, the above m
trix element is given by

F~qt!5 f ~qt!v~12âz!u, ~15!

where

f ~qt!58Ap~Za!5/2H 1

@1/aH
2 1uQ2pu2#2

2
1

@1/aH
2 1uQ02pu2#2J . ~16!

In these equationsaH51/a55.293104 fm is the Bohr ra-
dius,v(u) is the positron~electron! spinor,p5A«221 is the
positron momentum,Q5(qt ,v/v), andQ05(0,v/v). Inte-
grating the square modulus of Eq.~13! over b yields a d
function d(qt2qt8). Furthermore, performing the spin ave
ages, for the differential cross section in terms of the posit
energy we obtain

ds

d«dV
5

~Za!2

2p3
~«21!pE d2qt

u f ~qt!u2

~qt
21j2!2

. ~17!

The integral over the positron scattering angle can be d
analytically, as well as the remaining integral overqt .

To test thed-function interaction, we define the functio

D~«!5@~ds/d«!j502ds/d«#/~ds/d«!j50 , ~18!

which does not depend onZ.
In Fig. 1 we plot the functionD(«) for SPS, RHIC, and

LHC heavy ion energies. The positron energies are given
MeV units. For SPS the above formulation applies direc
assuming that the electron is captured in the target and
glecting the atomic screening effects. For RHIC and LHC
transformation of Eq.~17! back to the laboratory system wa
performed. We note that thed-function interaction works
very well for positron energies of the order of MeV for SP
and RHIC, and up to 100 MeV for LHC. The approximatio
worsens abruptly at a certain positron energy. The value o«
where this occurs is a function ofg. In fact, we expect that
(ds/d«)j50 starts to differ substantially fromds/d« for j
of the order of 1, i.e, for«/g.1. It is thus more appropriate
to plot D as a function of«/g. This is shown in Fig. 2 for the
6-2
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ELECTROMAGNETIC INTERACTION OF . . . PHYSICAL REVIEW A 63 062706
same laboratory energies as before. In this figure«/g is
given in units of the electron mass. We see that all cur
collapse into approximately a single one. The differen
between the results for RHIC and LHC are imperceptib
These results show that the calculations with thed-function
interaction differ from the calculations with the exact pote
tial for positron energies«*0.1gmc2. For SPS and RHIC
this implies positron energies of the order of a few MeV, a
for LHC energies of a few hundred MeV.

In the frame of reference of the nucleus where the e
tron is captured, the positrons move in a very forward dir
tion, within an angle of the order of 1/g along the projectile
incident direction@4#. Thus, to study the impact paramet
dependence of the production probabilities, we can sa
usep5pz . The differential probability for pair production i
given by

FIG. 1. Relative difference between the bound-free pair prod
tion spectrum calculated with thed-function approximation and
with the exact interaction, respectively@see Eq.~18!#. The compari-
son is done for SPS, RHIC, and LHC heavy-ion energies. The p
itron energies are given in MeV units in the laboratory system.

FIG. 2. Same as in Fig. 1, but as a function of the posit
energies divided by the Lorentzg factor. The positron energies ar
given in units of the electron rest mass.
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dP~b,«!

d«dV
5

~Za!2

8p5
~«21!pU E d2qte

2 iqtb•
f ~qt!

qt
21j2U2

.

~19!

Inserting the term inside brackets in Eq.~16! into the integral
above, and neglecting terms of order 1/aH

2 , one obtains the
result

2p i

j22h2 H 1

j22h2
@jK1~jb!2hK1~hb!#2

b

2
K0~jb!J

2
p i j

h4
K0~jb!, ~20!

wherej5v/gv andh5v/v2p.
We define another functionD(b,«) to test the impact pa-

rameter dependence of thed-function interaction,

D~b,«!5@~dP/d«dV!j502dP/d«dV#/~dP/d«dV!j50 .
~21!

In Fig. 3 we plot the functionD(b,«) for SPS, RHIC, and
LHC heavy-ion energies, as a function ofb/g. For compari-
son we use two values of the positron energy:«51 and 10
MeV. For«51 MeV all curves agree, and one observes t
the approximation is good up to impact parameters of
order of b.0.1g/«. This is confirmed by looking at the
curves for«510 MeV. Then the agreement at SPS bo
barding energies is not perfect, even for the smaller imp
parameters. However, for RHIC and LHC energies, the
sults are basically equal. These results originate from
function given in Eq.~20!, which drops sharply to zero a
j.1, i.e., at positron energies of the order ofb.g/«. This is
the so-called adiabatic limit. The electromagnetic field h

-

s-

n

FIG. 3. Relative difference between the bound-free pair prod
tion probabilities calculated with thed-function approximation and
with the exact interaction, respectively@see Eq.~21!#. The compari-
son is done for SPS, RHIC, and LHC heavy-ion energies and
two different positron energies. The impact parameter divided
the Lorentz factor,b/g, is given in units of the electron Compto
wavelength\/mc.
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C. A. BERTULANI PHYSICAL REVIEW A 63 062706
photon energy components up to 1/t int , where t int is the
interaction time. This time is equals to (b/g)/v.b/g for
relativistic collisions@3#.

In conclusion, the present study has shown thatd-function
interaction yields reasonable results as long asvb/g&0.1.
As seen in Fig. 3, this amounts tob&0.1g/v. As observed in
Ref. @3#, the most effective impact parameters for this p
cess are of the order ofb.1/m. We also see in Figs. 1 and
that the differential cross sectionsds/dv are well described
up to energies of the order of 0.1g.

For other situations, e.g., nuclear fragmentation due to
electromagnetic interaction in relativistic heavy ion col
sions, the most effective impact parameter is given byb
.R, whereR.10 fm. We thus expect that thed-function
interaction works well for«&0.1g MeV. Note thatg is the
Lorentz factor in the frame of reference of one of the nuc
i.e., g52gc

221, where gc is the collider Lorentz factor.
Thus g is huge for RHIC and LHC energies, and the a
proximation works well for all energies of practical intere
in nuclear fragmentation.
e

06270
-

e

i,

-

The basic idea of thed-function interaction is that the
electromagnetic field of a relativistic charge looks like a ve
thin pancake. Those processes which do not involve ene
transfers that are too large, will not be sensitive to the spa
variation of the field. Then thed-function is a good approxi-
mation. For typical energy transfers of the order of 10–1
MeV in nuclear fragmentation, the approximation wor
well for b&(0.01–0.1)g fm. To calculate total cross sec
tions it is always necessary to account for those large imp
parameters at which thed-function approximation fails.
Similar conclusions were drawn in a recent paper
projectile-electron loss in relativistic collisions with atom
targets@5#.
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