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Quantal and semiclassical methods in relativistic electromagnetic excitation
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Two different quantal approaches to describe relativistic Coulomb excitation are compared and
proven to be equivalent in their basic formulations. We reanalyze the AZ° conversion experiment by
means of the plane wave Born approximation and we also discuss the possible applications of this

- approach to ultrarelativistic Coulomb collision experiments.

I. INTRODUCTION

For a very long time electromagnetic excitation has
been a subject of considerable theoretical and also experi-
mental interest. Since the photon exchange amplitude is
singular at four-momentum transfer g,q, =0, the virtual
photon exchange makes a larger contribution to the am-
plitude for forward scattenng angles than the exchange of
strongly interacting particles.! The theoretical methods to
study electromagnetic excitation can be grouped into
quantal and semiclassical ones. In the Weizsdcker-
Williams method? (originally developed by Fermi’), the
field of a moving particle at the position of the target is
replaced by a pulse of virtual radiation which is then ab-
sorbed by the target. If the projectile and target charge
distributions do not overlap, such a procedure is rigorous-
ly correct. Quantal methods are mainly based on the
plane wave Born approximation (PWBA) or Glauber
theory.*® In many problems, for example in heavy ion
collisions, in addition to the electromagnetic interaction
between the projectile and the target, there is also the
strong interaction at close enough distances. We can take
it into account only in a rough way.

In the semiclassical method,® the limitation due to
strong nuclear absorption in close collisions is usually
done quite simply: the strong absorption restricts
straight-line paths to impact parameters larger than the
sum of the nuclear radii b > R;+R;. In a recent publica-
tion’ we have shown that such a restriction for the total
cross section is related to the quantal calculations. We
found that this semiclassical method is equivalent to a
PWBA calculation provided that a cylindrical hole cutoff
with R =R|+R, is introduced. Thus the influence of
strong absorption is entirely described by one rather well-
determined parameter R. It was also seen that for
Z,Z,a <1, with a equal to the fine-structure constant,
quantal diffraction effects dominate over the Coulomb
repulsion in the angular distributions. Under such condi-
tions semiclassical methods are not appropriate to
describe angular distributions.

In this paper, we first compare in Sec. II the quantal
approach in Ref. 7 with the Glauber-type method used in
Ref. 5. We show that they are identical and that the
minor differences in their final results must be due to
small kinematics corrections in Ref. 5, like the inclusion

33

of a Coulomb phase ¢-. Then we apply the present for-
malism to the AX? conversion in the nuclear Coulomb
field (the Primakoff effect). With this simple method to
take strong absorption into account we calculate angular
distributions as well as total Coulomb production cross
sections. Essentially we corroborate the value of the X°
lifetime deduced from such an experiment. Finally we
discuss the behavior of virtual photon numbers for ul-
trarelativistic collisions. We point out the importance of
a hard component in the virtual phonon spectrum, which
can lead to nuclear disintegration, 7 production, etc. in
distant collisions of heavy ions, for future relativistic
heavy ion accelerators. Conclusions are given in Sec. IIL

II. RELATIVISTIC ELECTROMAGNETIC EXCITATION
A. Comparison of the two quantal methods

In Ref. 7 a quantal calculation of relativistic elec-
tromagnetic excitations was given. The PWBA amplitude
for the excitation of a nucleus from the initial state
| I;M;) to a final state | IrM/) is given by

a,,'=— J dr Au()XIpMp | ju(0) | M) o)

where A,(r) represents the four-potential created by the
transmon current of the prOJectlle

fd3l

where k —=w/c is the virtual photon wave number. We
have

Au(0)=— <k, |7,(r) | K, ) )

(kf IJ#(r') I k1)=ZpevPe"1”' (3)
with v, =(c,v). For more details see Ref. 7. We take nu-
clear absorption of the projectile into account by restrict-

ing the integration over r' in Eq. (2) to values of p' >R,
with r'=(p’,z’). This means

f d3 - __,fdzp’e(p'—-R)de"" R 4
and Eq. (1) becomes
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ap=2Zyev, fdzp’e(p’—R) fdz'e"q"'dy(r') , (5
where

ik |1~
oL ()=

Since the projectile and target charge distributions are as-
sumed to be nonoverlapping, one can express the nuclear
transition matrix element in terms of the usual multipole
moments which describe the interaction with photons (Eq
2.14 of Ref. 7).

On the other hand, a Glauber-type model was used in
Ref. 5 to describe relativistic electromagnetic excitation.
They start from the profile function

1 —igq,b :
Tpom(big) =57~ [ e ™ Taoml@g) » )

where
Tora( Q@) =F (@) [ d*r'e™™ ot (2, (8)

with «7,(r’) given by (6). In the above expression % ,(q)
is related to the form factor of the projectile. For a pomt
projectile or one with a spherical symmetric charge distri-
bution, & ,(q)=2Zyev,.

In order to take strong absorption into account the pro-
file function (7) is modified by a cutoff

I',=0(b —R)'om » )

and the transition probability will be
zk
Tp= [ d'e ‘b

=Z,ev, [ d%'0p'—R) [ dz'e' "o (v')  (10)

for a point projectile. In the last step we used the Dirac
delta function

[ a2, =s(b—b") .

(27)?

This proves that both approaches should give the same re-
sults for a pomt projectile.

In Ref. 8 it is mentioned that the results of Ref. 5 ought
to be equivalent to the Weizsdcker-Williams method (see,
e.g., Ref. 9) for the limit of a point charge. Since the
PWBA with cylindrical hole cutoff prescription is now
shown to be equivalent to the one of Ref. 5, and since the
PWBA results agree with that of Weizsacker-Williams,

this statement is further strengthened. Of course, thé™

roles of the projectile and target can be interchanged in
the above description.

B. Determination of the =° lifetime by means
of AZ° conversion in the nuclear Coulomb field

In this subsection the “Primakoff effect” is reinvesti-

gated by means of our quantal method. In an experiment

at CERN,° a highly relativistic A beam was scattered on
a nuclear target, where 2° hyperons were produced at for-
ward angles in the nuclear Coulomb field:

1 e .
. [ @ T———[<I,Mf[;,,(r)|IM) 6)

A+Z 34+ Z . (11)

The =° were detected through their decay =°— Ay, which
is by far the dominant decay mode of the =° particle. The
cross section for the =% Coulomb production [Eq. (11)]
can be expressed in terms of the magnetic transition mo-
ment u, 5o Or the 30 lifetime. This is especially interesting
since it allows for a test of the SU(3)g,yo; properties of the

strong and electromagnetic interactions. Coleman and
Glashow!! found that

V3
Mpso=— —53—[.&,, s 12)
where
n=—1.91 2mn

- is the neutron magnetic moment. The Primakoff effect

seems to be the only practicable way up to now to mea-
sure the =0 lifetime.

The AZC-conversion cross section was calculated by
Dreitlein and Primakoff'> and by Pomeranchuk and
Shmushkevich.! In these calculations, nuclear form fac-
tors and absorption are taken into account in a rather
complicated method.’*!* We include nuclear absorption
from the outset, and no nuclear form factors enter any
longer.

From Ref. 7 the angular distribution for the process
(11) can be expressed in terms of the B(M 1) value of the
A—30 transition as

do 161 ,
o~ 9 14

2 .
220 | 1y (RYPB(M1)/e?,  (13)

where g, =pa/# is the momentum of the incident A
beam, ¥ =(1—v2/c?)~1“? with v equal to the beam veloci-
ty, and #iw is the energy of the virtual photon absorbed by
the A particle in its rest frame:
(m ;,o —m3)e?
Hip = ————————— . : (14)
: 2m 30 ’

The B{M 1) value is related to the transition magnetic
moment p , -0 and to the lifetime 7 5o by

9ul
B(M1)= A2°= 9%

o — . (15)

7'20

167 | —
c

The angular distribution is given by quantal diffraction
effects through the function’

Xi(R)= [ Ji(gx)Ky(gx)x dx

R2
=———[&J1 (MK, (&) —nJ,(n)K R 16
772+§Z[§ (MK (8) —7J5(7) .1(5)]v (16)
where

n=a,R =qR sin® (172)
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and v
wR
= R E—— S
E=q -
The momenta g, and gq; are, respectively, the transversal
and the longitudinal momentum transfer in the laboratory
frame of reference.
By means of Eqs. (16) and (17) we can rewrite (13} as

do 327
dpg 9

The function

(17b)

2 BIM1) df (4,€)
(ZagrP =5 S071= (18)

_d..L__. 272
dn =n[X(R)/R?]

is plotted in Fig. 1 for £=0.1, 0.2, 0.5, and 1. The values
are normalized so that df/dn=1 for n=1. To obtain
the real values one must multiply df/dn by the corre-
sponding factors for each £. Since for relativistic col-
lisions goAR >>1, the peaks of the angular distribution will
occur for n==£, which means a maximum scattering angle
dm =£/g AR << 1, so that the cross section will be strong-
ly forward peaked. Nonetheless, for exact forward
scattering (9 =0) the angular distribution vanishes. This
is a characteristic of all magnetic multipole excitations in
relativistic Coulomb collisions, as was demonstrated in
Ref. 7.
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FIG. 1. Angular distribution of the inelastically scattered
particles after a magnetic dipole excitation. The values are nor-
malized so that df/dn=1 for n=1. To obtain the absolute
values one must multiply df/d7 by the respective factors for
each £.

The total cross section is obtained by integrating (18)
over all . The final result is (see also Ref. 7)

3272

2
oM D)==T"(Za)® §K0K1—%—(K2—Kg) BM1)

e

(19)

where the modified Bessel functions K, are functions: of
£. The present result can be directly applied to the mea-
surements of Dydak et al.'® The only parameter which
enters into our calculation is the nuclear absorption ra-
dius, which we assume to be R =1.24173 fm. The results
of these calculations are shown in Fig. 2(a) for Z =92

(*80), and for Z =28 (*®Ni) in Fig. 2(b), together with the

experimental results of Ref. 10. We used Eq. (15) with
the value of p, 5o given by (12), as predicted by Coleman
and Glashow. From these figures one can see that we are
in agreement with the analysis of Dydak et al. We also
feel that even a more careful analysis of the experimental
data with our formulation could not result in a change of
the value 7=(5.841.3) X 10720 sec given by Dydak et al.
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FIG. 2. Total cross section of the Coulomb production
a(A—39% as a function of the momentum of the Ay pair of the
30 decay for (a) a uranium target and (b) a nickel target. The
full line corresponds to Eq. (19) with 75,0=0.7X107" sec.

Compare with Fig. 19 of Ref. 10.



The essential reason for overcoming the large excitation
energy myo—mp=76.86 MeV/ c? is the high value of y.
For y =20, as was the case in the CERN experiment, the
distance d where the adiabacity parameter £=wd /yv be-
comes equal to 1 is given by d=50 fm; i.e., the area
which contributes to the electromagnetic excitation cross

section is much larger than the nuclear geometric cross_

section.. Similarly, for heavy ion collisions with ¥ >>1
(heavy ion accelerators with ¥ =10—100 will be operating
in the next few years), we can expect large effects from
the hard component of the virtual photon spectrum.
Among other possibilities we cite the following: for
E, =%iw=10—20 MeV the excitation of giant resonances,
with subsequent nucleon emission as already observed by
Olson et al.;® for E, =20—100 MeV the quasideuteron ef-
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pr° :
vHp—AS 21)

C. YVirtual photon numbers for large y

With the above possibilities in mind let us finally dis-
cuss the behavior of the virtual photon numbers for all
multipolarities 7/ in the ultrarelativistic limit y— . It
will be shown that they become all equal.

The virtual photon number (integrated from a
minimum impact parameter R to «) is given by’

1[(21 +1)n7?
=Z'a —([217)3(T1])2 | Gt | 8 (£) - (22)

For ¥— « we have®

Rgp=

fect which corresponds to a photon absorption of a corre- m Ve
lated N-N pair; and for E, >100 Mev pion production G =IG gy =i T —-'—W—'
through A-isobar excitation which has a maximum at f 2m 12l +1)
E, =200 MeV. The virtual photon spectrum extends up (I+m) / 1
to a value of the order of magnitude of X (I—m) 2yym-1’ (23a)
fic 200 ‘
(ﬁm)max—77='y——d, MeV fm , 20 gor |m | >1,and
which for y=100 and d =10 fm gives (fiw)yx=2 GeV, V-
and f01: ‘y=.1(20 and d =100 fm gives (#iw )y, =200 MeV, Ggro=i ’(;ii;" Vam » Gao=0. (23b)
which is still in the peak area for the pion production re- 4
actions Also, in this limit
.
o, 5 2m—2 -
& m(E)=gn(E)=m(m —1)[(m —2)1]? [E] form>1
) .
=ln 3 41 form=1
§
=7 © “form=0, ‘ (24)

where §=0.681085. .. .

In the sum over m the leading term for ¥— « is the
one with m =1 which gives a logarithmic rise with ¥,
since for m > 1 there is no dependence on y. In this case
the virtual photon numbers are equal to

n1rI=ZZa"$_"1n [ {g

valid for all multipoles. Since £=wR /yv—0, we have a
logarithmic rise of the cross section for all multipolarities
with y. The impinging projectile acts like a spectrum of
plane wave photons with helicity m =+1. Such a photon
spectrum contains equally all multipolarities /.

For / > 1 and a not too large value of ¥, the m =/ term
can still be substantial. For a comparison we retain only
the terms m =/ in the sum (22), obtaining

2
+1 (25)

_ 2, 1L e
n.{m =I contribution)=2Z 2 U+ —1)
X(kR)Z—Zl . (26)

For kR <<1, as is the case for low lying excited levels,
this term dominates over the m =1 term (25), unless ¥ is
extremely large. However, it must be kept in mind that
with relativistic particles it is possible to excite states with
kR =1, or as we have seen in the example of the A=° con-
version, even kR >1 is possible. In this case the term
with m =1 dominates, and it is just the logarithmic in-
_crease of the cross section with the beam energy which
one sees in Fig. 2.

III. CONCLUSIONS

We saw that a simple and transparent quantum
mechanical theory based on the PWBA plus a cutoff ap-
prox1mat10n to account for strong interactions is success-
ful in describing the electromagnetic excitation in relativ-
istic Coulomb collisions. The total cross section is

__equivalent to that obtained by semiclassical methods, but

the diffraction patterns characteristic of each multipolari-
ty of transition can only be obtained by a quantal method

and are useful for analysis of experiments.



914 C. A. BERTULAN] AND G. BAUR ‘ ' 33 |

The illustrative example of the AZ? conversion can be
reliably and transparently calculated within the present
approach. Also, for the experiments with relativistic
heavy ion collisions at already existing accelerators (see,
e.g., Ref. 8) or future accelerators, that approach could be
of great usefulness.
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