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Momentum fluctuations in the fragmentation of neutron-rich nuclei
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We generalize the Goldhaber momentum-dispersion formula to the case of a “two-fluid” nucleus,
in which the nucleons of one fluid have a different mean square momentum from those of the other
fluid. The model predicts that fragments originated from the core of neutron-rich nuclei have a
transverse momentum width which is significantly larger than that of a weakly bound “halo” neutron,
and that both are much smaller than the ~ 100 MeV/c widths observed in the fragmentation of less

exotic nuclei.
PACS number(s): 25.60.+v, 25.70.Mn

A statistical model with minimal correlations was de-
rived by Goldhaber in 1979 [1] to explain the momentum
distributions of projectile fragments originating in pe-
ripheral collisions with heavy ions. In these experiments
[2] it was observed that the momentum distributions of
the fragments are well described by Gaussians, whose
widths o were found to follow a parabolic dependence
on the mass of the fragment. In the statistical model
this dependence is explained in terms of a single quan-
tity, namely the rms momentum of the nucleons in the
original projectile. In general, the Goldhaber formula is
quite successful, but some discrepancies with experiments
have been observed in the past. For example, in some
cases it has been observed that the momentum disper-
sion o is about 30% smaller than predicted by the statis-
tical model [3]. Experiments with radicactive nuclei have
also shown some discrepancies with the statistical model
[4-7]. In experiments with an ''Li projectile, a very nar-
row peak in the momentum distribution of °Li fragments
was found (o ~ 19 MeV/c) which could not be explained
in terms of the model. Experimentally it was also ob-
served that the momentum distributions of neutrons are
appreciably narrower than those for °Li fragments. The
momentum distributions in such a weakly bound nucleus
are presumably determined by their nuclear matter size
[4]. However, while the momentum distribution of °Li
suggests a halo size of 6-8 fm [6] in ' Li, the momentum
distribution of neutrons seems to suggest a factor square
root of 2 larger [8]. In this work we show that a possible
explanation of these results and other forthcoming exper-
imental results can be given with a statistical model for
a system of two fluids of nucleons.

Let us first recall the original Goldhaber derivation.
In the statistical model the momentum of the fragment
with mass number F is obtained by picking at random
F nucleons from the projectile. In the frame of the pro-
jectile the average value (dispersion) of the square of the
fragment momentum is given by

o2 = ([f_: pi]z) =F{p2) + F(F —1){p:p;) , (1)

provided all come from a common distribution.
The second term in the above equation can be esti-
mated in terms of {p?) by using the fact that the total
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momentum of the original nucleus is zero. This is in fact
the only correlation used in the statistical model [1]. One
obtains

4 ,
2
() =46h +a4-D@ip) =0, @
where i # j. o - '

These two equations yield for the momentum disper-
sion of a fragment F' the Goldhaber formula

2 FA-F) o
o —ﬁ@d- (3)

The quantity (p?) can be estimated by using shell-model
wave functions, or the Fermi gas model for the nucle-
ons. For a Fermi gas (p?) = 3p%/5. Generally, only one

‘Cartesian component of the momentum distribution is

measured. We then replace (p?) by 02 = (p?)/3 = p%/5
1.

This simple and elegant derivation, due to Goldhaber,
nicely displays the parabolic dependence on the fragment
mass F as observed in many experimental data [2]. From
this derivation one sees that the averaging procedure does
not make any extra assumption about nucleon-nucleon
correlations, other than that the total momentum of the
initial distribution is zero. Other kinds of correlations
presumably would affect the value of (p?), but not of
(pi-p;) when averaged over direction. However, Gold-
haber’s formula would not be well justified if, e.g., the
spatial dependence of the fragmentation operator is so
strong that a different treatment for nucleons at the nu-
clear surface and in the nuclear interior has to be con-
sidered separately [9]. In this regard we expect that the
parallel momentum distributions are less sensitive to the
fragmentation operator than the transverse distributions
are. This is because transverse momentum distributions
are more sensitive to the transverse geometry of the par-
ticipating nuclei as well as to the Coulomb deflection of
the projectile and fragments [10]. This was in fact ob-
served experimentally [6]. When spatial dependence is
relevant it is important to consider Pauli correlations
among the nucleons in the statistical model [9], which
would cause a reduction of the dispersion predicted by
the Goldhaber model. We expect that other correlations,
e.g., short-range correlations due to the nucleon-nucleon
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interaction, will also play an important role in such a
case. :

Let us now consider a nucleus composed of two “fluids”
of nucleons with mass numbers 4, and A; (A = A;+4,).
An alpha particle inside a larger nucleus, or a °Li core
in Li, could be an example. Since the two fluids have
to interact in order to keep the nucleus bound, we have
to introduce another parameter K which is the relative
momentum between the two fluids. Momentum conser-
vation implies

Ax 7 Ay 5

1
E:Pg)'—‘K'—'—E:Pg), (4)
i i

so that 2K is the relative momentum of the fluids.
Using this relation we obtain

(pM.p?) = -—iff—z )

and

o = ([i p") = 50 + 26|
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i # 4,

where N = 1,2 and ()x means average over nucleons in
only one of the two fluids. Equation (5) is an average
over nucleons in different fluids. We also express the
nucleon momenta with respect to the center of mass of
their respective fluids. The relationship between their
averages is ) -

") = (7)n + (K?) /A . (6)

If we pick F nucleons from the projectile to make a
fragment, the mean square momentum involves the cross
products given by the above equations. Assuming that
the fragment can be composed of nucleons with equal
probability from either of the two fluids, we can use Eq.
(1) for the dispersion of the momentum distribution. In
this case the quantities (p?) = (p®) and (p:.p;) are to be
averaged over the two distributions. We find

+F(F —1) [A—z(%@?’ P + éf%__—l;)(Pi-Pj)l + %_T;)(pi-pj)z]
F(A—F) [A;,. A, 2
=200 [+ e L Y

where the subindices mean averages over the respective
fluids. For A; = A ({(K?) = 0) this equation reduces to
Eq. (3).

Useful limits of Eq. (7) above can be obtained.
For example, when (K?) and {(5?); < (p?)2 one gets (un-
less A; > Aj)

o

= T ®

In such a situation we come to the important conclu-
sion that the momentum dispersion of the fragments is
reduced by a factor A;/A relative to that obtained by
means of Eq. (3). This suggests that if the momentum
variance in a particular experiment is found to be appre-
ciably less than that expected from Eq. (3), as in the
experiment of Ref. [3], it might be an indication that the
projectile should be considered as a multifiuid system. In
this case, Eq. (7) (together with Pauli correlations [9],
if the spatial dependence of the fragmentation operator
is important) might be more appropriate to describe the
momentum distributions.

A rather well-studied case of fragmentation of a
neutron-rich nucleus is that provided recently with ''Li
projectiles. The data can be understood in a quite simple
form, without resorting to our more involved formulas,
but they do provide a very useful example of how the
formulas would function in a more complex situation.

In the fragmentation of 'Li projectiles very narrow
components were observed for the momentum distribu-
tions of °Li fragments and of single neutrons [4-7]. These

widths (e.g., ~ 19 MeV/c for °Li fragments [6]) cannot
be explained by Eq. (8), unless an unrealistic value of
the mean square momentum in °Li is assumed. To un-
derstand this we recall that Egs. (7) and (8) are only
adequate if enough energy is given to the projectile so
that a fragment could be formed with nucleons equally
likely from fiuid A4; or Az. But, in some situations {4] it

" has been observed that the energy transferred to the pro-

jectile is not enough to remove nucleons from the tightly
bound core, say fluid A;. The statistical average then
has to be carried out using a different procedure, as we
explain below.

Let us consider the simple case of fragmentation of
11} projectiles. In the case of °Li fragments from *'Li
projectiles, we can identify the fragment itself as one of
the constituent fluids of the nucleus. Then, obviously,
its momentum distribution has a variance determined by
the momentum K. As a trivial consequence of Eq. (4)
we get

o5 =(K?) . (9)

‘We observe that the nuclear potential binding the halo

neutrons in !'Li has a range not greater than 3—4 fm.

. However, due to their low binding energy these neutrons

extend to a very large distance from the core, with an
empirical rms radius for the halo matter distribution of
about 6 fm [6]. Thus, the halo is a manifestation of a
quantum tunneling of the valence neutrons which extend
to a region where their momenta are imaginary. Their
wave functions in this region depend primarily on their
binding energy. Therefore, we suggest it is more appro-
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priate to equate pZ,/2u12 with the separation energy (B)
of the two neutrons from the core. Doing so, we find
(2K)* _2{K?)| A
2p12 A Ay
Using the momentum width of 19 MeV/c for °Li frag-
ments [6], we find (B) = 0.47 MeV, which is in fact very
close to the separation energy of two neutrons in 11Li,
i.e., B=0.34 & 0.05 MeV.

As for the momentum width of a single halo neutron
from 'Li, we can use Eq. (6) to obtain

2= (@)t 3 (K7,

(B) = (10)

myn

(11)
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where (52),, is the average square momentum of the neu-
trons in the halo. Since the radius of the halo is em-
pirically about 6 fm, each neutron is confined within
Az ~ 12 fm, so Ap, > 1(12 75m) = 8 MeV/ec. Using this

value for 1/{#%),, and Eq. (9) to calculate the second
term in Eq. (11) we obtain o, = 12.4 MeV /¢, in satis-
factory agreement with the experimental values [5,11].
The expressions obtained above for the case of 'Li
fragments are a particular limit of a more general situa-
tion which can arise in reactions with neutron-rich nuclei.
In fact, if one knows what fraction of nucleons in a given
fragment come from one or the other nuclear fluid then,
instead of Eq. (7), it is straightforward to show that

2= F (01 + Fa(p?)s + Fi(Fy — 1) (p;s.pj)1 + Fa(Fy — 1) (ps. p,>2 +2FF; (p{".p{?)

FI(AI ) ~2 Fz(Az —'F2) ~
Al (p > Az -1 (p2>2
Fi(F,-1)  FRFER-1) 2RAF FA-F) R4:-FR)],. .
+[A1(A1—1) Ay(A; —1) A A; ' A2(4; - 1) + AZ(A; — )] (K%, (12)

where F' = F; + F,, and Fn comes from fluid N.

It is easy to show that Egs. (9) and (11) are con-
sequences of Eq. (12). The first one follows by using
Fy =0, F; = A;. The second one follows from F; =1,
F; = 0, and A; = 2. Other applications of Eq. (12)
could, e.g., be the case of fragmentation of neutron-rich
nuclei via the excitation of a collective dipole vibration.
Such process is expected to occur by means of Coulomb
excitation in high energy collisions. In such collisions the
Coulomb field of the target gives a fast kick to the pro-
tons in the projectile. Due to neutron halos, or thick
neutron skins, this collective excitation can lie at low en-
ergies. For this kind of excitation (soft dipole modes), we
can identify A; (A2) as the number of neutrons (protons)
in the projectile. Fj (F3) will be the neutron (proton)
number in the fragment.

The above derivation can be extended to three or more

nuclear fluids, but this would be at the cost of more un-
knowns for their intrinsic momenta. This procedure is
beyond the scope of this article and might not be rea-
sonable in view of other processes that can affect the
momentum distributions. It is clear however that, if we
want to insist in using statistical fragmentation models
to describe the momentum distributions in reactions with
neutron-rich nuclei, we have to consider two or more in-

. teracting fluids, which yield different weights to the ob-

served momentum variances. We hope that the discus-
sion and formulas descnbed in this work may be useful
for this purpose.

This work was supported in part by the National Sci-
ence Foundation under Grant Nos. PHYS-9015255 and
INT-9001308.

[1] A.S. Goldhaber, Phys. Lett. 53B, 306 (1974).

{2] D.E. Greiner, P.J. Lindstrom, H.H. Heckman, B. Cork,
and F.S. Bieser, Phys. Rev. Lett. 85, 152 (1975).

[3] Y.P. Viyogi, T.J.M. Symons, P. Doll, D.E. Greiner, H.H.
Heckman, D.L. Hendrie, P.J. Lindstrom, J. Mahoney,
D.K. Scott, K. Van Bibber, G.D. Westfall, H. Wieman,
H.J. Crawford, C. McParland, and C.K. Gelbke, Phys.
Rev. Lett. 42, 33 (1979).

{4] T. Kobayashi, O. Yamakawa, K. Omata, K. Sugimoto,
T. Shimoda, N. Takahashi, and I. Tanihata, Phys. Rev.
Lett. 25, 2599 (1988).

[5] R. Anne, S.E. Armell, R. Bimbot, H. Emling, D.
Guillemaud-Mueller, P.G. Hansen, L. Johannsen, B. Jon-
son, M. Lewitowicz, S. Mattsson, A.C. Mueller, R. Neu-
gart, G. Nyman, F. Pougheor, A. Richter, K. Riisager,
M.G. Saint-Laurent, G. Schrieder, O. Sorlin, and K. Wil-
helmsen, Phys. Lett. B 250, 19 (1990).

[6] N. Orr, N. Anantaraman, S.M. Austin, C.A. Bertulani,
K. Hanold, J.H. Kelley, D.J. Morrissey, B.M. Sherrill,

G.A. Souliotis, M. Thoenessen, J.S. Winfield, and J.
Winger, Phys. Rev. Lett. 69, 2050 (1992).

[7] D. Sackett, K. Ieki, A. Galonsky, C.A. Bertulani, H. Es-
bensen, J.J. Kruse, W.G. Lynch, D.J. Morrissey, N.A.
Orr, B.M. Sherrill, H. Schultz, A. Sustich, J.A. Winger,
F. Dedk, A. Horvith, A. Kiss, Z. Seres, J.J. Kolata,
R.E. Warner, and D.L. Humphrey, Phys. Rev. C 48, 118
(1993).

[8] P.G. Hansen, Nature 361, 501 (1993). _

[9] G.F. Bertsch, Phys. Rev. Lett. 46, 472 (1981)

[10] C.A. Bertulani and K.W. McVoy, Phys. Rev. C 48, 2638
(1992).

[11] K. Riisager, R. Anne, S.E. Arnell, R. Bimbot, H. Em-
ling, D. Guillemaud-Mueller, P.G. Hansen, L. Johannsen,
B. Jonson, A. Latimier, M. Lewitowicz, S. Mattsson,
A.C. Mueller, R. Neugart, G. Nyman, F. Pougheon, A.
Richard, A. Richter, M.G. Saint-Laurent, G. Schrieder,
O. Sorlin, and K. Wilhelmsen, Nucl. Phys. A540, 365
(1992).



