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A novel description of charge-exchange reactions at intermediate energies is developed, based on both phe-
nomenological or microscopic eikonal phase-shift functions. The results obtained within this eikonal approach
are in good agreement with the distorted-wave Born approximation calculations within the energy region where
both approximations should be valid. They also compare well with the experimental data, even at relatively low
energy domain. At higher energies, relativistic kinematics have also been added and shown to be relevant. Owing
to the microscopic feature of the formulation, our theory also has the advantage that it can be applied to high
energies where the phenomenological optical potentials are rarely available.
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I. INTRODUCTION

Charge-exchange (CE) reactions, with hadronic probes
such as (p, n), (3He, t), (12C, 12N) reactions, have been widely
used as one of the most sensitive tools for nuclear struc-
ture studies. The related studies include the determination
of (a) Gamow-Teller (GT) transition strength in excitation-
energy regions inaccessible by β decay [1–4], (b) spin-dipole
transition strengths [3], (c) properties of isovector giant res-
onances [2,5], (d) symmetry energy [2,6], (e) the isospin
symmetry breaking in asymmetric nuclear matter [6–8],
and (f) the Landau-Migdal parameter [8]. In particular, GT
strengths are crucial for understanding various problems in
stellar evolution, such as neutrino induced nucleosynthesis
and neutrinoless double-β decay [1,3,8]. We now know that
heavy-ion probes allow a better extraction of the GT strength,
compared with (p, n) reactions, because of higher energy
resolution and to a collective participation of nucleons at the
surface of the target nucleus [1–4].

In recent years, more attention was paid to experimental
studies of CE reactions at intermediate and high energies
(�100 MeV/nucleon), owing to renewed interests for the
above mentioned physics problems [2,3,8]. Prior studies
indicate that the reaction mechanism at these energies is
dominated by one-step processes. Hence, precise extraction
of the weak transition strengths or other nuclear structure
information can be achieved, as long as appropriate theoret-
ical tools are applied to describe the reaction process [9].
However, so far few theoretical formulations exist at the
intermediate and high energy domain [4,10,11], although
at lower energies (<100 MeV/nucleon) CE reactions can
be successfully reproduced by the conventional distorted-
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wave Born approximation (DWBA) calculations [12–16]. It
is difficult to apply the latter at higher energies, because
the required phenomenological potential, namely the optical
potential (OP), is rarely available there [4,17]. In addition,
the Schrödinger equation determining the distorted waves is
not valid at relativistic energies. To overcome these difficul-
ties, we use the eikonal formalism which can be formulated
microscopically by using well-known nucleon densities and
nucleon-nucleon (NN) interactions [18]. The present work in-
cludes the complete formulation and the code implementation.
The differential cross sections (DCS) calculated within this
eikonal approach (EA) are in excellent agreement with those
from conventional DWBA calculations, for CE reactions up
to 140 MeV/nucleon. It also provides a good description of
the experimental data. This eikonal method, together with the
relativistic kinematics, can also be applied to CE reactions up
to a few GeV energy range.

This article is mainly composed of two parts: theoretical
formulation and benchmark calculations. The theoretical sec-
tion is devoted to the derivation of the detailed EA formulation
for CE reactions. In the calculation section, we compare re-
sults from EA and with those from DWBA, discuss the effects
of tensor and exchange terms within EA, and also introduce
the relativistic kinematics. Comparisons with experimental
data on DCS are also supplemented. Finally, a brief summary
is given at the end of the article.

II. THEORETICAL FORMULATION

The DCS for the CE reaction A(a, b)B is usually expressed
in the form [17,19],

dσ

d�
(θ ) = 1

(2JA + 1)(2Ja + 1)

∑
MaMb
MAMB

| f (θ )|2, (1)
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FIG. 1. A schematic view of the cylindrical coordinate system
used in the text.

where Ji and Mi stand for the spin and magnetic quantum
numbers of the particle i (i = a, b, A, and B), respectively.
At intermediate energies, the scattering amplitude f (θ ) can be
calculated in the DWBA approach in terms of the interaction
matrix element [17,19],

f (θ ) = − μ

2π h̄2 〈χ (−)
k′ (R)�b�B|V |�a�Aχ

(+)
k (R)〉, (2)

where μ is the reduced mass of the reaction system, χ (±)(R)
is the incoming (+) or outgoing (−) distorted wave func-
tion, k(k′) the initial (final) relative momentum, and R the
vector of the relative position between a and A or b and
B. In the equation, � is the internal wave function and V
the effective interaction potential which induces the charge
exchange.

According to the eikonal approximation which is valid
at intermediate and high incident energies [17,19], f (θ ) in
Eq. (2) becomes

f (θ ) = − μ

2π h̄2

∫
dR e−iq·b eiχ (b)F (R). (3)

Here, a cylindrical coordinate system is adopted so that R
can be replaced by b + zez, as shown in Fig. 1. The z axis
is parallel to the direction of the incident particles, and the
vector in the plane perpendicular to the z axis, b, is generally
called the impact parameter. In the equation, the transferred
momentum q is equal to k′ − k as illustrated in Fig. 2, with
q ≈ 2k sin(θ/2).

In Eq. (3), the phase shift function χ (b) is defined as

χ (b) = − μ

h̄2k

∫ +∞

−∞
U (b, z)dz, (4)

where U is the effective interaction potential between the ini-
tial particles a and A or the final particles b and B. Generally,

FIG. 2. The definition of the scattering angle θ : the angle be-
tween the final momentum k′ and the initial momentum k. q is the
transferred momenta.

the potential U incorporates the nuclear and Coulomb part and
χ (b) is the sum of the nuclear and Coulomb phases, χN and
χC, respectively. Quite often, the effective nuclear potential is
represented by a phenomenological optical potential UOP in
the form [20]:

UOP(r) = VR

1 + e
r−rR

aR

+ i
VI

1 + e
r−rI

aI

, (5)

where the subscript R or I denotes the real or imaginary
potential parameters, respectively, of which the values might
be found in the literature.

Instead of a phenomenological UOP [Eq. (5)], a micro-
scopic “t ′′

ρρ interaction [19] can be adopted to calculate χN,
yielding

χN(b) = 1

kNN

∫ ∞

0
dq qρp(q)ρt (q) fNN(q)J0(qb), (6)

where ρp and ρt are the nucleon densities of the projectile and
target, respectively. Here, fNN is the NN scattering amplitude
expressed in the following:

fNN = kNNσNN(i + αNN)

4π
e−γNNq2

, (7)

where kNN, σNN, αNN, and γNN are taken from nucleon-
nucleon scattering experiments [11]. Using this method, the
EA approach can be extended to high incident energies (even
beyond 1 GeV) where the phenomenological potential U is
not available [11].

In Eq. (3), F (R), the form factor carrying the nuclear
structure information, is defined by

F (R) = 〈JBTBJbTb | V | JATAJaTa〉, (8)

where Ti is the isospin of the nucleus i (i = a, b, A, and
B), and V is the residual interaction potential (CE interaction
potential). The detailed expressions and deductions related to
the CE interaction are given in Appendix.

The numerical calculations can be implemented by writing
the amplitude f (θ ) in momentum space as

f (θ ) = − μ

2π h̄2

∫
db dz e−iq·beiχ (b)

∫
d p e−ip·RF (p)

= − μ

2π h̄2

∫
db dz e−iq·beiχ (b)F (R), (9)

where F (p) is the product of all functions of p, coeffi-
cients in Eq. (A22) except for e−ip·R, and coefficients in
Eq. (A7).

e−ip·R in Eq. (9) can be expanded into a partial wave series
using Eq. (A21). Then F (R) in Eq. (9) becomes

F (R) =
∑
JSLtr
Mtr

i−LtrY ∗
LtrMtr

(R)F JSLtr
Mtr

(R). (10)
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Here the radial form factor F JSLtr
Mtr

(R) has the form,

F JSLtr
Mtr

(R) =
∑
Ks0
t0n0

∑
l1l2
l12

il1−l2+K

(2π )3
AK

s0
Pl1l2

JAJaMaMA
ĴbĴB l̂12K̂

× l̂1 l̂2K̂

L̂tr
IJAJBJaJb,l2l1l12
JSLtrMtr,s0K

∫
p2d p jLtr (pR)

× Ṽ K
s0t0 (p)Dl1s0J

AB (p)Dl2s0S
ab (p), (11)

where V K
s0t0 (p) [Eqs. (A15) and (A16)], Dl1s0J

AB (p), and Dl2s0S
ab (p)

are the NN interaction strength function, transition densi-
ties for the target [Eq. (A23)], and that for the projectile,
respectively. Detailed information for AK

s0
, Pl1l2

JAJaMaMA
, and

IJAJBJaJb,l2l1l12
JSLtrMtr,s0K in Eq. (11) are given in Appendix.

Finally, for CE reactions Eq. (1) becomes

dσ

d�
(θ ) = μ2

h̄4

(2JB + 1)(2Jb + 1)

(2JA + 1)(2Ja + 1)

∑
JSLtr
Mtr

|β(θ )|2. (12)

The partial amplitude β(θ ) can be derived within EA, using
the expressions derived above,

β(θ ) = i−Ltr−Mtr

(2π )3

∫∫
dbdzbeiχ (b)JMtr (qb)PMtr

Ltr
(b, z)

×
∑
Ks0

∑
l1l2
l12

(−1)l1 iK AK
s0

l̂1 l̂2 l̂12K̂

×Cl120
l20l10C

K0
Ltr0l120

⎧⎨
⎩

S J Ltr

l2 l1 l12

s0 s0 K

⎫⎬
⎭

×
∫

p2d p jLtr (pR)F TATBTaTb
s0K,l1l2JS (p), (13)

with

F TATBTaTb
s0K,l1l2JS (p) = C

TbTbz
TaTaz t0n0

C
TBTBz
TATAz t0(−n0 )V

K
s0t0 (p)Dl1s0J

AB (p)Dl2s0S
ab (p),

(14)

where PMtr
Ltr

(b, z) is the associated Legendre polynomial. This
procedure, together with the incorporation of relativistic kine-
matics, allows for an accurate description of CE reactions in
the eikonal formalism.

III. CALCULATIONS AND DISCUSSION

We now compare the EA calculations with the stan-
dard DWBA calculations, at an intermediate energy of
140 MeV/nucleon, and show the advantages of EA.

A. Calculations for partial cross sections within EA

According to Eq. (12), the total DCS for CE reactions
involve the sum of all JSLtr-components. For the Gamow-
Teller (GT)-type CE reactions (J = 1, S = 1) we can use
the 120Sn(3He, t) 120Sb reaction as an example. In this case,
only the JSLtr = 110 and 112 components are needed,

10−3

10−2

10−1

100

101

102

2 4 6 8 10

d σ
/d

Ω
 (

m
b/

sr
)

θc.m. (deg)

120Sn(3He,t)

This work, total
FOLD, total
This work, 112
FOLD, 112

FIG. 3. Calculations for the CE reaction 120Sn(3He, t) 120Sb at
140 MeV/nucleon by using UOP potential [Eq. (5)] with the parame-
ters taken from [20]. Red dashed and red dot-dashed lines represent
the EA calculations for the 112-component and the total DCS, re-
spectively. The corresponding black solid and black dotted lines are
obtained with DWBA calculations using the FOLD code [20].

corresponding to Ltr = 0 and Ltr = 2, respectively. The cal-
culated results are displayed in Fig. 3. It can be seen that the
calculations using EA and DWBA approaches agree with each
other for both 110- and 112-components.

To clarify the contribution from different partial terms to
110- and 112-components, the cross sections [Eq. (12)] are
decomposed into a series of partial waves depending on the
quantum numbers s0, K, S, J, Ltr , l1, l2, and l12, as appearing in
Eqs. (A7)–(A10) and Eqs. (10)–(14). It can be seen that there
are five valid contributing partial terms represented by A1, A2,
A3, B1, and B2 (Ai and Bi for 112- and 110-components, re-
spectively, as shown in Table I). The correspondence between
the Ai (Bi) coefficients and the specific quantum numbers are
listed in Table I. For example, the A1 term within EA can be
expressed as

dσ

d�A1

(θ ) = μ2

h̄4

(2JB + 1)(2Jb + 1)

(2JA + 1)(2Ja + 1)

∑
Mtr=−2,0,2

|βA1 (θ )|2,

(15)

TABLE I. Values of the quantum numbers s0, K, S, J , Ltr , l1, l2,
and l12, for partial terms A1, A2, and A3 related to 112-component,
and B1 and B2 related to 110-component.

s0 K S J Ltr l1 l2 l12

112 A1 1 2 1 1 2 0 0 0
112 A2 1 0 1 1 2 2 0 2
112 A3 1 2 1 1 2 2 0 2
110 B1 1 2 1 1 0 2 0 2
110 B2 1 0 1 1 0 0 0 0
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Ω
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m
b/
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)

θc.m. (deg)

(a)

A1
A2
A3

2 4 6 8 10

B2

B1
(b)

110−component

B1
B2

FIG. 4. For the same reaction and with the same UOP parameters
as in Fig. 3: (a) Calculated partial contributions to the DCS from
the A1 (solid line), A2 (dashed line), and A3 (dotted line) terms for
the 112-component within EA; (b) calculated B1 (solid line) and B2

(dashed line) terms related to the 110-component.

with

βA1 (θ ) = i−Mtr

∫
bdbeiχ (b)JMtr (qb)

∫
dzPMtr

2 (b, z)FA1 (R).

(16)

Here PMtr
2 (b, z) is the associated Legendre polynomial and

FA1 (R) the corresponding form factor in the form,

FA1 (R) = 1

24π3

∫
p2d p j2(pR)C

TbTbz
TaTaz t0n0

C
TBTBz

TATAz t0(−n0 )

× Ṽ 2
11(p)D011

AB (p)D011
ab (p). (17)

From Fig. 4, it can be seen that 110- and 112-component
DCS are dominated by B2 and A1 partial terms, respectively.
We have also examined the transition densities in momentum
space for the allowed GT decay (s0 = 1, l1 = 0, J = 1) and
the second-forbidden GT decay (s0 = 1, l1 = 2, J = 1) (see
Table I). Again, excellent agreements were found between EA
and DWBA calculations. The transition density distributions
also provide a reason for the orders of magnitude differences
among the Ai (or Bi) partial contribution to the DCS.

Interestingly, comparing to Ai terms, Bi partial waves have
deeper shifted first minimum [see Fig. 4(b)]. To clarify the dif-
ference between the angular distribution for Ai and Bi terms,
we examined A1 DCS which dominates over A2 and A3 DCS.
As a matter of fact, the A1 term is composed of three parts
with magnetic quantum numbers Mtr = 0 and Mtr = ±2 [refer
to Eq. (15)]. The corresponding partial DCS behave according
to the Bessel functions J0(kbθ ) and J2(kbθ ), respectively, as
illustrated in Fig. 5. The interference between these two con-
tributions leads to the slow variation of DCS at small angles
for the A1 term (also for A2 and A3 terms). The deeper shifted
first minimum for Bi partial waves (Table I) can be as well
understood in this way as they depend only on the Ltr = 0,
and hence only on the Mtr = 0 term.

10−4

10−3

10−2

10−1

100

101

2 4 6 8 10

120Sn(3He,t)

d σ
/d

Ω
 (

m
b/

sr
)

θc.m. (deg)

A1, total
A1, Mtr=0
A1, Mtr=2

FIG. 5. For the same reaction and with the same UOP parameters
as in Fig. 3, calculated A1 DCS within EA for Mtr = 0 (black dotted
line) and Mtr = ± 2 (blue dash-dotted line), respectively. The total
A1 DCS (the incoherent addition of Mtr = 0 and Mtr = ± 2 items) is
presented by the red solid line.

B. Effects of the tensor and exchange terms

As indicated in Sec. II, the interaction potential includes
the central (K = 0) and tensor (K = 2) parts, expressed by
Eqs. (A15) and (A16), respectively. Their relative impor-
tance is shown in Fig. 6. It is shown in the figure that
the 110-component DCS is dominated by the central inter-
action whereas the 112-component DCS is dominated by
the tensor interaction. As for the exchange term in the in-
teraction [Eq. (A20)], its contribution is appreciable to the
110-component DCS, but negligible to the 112-component
DCS. As a matter of fact, when we plot the real part of the
potential in Fig. 7, we see an increase of the central potential
depth by removing the exchange term (direct only), while no

10−10

10−8

10−6

10−4

10−2

100

102

104

2 4 6 8 10

d σ
/d

Ω
 (

m
b/

sr
)

θc.m. (deg)

120Sn(3He,t)

(a)

110, direct only
110, central (s0=1)
110, tensor

2 4 6 8 10

120Sn(3He,t)

(b)

112, direct only
112, central (s0=1)
112, tensor

FIG. 6. For the same reaction and with the same UOP parameters
as in Fig. 3, calculated contributions to the DCS from the central
(solid lines) and tensor (dotted lines) interactions, for 110-component
(a) and 112-component (b). The calculations by removing the ex-
change term (direct only) are presented by the dash-dotted lines.
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Real part

p (fm−1)

V
nn

(/
M

eV
)

central, direct only
central (s0=1)
tensor

FIG. 7. The central part [Eq. (A20) for K = 0 and s0 = t0 = 1]
and the tensor part [Eq. (A16)] of the CE interaction potential are
displayed by dash-dotted line and dashed line, respectively. The
black solid line represents the central potential without the exchange
term [direct only, Eq. (A15)]. The exchange term has no effect on the
tensor potential. Only the real parts of the potentials are presented.

change occurs for the tensor potential. Because the 110- and
112-components are dominated separately by the former and
latter interactions, respectively, their contribution to the DCS
changes accordingly.

C. Relativistic kinematics

To extend the application of our EA method to higher
energies, relativistic kinematics for the nucleus-nucleus colli-
sion [17,19] was implemented. If va is the relativistic velocity
of the incident particle a in the laboratory system [17], then

v2
a

c2
= T 2 + 2T m0c2

(T + m0c2)2
, (18)

where T is the kinetic energy and m0 the rest mass of particle
a. Assuming the target nucleus A being at rest, the relativistic
kinetic energy in the center-of-mass (c.m.) system [17] can be
deduced from

Ec.m.r = m′
Ac2 − mAc2 + m′′

a c2 − m0c2, (19)

where m′′
a c2 (m′

Ac2) is the total energy of the projectile (target)
in the c.m. system, expressed as follows [17]:

m′′
a c2 = T mAc2 + m0c2(m0c2 + mAc2)√

2T mAc2 + (m0c2 + mAc2)2
, (20)

or

m′
Ac2 = mAc2 T + m0c2 + mAc2√

2T mAc2 + (m0c2 + mAc2)2
. (21)

The incident momentum for the projectile in the c.m. system
k can then be expressed as [17]

k = m′′
a v

′′
a

h̄
= mAc2

√
T 2 + 2T m0c2

h̄c
√

2T mAc2 + (m0c2 + mAc2)2
, (22)

TABLE II. Physical quantities Ec.m.r , v/c, k, and μc2 in both rel-
ativistic (rel) and nonrelativistic (nonrel) kinematics, for the reaction
120Sn(3He, t) 120Tn at 140 MeV/nucleon. Their absolute differences,
D(%), are also shown.

Ec.m.r (MeV) v/c k (fm−1) μc2 (MeV)

rel 409.026 0.497 7.827 3104.199
nonrel 409.756 0.548 7.576 2726.341
D(%) −0.178 −9.307 3.313 13.860

where v′′
a is the velocity of the projectile in the c.m. system.

The velocity of the relative motion becomes [17]

v = v′′
a − vA, (23)

where vA is the velocity of the target in the c.m. system.
Meanwhile, the reduced mass μ is defined as [17]

μc2 = m′′
a c2 m′

Ac2

m′′
a c2 + m′

Ac2
. (24)

Relativistic effects on the kinematic quantities are de-
duced and presented in Tables II and III, at 140 and 500
MeV/nucleon, respectively. In the table, we define a relative
change of the momentum,

D = krel − knonrel

knonrel
, (25)

where krel and knonrel denote k in the relativistic and nonrela-
tivistic kinematics, respectively.

The relativistic quantities k and μ are used in the afore-
mentioned EA calculations. To assess the effects of the correc-
tions, we use as a benchmark the reaction 120Sn(3He, t) 120Tn
at 140 MeV/nucleon, for which the kinematical quantities are
listed in Table II. The comparison between the calculations
using relativistic and nonrelativistic kinematics and the same
phenomenological OP, is shown in Fig. 8(a), for the total DCS
and the 112-component of the DCS. It can be seen that using
the proper relativistic kinematics is more important for the
112-component, although the overall effect for the total DCS
is small at this relatively low energy. There is a small shift of
the minimum towards the smaller angle, which is consistent
with the larger k (smaller wave length) for the relativistic case.
A comparison is also made between EA and DWBA calcu-
lations, both adopting relativistic kinematics [Fig. 8(b)]. The
agreement is as good as for the nonrelativistic case (Fig. 3),

TABLE III. Physical quantities Ec.m.r , v/c, k, and μc2 in both rel-
ativistic (rel) and nonrelativistic (nonrel) kinematics, for the reaction
120Sn(3He, t) 120Tn at 500 MeV/nucleon. Their absolute differences
D(%) are also shown.

Ec.m.r (MeV) v/c k (fm−1) μc2 (MeV)

rel 1454.186 0.775 15.922 4052.189
nonrel 1463.414 1.036a 14.317 2726.341
D(%) −0.631 −25.193 11.210 48.631

aJust a record of the nonrelativistic kinematics.
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total
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optical potential

(b)

rel

EA, total
FOLD, total
EA, 112
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FIG. 8. (a) Comparison between calculations using relativistic
and nonrelativistic (dashed and dotted lines) kinematics using EA,
for the 112-component (lower lines) and the total DCS (upper lines).
(b) Comparison between EA (dash-dotted lines) and DWBA (dashed
and dotted lines) calculations using the FOLD code [20], both using
relativistic kinematics, for the 112-component (lower lines) and the
total DCS (upper lines).

indicating the consistent treatment of the relativistic kinemat-
ics in both EA and DWBA incorporated in the FOLD code.

In Fig. 9, we show the benchmark calculations for 500
MeV/nucleon. As expected, relativistic kinematic effects
are much more significant at 500 MeV/nucleon (Table III)
than those at 140 MeV/nucleon. Again, the 112-component
is more sensitive to the kinematic corrections, as seen in
Fig. 9(b).

It would be worth noting that there is a noticeable differ-
ence between the DCS calculated in OP and “tρρ” approaches,
as evidenced in Figs. 8(b) and 9(a). This should be attributed
to the double-folding type “tρρ” phase shift [Eq. (6)] which
is somehow different from that of OP [Eq. (4)]. However,
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nonrel
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2 4 6 8 10

120Sn(3He,t)(b)

112−component, tρρ

FIG. 9. (a) EA calculations of the total DCS at 500 and 140
MeV/nucleon, using relativistic (dashed lines) and nonrelativistic
(dotted lines) kinematics. (b) The same as in (a) but for the 112-
component DCS.
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101
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0 1 2 3 4
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dσ
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Ω
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m
b/
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)

Exp. Data
SPM
This work

FIG. 10. Comparison of the DCS for 13C (13N, 13C) 13N reaction
at 105 MeV/nucleon, between the EA calculation (solid line), the
single-particle model (SPM) calculation (dashed line) [24], and the
experimental data (solid circle with error bars) [21].

the DCS around 0 degrees for the two methods are quite the
same, because they are sensitive only to the far surface of
the potential. Because only the 0-degree DCS is essential for
the current CE reaction analysis, our “tρρ” method should be
valid at intermediate and high energies. Of course, further im-
provement of the “tρρ” method, by incorporating the medium
effect in the interaction, for example, can be done in the future
when DCS at larger angles are to be used.

D. Comparison with experimental data

The EA method is employed here to describe the ex-
perimental data for the mirror reaction 13C(13N, 13C) 13N at
105 MeV/nucleon [21]. The interaction potential V K

s0t0 (r) at
105 MeV/nucleon is obtained through interpolation of those
at 50, 100, 140, 175, 210, 270, 325, 425, 515, 650, 725, 800,
and 1000 MeV/nucleon [22,23]. The OP parameters are taken
from Ref. [24]. The matrix elements OBTD are calculated us-
ing the OXBASH code with the “pwt” interaction in the p-shell
space [25]. As shown in Fig. 10, the EA calculation are close
to the experimental results and to another calculation using
the single-particle model (SPM) [24]. It is worth noting that
the experimental DCS does not display an oscillatory structure
because of the limited angular resolution of the detection sys-
tem [21]. What is important here is the correct reproduction
of the cross section at 0 degree, from which the GT transition
strength can be extracted [1,26]. The actual EA calculation of
dσ (0◦

c.m.)/d� gives 50.43 mb/sr or 64.73 mb/sr by using the
“pwt” or “ckpot” interactions, respectively, in the shell-model
calculations. Both agree with the previously extracted value
of 56 ± 10 mb/sr [21], within the error bars.

We also considered another example, the 26Mg (3He, t)
26Al CE reaction [27]. EA calculations are also performed
for transitions to the 1+ state at Ex = 1.06 MeV and to the
0+ isobaric analog state (IAS) at Ex = 0.23 MeV in 26Al,
respectively. The OBTD matrix elements are calculated with
the OXBASH code [25] employing the “usdb” interaction in
the sd-shell-model space. Single-particle wave functions are
obtained from FOLD code [20]. OP parameters are taken from
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FIG. 11. Comparisons between the EA calculation (solid line)
and the experimental data (solid circle) [27] for DCS of F-type CE re-
action 26Mg (g.s., 0+, T = 1) (3He, t) 26Al (0.23 MeV, 0+, T = 1)
at 140 MeV/nucleon.

Ref. [27]. As presented in Figs. 11 and 12, the calculations,
multiplied by a scaling factor of 1.330 or 0.897 for the tran-
sition to the IAS state or the 1+ state at Ex = 1.06 MeV,
respectively, are in good agreement with the experimental data
within the measured angular range. For the present, the source
of the scaling factors is still not clear and requires further
investigation [27].

IV. SUMMARY

Aiming to describe heavy-ion CE reactions at intermediate
energies, we have implemented the formulations and compu-
tation code within the EA approach. Calculations based on
our EA method are in good agreement with the DWBA ones
at 140 MeV/nucleon and also with various experimental data
performed in the similar energy range.

The analysis shows that the 110- and 112-components
of DCS behave according to J0(kbθ ) and J2(kbθ ), respec-
tively. The two components of DCS are dominated by NN
CE central and tensor interactions, respectively. The exchange
term of the interaction also plays some visible role for the
110-component of the DCS. Relativistic kinematics has also

4
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16
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FIG. 12. Comparisons between the EA calculation (solid
line) and the experimental data (solid circle) [27] for DCS
of GT-type CE reaction 26Mg (g.s., 0+, T = 1) (3He, t)
26Al (1.06 MeV, 1+, T = 0) at 140 MeV/nucleon.

been studied, which, as expected, exhibits a negligible effect
for reactions at 140 MeV/nucleon but becomes important at
500 MeV/nucleon.

The current EA method developed here can use both phe-
nomenological OP or microscopic developed ones, usually
requiring the input of nucleon-nucleon cross sections and
nuclear matter densities. Such approach has the obvious ad-
vantage that it can be applied to CE reactions at high energies
(∼1 GeV/nucleon) where no OP exists. Based on the pre-
sented benchmark calculations, the EA approach is ready to
be applied in the future to describe experimental data and to
extract the related physics quantities, such as Gamow-Teller
strengths, at energies in the range of 100 MeV/nucleon to
several GeV/nucleon.
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APPENDIX: THE FORMULAS USED IN SEC. II

The effective interaction potential V is given by [28]

V =
∑

pt

Vpt =
∑

pt

∑
s0t0K

AK
s0

V K
s0t0 (rpt )

(
τ

t0
1 · τ

t0
2

)

× [
YK (̂rpt ) · (

σ
s0
1 ⊗ σ

s0
2

)K]
, (A1)

where rpt is the vector between the interacting target nucleon
“t ′′ and projectile nucleon “p′′, as indicated in Fig. 13, rpt is
its magnitude and r̂pt its associated unit vector oriented as rpt .
In this equation, s0 denotes the spin change of the interacting
nucleons, which can have values 1 and 0, corresponding to the
spin-flip and non-spin-flip processes, respectively. The isospin
change t0 has to be 1 for CE reactions. In Eq. (A1), K = 0
and K = 2 correspond to the central and tensor forces, re-
spectively. The constants AK

s0
have the values

√
4π , −√

12π ,
and

√
4π/5 for A0

0, A0
1, and A2

1, respectively [28]. In Eq. (A1),
the NN interaction strength functions V K

s0t0 (r) include both

FIG. 13. The coordinates used in Eq. (A1). R is the vector be-
tween the center of mass of the reacting nuclei. rp (rt ) is the vector
pointing to the nucleon p (t) from the center of the projectile (target),
while rpt the vector between the interacting nucleons.
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the central (K = 0) and the tensor (K = 2) parts. Their pa-
rameters are taken from Refs. [22,23]. Including exchange
and medium effects, the modified NN interaction strength
functions are given in Ref. [22], which were adopted in the
present work.

Using the following expansions,

τ
t0
1 · τ

t0
2 =

∑
n0

(−1)n0τ t0
n0

(p)τ t0−n0
(t ), (A2)

YK (̂rpt ) · (
σ

s0
1 ⊗ σ

s0
2

)K =
∑

M

(−1)MYK,−M (̂rpt )
(
σ

s0
1 ⊗ σ

s0
2

)KM
,

(A3)

and (
σ

s0
1 ⊗ σ

s0
2

)KM =
∑
νν ′

CKM
s0νs0ν ′σ

s0
ν (p)σ s0

ν ′ (t ), (A4)

the nuclear form factor F (R) in Eq. (8) can be written as

F (R) =
∑

t p

∑
s0t0
K

∑
νν ′

Mn0

〈�B�b | V K
s0t0 (| rp − rt + R |)

×CK
s0

(−1)M+n0CKM
s0νs0ν ′σ

s0
ν (p)σ s0

ν ′ (t )τ t0
n0

(p)τ t0−n0
(t )

×YK,−M (̂rpt ) | �A�a〉. (A5)

At this point, it is essential to rewrite the spatial part of the
interaction by introducing the δ-function notation,

V K
s0t0 (rpt )YK,−M (̂rpt )

=
∫

dr2dr1δ(r2 − rp)δ(r1 − rt )V
K

s0t0 (r21)YK,−M (̂r21).

(A6)

Then F (R) can be decomposed into spatial components
weighted with Clebsh-Gordan (CG) coefficients,

F (R) =
∑
Ks0
t0n0

∑
JS

LtrMtr

∑
l1l2
l12

AK
s0

Pl1l2
JAJaMaMA

IJAJBJaJb,l2l1l12
JSLtrMtr,s0K

×C
TbTbz
TaTaz t0n0

C
TBTBz

TATAz t0(−n0 )ĴbĴB l̂12K̂F JAJBJaJb,l2l1
JSLtr,s0Kl12

(R),

(A7)

with

Pl1l2
JAJaMaMA

= (i)−l1−l2 (−1)IA−MA+Ja+ma , (A8)

IJAJBJaJb,l2l1l12
JSLtrMtr,s0K = CJMJ

JAMAJB(−MB )C
SMS
JaMaJb(−Mb )

×CLtr (−Mtr )
JMJ SMS

⎧⎨
⎩

S J Ltr

l2 l1 l12

s0 s0 K

⎫⎬
⎭, (A9)

and

F JAJBJaJb,l2l1
JSLtr,s0Kl12

(R) =
∫

dr2dr1V
K

s0t0 (| r2 − r1 + R |)

×{[Y ∗
l2 (̂r2)Y ∗

l1 (̂r1)]l12Y ∗
K (̂r21)}Ltr

Mtr

× Dl1s0J
AB (r1)Dl2s0S

ab (r2). (A10)

Here J (S) is the total spin transferred to the intrinsic mo-
tion of the target (projectile) system, l1 (l2) is the transferred
orbital angular momentum of the target (projectile), l12 is
the transferred total orbital angular momentum, Ltr is the
transferred total angular momentum, and Mtr the associated
magnetic quantum numbers. In Eq. (A7), Ĵb has a value of√

2Jb + 1, and the similar expression is true for ĴB, l̂12, or K̂ .
The transition densities Dl1s0J

AB (r1) and Dl2s0S
ab (r2) in Eq. (A10)

for the target and projectile, respectively, are defined in terms
of one-body transition densities (OBTD). As an example,

Dl2s0S
ab (r) =

∑
αβ

Rα (r)Rβ (r)
√

6(2 jα + 1)

×〈 jα || T l2s0S || jβ〉〈OBTD〉, (A11)

where Rα(β )(r) is the radial part of the wave function for
the initial (final) single-particle state, and jα(β ) and tα(β ) are
the corresponding spin and isospin, respectively. The operator
T l1s0J is defined as

T l1s0J
MJ

=
∑
mν

il1Yl1m(r̂t )σ
s0
ν (t )CJMJ

l1ms0ν
. (A12)

In Eq. (A11), 〈OBTD〉 represents the reduced matrix element
for the one-body operator,

〈OBTD〉 = 〈JbTb || [â+
jαtα

, ã jβ tβ ]St0 || JaTa〉
Ŝt̂0

. (A13)

To facilitate the practical implementation of these equa-
tions in numerical calculations, the form factor may be
expressed in momentum space by using the inverse Fourier
transformation for the NN interaction [refer to Eq. (A6)],

V K
s0t0 (r21)YK,−M (r̂21)

= iK

(2π )3

∫
d pṼ K

s0t0 (p)YK,−M (̂p)e−ip�(r2−r1+R). (A14)

The central and tensor terms for Ṽ K
s0t0 (p) are

Ṽ 0
s01(p) = 4π

∑
i

V 0
s01R3

i

1 + (pRi )2
, (A15)

and

Ṽ 2
11(p) = 32π

∑
i

V 2
11 p2R7

i

[1 + (pRi )2]3
. (A16)

The energy-dependent coefficients V 0
s01 and V 2

11 for each reac-
tion range parameter Ri can be obtained from Ref. [22] as

V 0
01 = tSE − 3tTE − tSO + 3tTO

16
, (A17)

V 0
11 = −tSE − tTE + tSO + tTO

16
, (A18)

and

V 2
11 = −tTNE + tTNO

4
. (A19)

The parameter values for tSE, tTE, tSO, tTO, tTNE, and tTNO can
be obtained from Refs. [22,23], with SE(SO) and TE(TO)
denoting the singlet-even (odd) and triplet-even (odd) parts,
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respectively, for the central interaction, and TNE(TNO) for
the tensor interaction. The exchange term is added (for the
central interaction only) according to the no-recoil approxi-
mation [27,29],

Ṽ (p) = Ṽ K
s0t0 (p) ± Ṽ K

s0t0 (Q), (A20)

where + (−) is for the even (odd) parts of the interaction and
Q ≈ 2k cos(θ/2).

We may expand e−ip�r2 and eip�r1 in Eq. (A14) using

eip�r = 4π
∑
LM

iL jL(pr)Y ∗
LM ( p̂)YLM (r̂). (A21)

The form factor in Eq. (A10), including the NN interac-
tion and the transition densities, can then be expressed in

momentum space as

F JAJBJaJb,l2l1
JSLtr,s0Kl12

(R)

=
∑

m1m2

M12M

il1−l2+K

(2π )3
CLtrMtr

l12m12l1m1
Cl12m12

l2m2l1m1

∫
d pY ∗

KM (̂p)Ṽ K
s0t0 (p)

× Y ∗
l2m2

(̂p)Y ∗
l1m1

(̂p)e−ip·RDl1s0J
AB (p)Dl2s0S

ab (p). (A22)

The transition densities are

Dl1s0J
AB (p) =

∑
αβ

4π
√

6(2 jα + 1)〈 jα || T l1s0J || jβ〉〈OBTD〉

×
∫

dr jl1 (pr)r2Rα (r)Rβ (r), (A23)

and similarly for Dl2s0S
ab (p).

[1] R. G. T. Zegers et al., Phys. Rev. Lett. 99, 202501 (2007).
[2] S. Noji et al., Phys. Rev. Lett. 120, 172501 (2018).
[3] D. Frekers, M. Alanssari, H. Ejiri, M. Holl, A. Poves, and J.

Suhonen, Phys. Rev. C 95, 034619 (2017).
[4] A. Brockstedt et al., Nucl. Phys. A 530, 571 (1991).
[5] D. L. Prout et al., Phys. Rev. C 63, 014603 (2000).
[6] X. Roca-Maza, G. Colò, and H. Sagawa, Phys. Rev. Lett. 120,

202501 (2018).
[7] D. Frekers, P. Puppe, J. Thies, and H. Ejiri, Nucl. Phys. A 916,

219 (2013).
[8] J. Yasuda et al., Phys. Rev. Lett. 121, 132501 (2018).
[9] H. Lenske, H. H. Wolter, and H. G. Bohlen, Phys. Rev. Lett. 62,

1457 (1989).
[10] C. A. Bertulani, Nucl. Phys. A 554, 493 (1993).
[11] C. A. Bertulani, C. M. Campbell, and T. Glasmacher, Comput.

Phys. Commun. 152, 317 (2003).
[12] A. Etchegoyen et al., Phys. Rev. C 38, 2124 (1988).
[13] A. Etchegoyen, D. Sinclair, S. Liu, M. Etchegoyen, D. Scott,

and D. Hendrie, Nucl. Phys. A 397, 343 (1983).
[14] B. T. Kim, A. Greiner, M. A. G. Fernandes, N. Lisbona,

K. S. Low, and M. C. Mermaz, Phys. Rev. C 20, 1396
(1979).

[15] F. Petrovich and D. Stanley, Nucl. Phys. A 275, 487 (1977).
[16] J. S. Winfield, N. Anantaraman, Sam M. Austin, L. H.

Harwood, J. van der Plicht, H.-L. Wu, and A. F. Zeller, Phys.
Rev. C 33, 1333 (1986).

[17] Y. Suzuki, R. G. Lovas, K. Yabana, and K. Varga, Structure and
Reactions of Light Exotic Nuclei (Niigata, Japan, 2003).

[18] R. J. Glauber, Lectures in Theoretical Physics, edited by W. E.
Brittin et al. (Interscience, New York, 1959), Vol. 1, p. 315.

[19] C. A. Bertulani and P. Danielewicz, Introduction to Nuclear
Reactions (IOP, Bristol and Philadelphia, UK, 2004).

[20] https://people.nscl.msu.edu/∼zegers/fold/fold_package.tar.
[21] M. Steiner et al., Phys. Rev. Lett. 76, 26 (1996).
[22] W. G. Love and M. A. Franey, Phys. Rev. C 24, 1073 (1981).
[23] M. A. Franey and W. G. Love, Phys. Rev. C 31, 488 (1985).
[24] C. A. Bertulani and P. Lotti, Phys. Lett. B 402, 237 (1997).
[25] B. A. Brown et al., NSCL Report No. MSUCL-1289 (2004).
[26] F. Osterfeld, N. Anantaraman, S. M. Austin, J. A. Carr, and J. S.

Winfield, Phys. Rev. C 45, 2854 (1992).
[27] R. G. T. Zegers et al., Phys. Rev. C 74, 024309 (2006).
[28] C. A. Bertulani, arXiv:1510.00491.
[29] T. Udagawa, A. Schulte, and F. Osterfeld, Nucl. Phys. A 474,

131 (1987).

064601-9

https://doi.org/10.1103/PhysRevLett.99.202501
https://doi.org/10.1103/PhysRevLett.120.172501
https://doi.org/10.1103/PhysRevC.95.034619
https://doi.org/10.1016/0375-9474(91)90770-7
https://doi.org/10.1103/PhysRevC.63.014603
https://doi.org/10.1103/PhysRevLett.120.202501
https://doi.org/10.1016/j.nuclphysa.2013.08.006
https://doi.org/10.1103/PhysRevLett.121.132501
https://doi.org/10.1103/PhysRevLett.62.1457
https://doi.org/10.1016/0375-9474(93)90232-M
https://doi.org/10.1016/S0010-4655(02)00824-X
https://doi.org/10.1103/PhysRevC.38.2124
https://doi.org/10.1016/0375-9474(83)90107-0
https://doi.org/10.1103/PhysRevC.20.1396
https://doi.org/10.1016/0375-9474(77)90465-1
https://doi.org/10.1103/PhysRevC.33.1333
https://people.nscl.msu.edu/~zegers/fold/fold_package.tar
https://doi.org/10.1103/PhysRevLett.76.26
https://doi.org/10.1103/PhysRevC.24.1073
https://doi.org/10.1103/PhysRevC.31.488
https://doi.org/10.1016/S0370-2693(97)00473-5
https://doi.org/10.1103/PhysRevC.45.2854
https://doi.org/10.1103/PhysRevC.74.024309
http://arxiv.org/abs/arXiv:1510.00491
https://doi.org/10.1016/0375-9474(87)90197-7

