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We study the effects of channel coupling in the excitation dynamics of giant resonances in relativistic heavy
ions collisions. For this purpose, we use a semiclassical approximation to the coupled-channels problem and
separate the Coulomb and the nuclear parts of the coupling into their main multipole components. In order to
assess the importance of multistep processes, we neglect the resonance widths and solve the set of coupled
equations exactly. Finite widths are then considered. In this case, we handle the coupling of the ground state
with the dominant giant dipole resonance exactly and study the excitation of the remaining resonances within
the coupled-channels Born approximation. A comparison with recent experimental data is made.

PACS numbegs): 24.30.Cz, 24.10.Eq, 21.10.Re

I. INTRODUCTION ing cases. Section Il is devoted to the excitation of reso-
nances of finite widths. Generalizing the schematic treatment
Relativistic Coulomb excitatiofRCE) is a well estab- of Ref.[6], we present an “exact” solution for the coupling
lished tool to unravel interesting aspects of nuclear structur@etween the ground stag.s) and the dominant GDR. The
[1]. Examples are the studies of multiphonon resonances ifixcitation of the weaker resonances are then evaluated
the SIS accelerator at the GSI facility, in Darmstadt, Gerthrough the coupled-channels Born approximaiGCBA),
many[2,3]. Important properties of nuclei far from stability from the g.s. and GDR amplitudes. In Sec. IV we apply the
[4] have also been studied with this method. The RCE infesults (_)f the previous sections to specific cases a_nd make a
duced by largez projectiles and/or targets, often yields large comparlson_wnh recent experimental data. Finally, in Sec. V,_
cross sections in grazing colisions. This results from théVe Summarize our results and present the conclusions of this
large nuclear respongm the region of the giant resonanges work.
to the acting electromagnetic fields. As a consequence, a
strong coupling between the excited states js expectgd This Il. THE SEMICLASSICAL METHOD
coupling might be responsible for the large discrepancies be- FOR THE CC-PROBLEM
tween experimental data of RCE and the calculations based
on first-order perturbation theofit—3], or the harmonic os- In relativistic heavy ion collisions, the wavelength associ-
cillator model. ated to the projectile-target separation is much smaller than
In the present paper, we apply a semiclassical mefapd the characteristic lengths of system. It is, therefore, a reason-
to the coupled-channel&CC) problem and study RCE in able approximation to treat as a classical variable(t),
several collisions between heavy ions. In this method, thgiven at each instant by the trajectory followed by the rela-
projectile-target relative motion is approximated by a classitive motion. At high energies, it is also a good approximation
cal trajectory and the excitation of the giant resonances i replace this trajectory by a straight line. The intrinsic dy-
treated quantum mechanicallg,7]. The use of this method namics can then be handled as a quantum mechanics prob-
is justified due to the small wavelengths associated with théem with a time dependent Hamiltonian. This treatment is
relative motion. In Sec. I, we neglect the resonance widthsliscussed in full details by Alder and Winther in RE3).
and introduce the semiclassical CC equations for relativistic The intrinsic statd#(t)) satisfies the Schdinger equa-
Coulomb excitation. The time-dependent matrix elements ofion
the main multipole components of the Coulori®ec. 11 A
and nuclearSec. Il B) parts of the coupling interaction are aly(t))
calculated. The CC equations are then solved in some limit- [H+V(r(t)]|w(t)y=ih

ot @

*Permanent address: Instituto de Fisica, Universidade de Sa Above, H is the intrinsic Hamiltonian andv is the
Paulo, Cx. Postal 66318, 05389-9700Faulo, SP, Brazil. channel-coupling interaction.
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Expanding the wave function in the sgtm); m=0N}  also the distance of the closest approach between the center
of eigenstates dfl, whereN is the number of excited states of mass of the two nuclei at the tinte- 0. We shall consider
included in the coupled-channel problem, we obtain the situation whereb is larger than the sum of the two

N nuclear radii, such that the charge distributions of the two
, nuclei do not strongly overlap at any time. The electromag-
W(t»:mzzo am(t)[m)exp(—iEnt/h), (2 netic field of the nucleus 2 in the reference frame of nucleus
1 is given by the usual Lorentz transformatif®| of the
whereE,, is the energy of the staten). Taking scalar prod- scalar potentialp(r)=Z,e/r|, i.e.,

uct with each of the stateq|, we get the set of coupled , , ,
equations =5l J P o(r' 1)=yo[b'—b,y(z' —vt)],

N v
ifiay(t)= 2 (n|V|m)e'E~Ena. (1), n=0to N. Alr', )= cyglb'=b,y(z' —vt)]. ©®)
m=0
&) Hereb (impact parametgérandb’ are the components of the

It should be remarked that the amplitudes depend also on tH&dius vectors andr’ transverse ta. _
impact parameteb specifying the classical trajectory fol-  1he time-dependent matrix element for electromagnetic
lowed by the system. For the sake of keeping the notatiogXcitation is of the form

simple, we do not indicate this dependence explicitly. We

write, thereforea,(t) instead ofa,(b,t). Since the interac- V() =(1:M;]
tion V vanishes ag— *«, the amplitudes have as initial
condition a,(t— —«)=§(n,0) and they tend to constant
values ast—«. Therefore, the excitation probabity of an
intrinsic state|n) in a collision with impact parametds is
given as

p<r’>—§~J(r'>}¢(r',t>|limi>. @

A Taylor-series expansion of the ldard-Wiechert poten-
tial aroundr’ =0 yields

d(r' )=yo[r()]+yVelr()]-r'+---, )

_ 2
Pa(b)=lan(=)[" @ wherer = (b, yvt), and the following simplifying notation is

The total cross section for excitation of the staig can used:

be approximated by the classical expression P

V¢[Ir]EV'¢>(r',t)|w=o=—Vb(b(lr)—mcﬁ(r)2
0'n=277f P,(b)bdb. (5)

vV Jd

Since we are interested in the excitation of specific == Vod(N— 2z 5 ¢(N). O

nuclear states, with good angular momentum and parity

quantum numbers, it is appropriate to develop the timeThys

dependent coupling interactiofi(t) into multipoles. In Ref.

[8], a multipole expansion of the electromagnetic excitation Vi

amplitudes in relativistic heavy ion collisions was carried Vﬂ(t):<|fo|[P(f')—?'J(F')}

out. This work used first order perturbation theory and the
semiclassical approximation. The time dependence of the X[yd(r)+yr'-Ve(r)]|IiM;). (10
multipole interactions was not explicitly given. In Sec. Il A
we show how this time dependence can be explicitly ob-Using the continuity equation
tained, from the Taylor-series expansion of the naed-
Wiechert potential§9] and the continuity equation for the V-J=—iwp, (11
nuclear current. ) .

In Sec. Il B we deduce the time dependence and the mulvhereo=(E¢—E;)/%, and integrating by parts,

tipole decomposition of the nuclear interaction in relativistic

nucleus-nucleus collisions. The nuclear absorption at colli- ) — A v

. i ; V(D) =(1tM¢]{ I(r)-| 5 vl
sions below grazing impact parameter is also accounted for. lw C

!

A. Coulomb excitation XLy (- VAWM. (12
We consider a nucleus 1 which is at rest and a relativistic In spherical coordinates
nucleus 2 which moves along tlzeaxis and is excited from
the initial statell;M;) to the statélM;) by the electromag-
netic field of nucleus 1. The nuclear states are specified by
the spin quantum numbeis, |+ and by the corresponding
magnetic quantum numbeid; and M;, respectively. We where
assume that the relativistic nucleus 2 moves along a straight-
line trajectory with impact parametdr, which is therefore a,=¢e, Vo, 14

1
le a, 'Y, (13

47
"Vem g
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and éM are the spherical unit vectors where
.1 A , i 3
e, = +E(extey), €=€z. M(EL,—p)= ;f d3rJ(r)-V(rYy,)
We will use the relations
=f d3rp(NryYy,(r), (22)
r-v,. v 477'V v 15
2= 2% 2\ 3 V(D 19 and
and I
.=—a,=—(V¢-&,)=¢, - —,
VXL(r*Ym) =i(k+21)V(rkY,,), (16) p- W= (Vo8)=6 5
whereL=—irxV. o
Then, one can write Bo=—ag—i ?—qs. (23
V v ,
J- P [yd+yr'-Vo] The derivatives of the potentiat are explicitly given by
\Y 4 J¢ _ __ 2 Z.e
== | (V1) =\ 5 O.,bX—VbX¢|rf=o— XDy 5732, 2
a— v Z.e
A vai ' o ! Ik _ _ 5.2 1
X{ﬂzl oV Y1) = Vi Ylo)] .17 Vbl —o=—2y UIW- (24)
The last term in the above equation can be rewritten as Using the results above, we get for the electric dipole

, . ) ) potential
(J.Ez)(r’.v(p):EZJ-[GO(I”~V¢)+(TI‘GO)V¢] 5o

) VIEY (1) = \Ey[ AP 24(EL=1)— 7Z((ELD)]
+ WJ-[éo(r’-V@—(f"éo)Vﬂ-

_wvb
(18) +\/§’)/’T gl(T)_|?

The first term in this equation is symmetric under parity o
inversion, and contributes to the electric quadrupdi ) X(1+7%) (1)
excitation amplitudes, since

.//Zﬁ(El,O)] , (25)

v - . v where 7= yvt/b, and
FJ'[GD(r"V(i))_F(r"eO)V(ﬁ]:ﬁJ'V,[Z’(I”-V(ﬁ)]_

(19 a1 = i and (1) = e (26
A= G AN )=

The second term in Eq18) is antisymmetric inJ andr’,

and leads to magnetic dipol&/(1) excitations. Indeed, using gare the transverse and longitudinal eletric fields generated the
Egs.(13)—(16), one finds relativistic nucleus with chargg,e, respectively. From the
definition

2 [(r V)= (1" &)V 4]

v 4 &
=WJ[\/?#=21 a,(~DHL(rYy_,)|. (20

i
//ZfI(M 1,/.1,):_%] d3rJ(r)L(rY1M)! (27)

and Eq.(19), we find

Thus only the first two terms on the right-hand side of Eq. >

(17) contribute to the electric dipoleE(l) excitations. Insert- 1)) i [“7Y - (0 M1 1)~ 2 (ML-1)].

ing them into Eq(12), we get 3c

(28)
1
(E1) 4y — 4m D u
Vi (D=7 ?M:_l (=D*Bu The current] in Eqg. (27) is made up of the usual convective
part and a magnetization part, proportional to the intrinsic
X (1M Z(EL,— w)|1;M;), (21)  (Dirac and anomalogsnagnetic moment of the nucleons.
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To obtain the electric quadrupol€E®?) potential we use the third term in the Taylor expansion of @§. Using the
continuity equation, a part of this term will contribute &8 andM 2 excitations, which we neglect. We then find that

(E2) T las _ o ~
Vfi (7):— %’y 363(7')[L//éﬁ(E2,2)+L//éﬁ(E2,_2)]+’y 6'7'6;{3(7')_| W(l-’-’r )(51(7')

X[ g(E2,— 1)+ 7#(E2,1) ]+ 6y

22— 1) 5(7) i —p 7(1+ 7).
(27~ 1) (1) =i g 1+ ) 4(7)

.//éﬁ(EZ,O)] , (29)

where #5(7) is the quadrupole electric field of nucleus 1, A phase convention for the nuclear states can be found so
given by that the reduced matrix elemer{isM«||. Z(EN)||I;M;) are
real number$5]. For the case of giant resonances, sum rules
Zo(1)= Z,e (30 are very useful to guess the values of these matrix elements.
-3 b3[1+ ~2]7% It is usual to use the reduced transition probability

The fields #;(7) peak aroundr=0, and decrease fastly 1
within an intervalA 7=1. This corresponds to a collisional ~ B(EX;li—1)= 75—~ > ML ZEN, w)[1iM )|
time At=b/yv. This means that numerically one needs to MMy
integrate the coupled-channels equatipiag. (3)] only in a

time interval within a rangenX A7 around r=0, with n = (L ZEM[16)]2, (32
equal to a small integer number. This will be shown later in 2li+1
connection with the calculation presented in Sec. IV. . . . .
Using the Wigner-Eckart theorem we can wijitd] in terms of which the energy-weighted sum-rules yield, for
the E1 andE2 excitations,
e N 1 9 #2 NZ
M5(EN, :—1'fo< ) 1 S e [P iy
(BN, u)=(—=1) M, u Mi B(E1;l;—15) 21 +1) 4 2 AE.© (33
XM [ Z(EN)|[1;M;). 3) and
|
) 1 #2 15R? ) Z?IA,  forisoscalar excitations; 3
B(E2;l,—I¢)= — . s 4
(E23li=10) 2l¢+1) my 4’7TEXe NZ/A, forisovector excitations; 349

whereN, Z, andA are the neutron, charge, and mass number of the excited nucleus, respectively. In these equations it was
assumed that an isolated state with endfgyexhausts the sum rule.

The matrix elements for the transitions between multiphonon states can be determined by using the Wigner-Eckart theorem
and the reduced matrix elements inferred from sum rules, as described in Secs. Il A and Il B. In the case of perfect phonons,
i.e., eigenstate solutions of the harmonic oscillator, the following relation holds for the reduced matrix elements for the
transition 0—1 andn—1—n [13]:

[{n=1[|Ve/n 1l [n)[>=n[{0][ Ve 1l [1)]2. (395

The factorn on the right-hand sidéhs) is the boson enhacement factor.

1. Approximate solutions

In most cases, the first-order perturbation theory is a good approximation to calculate the amplitudes for relativistic
Coulomb excitation. It amounts to usiray= d,o on the right-hand side of E(q3). The time integrals can be evaluated
analytically for theVg,(t) perturbations, given by Eq§25), (28), and(29). The result is

(E1) _ . 8w Zle ” , . \/z )
5=~ 1\ 5 7yp €] KiOLA(EL- 1)~ 24 ELD]+i = ~Ko(&). Zy(ELO) (36)

whereK; (K,) is the modified Bessel function of firséecond degree, and= wb/yv. For theE2 andM 1 multipolarities,
we obtain respectively,
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E2 . ™ Zle , . vZ , )
af?=2i\/= gz[ Ko( &) #4(E2,2)+ 74(E2,—2)]+i 'y( 2— ?) K (&) #4(E2,— 1)+ . 7#4(E2,1)]

30yhvb?
- JEK0<§)//4ﬁ<E2,0)} : (37
|
and from the ground state to the quadrupole states. In other

words, Eq.(39) should be corrected to read

alat = \/S—WE§K (O A#5(ML,1) = #5(M1,—1)]
1st 3 #ch 1 A ) 7O ) : [alsl(ﬂ-)\!t)]n

(39) ajp(mh.t)= N
These expressions are the same as those obtained from the
formulas deduced in Ref8]. We note that the multipole xexp| — X |ags(m N, 1)|22}. (40)
decomposition developed by those authors is accomplished '\

by a different approach, i.e., using recurrence relations for

the Gegenbauer polynomials, after the integral on time is tpe parmonic oscillator model is not in complete agree-
performed. Therefore, the above results present a good chegk.t with the experimental findings. The double-GDR and
for the time dependence of the multipole fields deduced here(’:jouble-GQR states do not have exactly twice the energy of

_ A simplified model, often used in connection with mul- 1,0 regpective GDR and GQR stafs3). Apparently, the
tiphonon excitations, is the harmonic vibrator model. In this atrix elements for the transition from the GOBOR) to

model, the resonance widths are neglected and the couple e double-GDR(double-GQR state does not follow the

channel e.C]UE'itiOI’lS can be solved exac_tly, 'in terms'of the ﬁrsboson-rule[lS] (see end of Sec. il This is borne out by the
order excitation amplitudefsl]. The excitation amplitude of  yigerenancy between the experimental cross sections for the
the nth harmonic oscillator state, for any timtgis given by oy citation of the double GDR and the double GQR with the
n perturbation theory, and with the harmonic oscillator model
af{‘g_(t)z M expl—|a;«()|%/2}, (39) [2_,3]. Thgs a coupled-channels calculation _ig useful to deter-
Jn! mine which matrix elements for the transitions among the
giant resonance states reproduce the experimental data.
where a;q(t) is the excitation amplitude for the
0(g.s.}»>1(one phonop calculated with the first-order
perturbation theory.

For the excitation of giant resonancesgan be identified In peripheral collisions the nuclear interaction between
with the state corresponding to a multipleof the single the ions can also induce excitations. This can be easily cal-
giant resonance state. This procedure has been often usedaulated in a vibrational model. The amplitude for the excita-
order to calculate the cross sections for the excitation of multion of a vibrational mode by the nuclear interaction in rela-
tiphonon giant resonances. Since this result is exact in thévistic heavy ion collisions can be obtained assuming that a
harmonic vibrator model, it accounts for all coupling be- residual interactiort) between the projectile and the target
tween the states. However, this result can be applied to stu@Xists, and that it is weak. According to the Bohr-Mottelson
ies of giant resonance excitation only if the same class oparticle-vibrator coupling model, the matrix element for the
multipole states is involved. That is, if one considers onlytransitioni—f is given by
electric dipole excitations, and use the harmonic oscillator NOL) /o
model, one can calculate the excitation probabilities, and Vi (1) =(1{MU[I;M;)
cross sections, of the GDR, double GDR, triple GDR, etc.

Equation(39) is not valid if the excitation of other multipo- _ O\
larities are involved, e.g., if the excitation of dipole states V2A+1
and quadrupole states are treated simultaneously. I{ B3f.

a hybrid harmonic oscillator model has been used. In this

work, it is assumed that the difference between the ampli-

tudes obtained with the harmonic oscillator model and withwhered, = 8,R is the vibrational amplitude, ateformation

nth order perturbation theory is due to the appearence of thiength R is the nuclear radius, and, (r) is the transition
exponential term on the rhs of E¢89). This exponential potential.

takes care of the decrease in the occupation amplitude of the The deformation lengtt#, can be directly related to the
ground state as a function of time. As argued in RE2], the  reduced matrix elements for electromagnetic transitions. Us-
presence of other multipole states, e.g., of quadrupole stateisig well-known sum rules for these matrix elements one
together with dipole states, may be accounted for by addinfjnds a relation between the deformation length and the
the first order excitation amplitudes for the quadrupole statesuclear masses and sizes. For isoscalar excitations one gets
to the exponent in Eq39). This would correct for the flux [14]

B. Nuclear excitation and strong absorption

(LMY L MY L (FYUL(r),

(41)
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#2 1 ) 2a K2 1 TABLE |. Parameterg16] for the nucleon-nucleon amplitude,
%:ZWW AE O m ML AE fan(6=0°)= (knn/4m) (i +enn).
X X
(42) E [MeV/nucl] oy [fM?] ann
whereA is the atomic numbefr?) is the rms radius of the 85 6.1 1
nucleus, and, is the excitation energy. 94 55 1.07
The transition potentials for nuclear excitations can be 120 45 0.7
related to the optical potential in the elastic channel. The 200 3.2 0.6
basic idea is that the interaction between the projectile and 3425 284 0.26
the target mduces surface V|brat|(_)ns in the target. Only the 425 3.2 0.36
contact region between the nuclei in grazing collisions is of 550 3.62 0.04
relevance. One thus expects that the interaction potential is 650 4.0 —0.095
proportional to the derivatives of the optical potential in the ' '
- ) S 800 4.26 —0.075
elastic channel, which peak at the surface. This is discussed
. o . . . 1000 4.32 —0.275
in details in Ref[14]. The transition potentials for isoscalar 2900 4.33 —0.33

excitations are

dU,(r NOWR) /oy —
Uo(r)=3U0pt(r)+r;—prt(), 43 Vi () =(1tM¢|U[1;M;)
_y— (M Yo 1M Y (0—77)
for monopole, and Vg Tl T 2
XU,\[r(H], (48)
~ dUgy(r)
Ua(n)=—4, (44 wherer (t) = Vb?+ y2 %2,
Using the Wigner-Eckart theorem, the matrix element of
the spherical harmonics becomes
for quadrupole modes.
For dipole isovector excitations
(LMYl 1iM5)
2
soTiZ AL 45 L Tenrnen] e o
f foM i
where Z (N) the charge(neutron number. The transition e N
potential in this case igl4] X 0 0 0 (49)
N—Z\[dUgy 1 d?u opt For high energy collisions, the optical potentia(r) can
UiD=x|—"72—"]—qr T3Ro gz | 0 be constructed by using thepp approximation[15]. One
gets

where the factory depends on the difference between the
proton and the neutron matter radii as

ﬁv H ' A3y
U(r):_7UNN(aNN+|)f pa(r')p(r=r")dr’,
2(N-2)  R—R, ARy, “ (50
X3A }(Ry+Ry)  Ro

where oy is the nucleon-nucleon cross section, ang is
the real-to-imaginary ratio of the forward€0°) nucleon-
Thus the strength of isovector excitations increases with thaucleon scattering amplitude. A set of the experimental val-
difference between the neutron and the proton matter radiues of these quantities, useful for our purposes, is given in
This difference is accentuated for neutron-rich nuclei andrable I.
should be a good test for the quantityr,,, which enters the We are not interested here in diffraction and refraction
above equations. effects in the scattering, but on the excitation probabilities
The time dependence of the matrix elements above can Her a given impact parameter. The strong absorption occur-
obtained by making a Lorentz boost. Since the potentialsing in collisions with small impact parameters can be in-
U,[r(t)] peak strongly at=0, we can safely approximate cluded. This can be done by using the eikonal approximation
0(t)=0(t=0)==/2 in the spherical harmonic of E¢41). = and the optical potential, given by E¢0). The practical
One gets result is that the excitation probabilities for a given impact
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parameteb, including the sum of the nuclear and the Cou-

lomb contributions to the excitation, are given by DGDR

V .z IVGQR

P;i(b)=|a(b)+ap(b)|?

GDR U

XeXp[_UNNJ dZJ d3rp(r')pa(r=r’)y,
(52) Gs

wherer = Jb?+z%. The corresponding excitation cross sec-
tions are obtained by an integration of the above equation
over impact parameters.

V227,23 ISGQR

FIG. 1. Schematic representation of the excitation of giant reso-
nances, populated in heavy ion collisions.

Ill. THE EFFECT OF FINITE RESONANCE WIDTHS

Up to now we have assumed that the excited states afé®"y Simple and straightforward way. It will be useful for us
isolated states, with zero width. However, this assumption i€0 compare with the coupled-channels calculations with iso-
not realistic and it is important to study the effect of finite lated states, as we described in the previous sections. Figure
resonance widths on the excitation amplitudes. This is spel represents our procedure. The GDR is coupled to the
cially relevant for the case of excitation of giant resonancesyround state while the remaining resonances are fed by these
which have a broad structure. The simplest way to study thi§V0 States according to first order perturbation theory. The
effect is by using the coupled-channels Born approximation?OUpl'”g matrix elements involves the ground state and a set
This approximation was used in R¢6] to describe the ex- Of doorway statefD (")), wheren specifies the kind of reso-
citation of the double giant resonance in relativistc heavy ioance and\w are angular momentum quantum numbers.
collisions. It is based on the idea that in such cases only théhe amplitudes of these resonances in real continuum states
coupling between the ground state and the dominant giarl€
dipole state has to be treated exactly. The reason is that the
transitions to giant quadrupole and to the double-phonon aM(e)=(p(e)|DY), (52)
states have low probability amplitudes, even for small impact
parameters. However, an exact treatment of the back-andvhere¢(e) denotes the wave function of one of the numer-
forth transitions between the ground state and the giant dieus states which are responsible for the broad structure of the
pole state is necessary. This leads to modifications of theesonance. In this equatia=E,—E,,, whereE, is the ex-
transitions amplitudes to the remaining resonances, whichitation energy andE, is the centroid of the resonance con-
are populated by the ground state and the GDR. In f@f. sidered.
the application of the method was limited to the use of an As we have stated above, in this approach we use the
schematic interaction, and the magnetic substates were neeupled-channels equations for the coupling between the
glected. These deficiencies are corrected here. The methggound state and the GDR. This results in the following
allows the inclusion of the width of the giant resonances in acoupled-channels equations:

L [
ifidg(t) =2 f de<¢(e>|D&1,2><D&1,2v51,ﬂ(t>|0>exp[—g<E1+e>t g7, ()
)73
i
=> f deam(e)vfl)(t)exp{ — - (Eit et aly, (1), (53)
M
|
and Integrating Eq.(54) and inserting the result in Eq53),
we get the integro-differential equation for the ground state
inal), ()=[(aP( VOV (1)]* expli(E,+e)tin}ag(t). ~ Occupation amplitude

(59

t
Above, (n=1) stands for the GDRa, denotes the occupa- ag(t)=— h—lgE VLOl)(t)f de|a<1)(e)|2f dt' [Vt
tion amplitude of the ground state aaff, the occupation a -
amplitude of a state located at an enekgpaway from the Xexp[—i(Ei+e)(t—t")/A}tay(t’), (55
GDR centroid, and with magnetic quantum number
(u=-1,0,1). We used the shorthand notati(vjf’l)(t)

=(D{)|Ver,(1)|0). where we used tha'}, (t=—o)=0. To carry out the inte-
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gration overe, we should use an appropriate parametrization ) 3 oD b OD s
for the doorway amplituder*)(€). A convenient choice is ag(t)= -1 V4 (t)ﬁmdt [V, ()]
the Breit-Wigner(BW) form K

(E1_|F1/2)(t_t,) ,
. - ><exp{—| . ag(t’), (60
De)|2=——| L
(e “on 62+r§/4}’ (56)  \here the factor.”; is .7;=1 for BW shape and

s1=1-iI'41/2E, for L shape.
We can take advantage of the exponential time depen-

wherel'; is chosen to fit the experimental width. In this case,dence in the integrand of the above equation, to reduce it to
this integral will be the simple exponential a set of second order differential equations. Introducing the

auxiliary amplitudesA ,(t), given by the relation
Ei+e)t
f de|aV(e)|2 exp{ —i %

ap() =1+, A1), (62)
y2

with initial conditions A, (t=—)=0, and taking the de-
rivative of Eq.(60), we get

(E1—1T1/2)t .
=exp —i————. (57) . Vfl)(t) i T\
Aﬂ(t)— W—% El—|7 AM(t)
. . . VPP ()[2
A better agreement with the experimental line shapes of — A 14D A, (t)|=0. (62)
the giant resonances is obtained by using a LorentZign ( f u'

parametrization fofa(€)|?, i.e., _ _ _ _
Solving the above equation, we ggj(t). Using this am-

plitude and integrating E¢(54), one can evaluata, (t).
FlE)2< The probability' density for .the pop_ul_ation.of a GDR con-
(EZ—E2)2+T2E2|" (58 tinuum state with ene_rngX in a collision with impact pa-
x -1 1=x rameterb, P,(b,E,), is obtained through the summation
over the asymptotict{~<0) contribution from each magnetic
substate. We get

2
M (e)P==
a

whereE,=E; + €. The energy integral can still be performed
exactly[11] but now it leads to the more complicated result P.(b,Ey)=|aM(E,—E,)|?

X f dt’ expliE,t'}
M — oC

2
: (63)

fde|a(1)(e)|2 exp[ —i (Elh;E)t

X[VPV(t') ¥ ag(t’)

where|aM(E,—E,)|? is given by Eq.(56) or by Eq.(58),
+AC(1), (59 depending on the choice of the resonance shape.

To first order, DGDR continuum states can be populated
throughE2 coupling from the ground state or througi
coupling from GDR states. The probability density arising

where AC(t) is a nonexponential correction to the decay.from the former is given by Eq63), with the replacement of
For the energies and widths involved in the excitation ofthe line shapéa!")|? by its DGDR counterparta(®|? (de-
giant resonances, this correction can be shown numericallfined in terms of parametes, andI',) and the use of the
to be negligible. It will therefore be ignored in our subse-appropriate coupling-matrix elementétoz)(t) with the E2
quent calculations. After integration ovey Eq. (55) reduces time dependence given k29). On the other hand, the con-
to tribution from the latter process is

h

p[ (E;—iT,/2)t
expy — |l ——————

r
=(1—i—1
2E,

y ” H ! ! t, " n
Py(b,E) = e (Ex—E)[271 2 ’ f_mdt' eXIE} 2 [Vy,/(1)]" f_wdt (V7]

2
; (64)

><exp{ —i (El_lrléz)(t_t ) }ao(t”)
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—7— TABLE II. Excitation cross sectiongin milibarng of the
14 i IVGDR, and of then X GDR states in the reactiofP®Pb+2%%Pb at
L cc 640 MeV A. A comparison with first order perturbation theory and
> 12 —ee-- 15t order ] the harmonic oscillator is made.
’T—§ 1.0 State 1st pert. th. Harm. osc. c.c.
K=}
£ 08 IVGD 3801 3235 3210
& 2®IVGD 388 281 280
g 06 3®IVGD 39.2 27.3 32.7
g 4®IVGD 4.2 2.4 3.2
o 0.4}
0.2 with that obtained with first order perturbation theory. This is
- | done in Fig. 2, where we plot the occupation probabilities of
0.0 —— the g.s.,|aq(t)|?, and of the GDR]a,(t)|?, as functions of

time, for a collision with impact parametdr=15 fm. As
discussed earlier, the Coulomb interaction is strongly peaked
aroundt=0, with a width of the ordeAt=b/yv. Accord-

FIG. 2. Time dependence of the occupation probabilites®  ingly, the amplitudes are rapidly varying in this time range. A
and|ay |, in a collision with impact parametér=15 fm. The time  comparison between the CC calculati@olid line) and first
is measured in terms of the dimensionless variabte(vy/b)t.  order perturbation theorfdashed ling shows that the high
The system is%Pb (640 MeV A) + 2°%b. order processes contained in the former lead to an appre-

ciable reduction of the GDR excitation probability. From this

We should point out that E464) is notequivalent to second- figure we can also conclude that our numerical calculations
order perturbation theory. This would be true only in thecan be restricted to the intervat-10<7<10, where
limit ag(t)—1. In our approachay(t)# 1, since it is modi- rz(yv/b)t_ is the time variat_JIe measured in natur.al units.
fied by the time-dependent coupling to the GDR state. Thigutside this range, the amplitudes reach asymptotic values.
coupling is treated exactly by means of the coupled-channels It is worthwhile to compare the predictions of first order
equations. We consider that this is the main effect on thderturbation theory with those of the harmonic oscillator
calculation of the DGDR(double giant dipole resonance Model and the CC calculations. In addition to the GDR, we
excitation probability. This approach is justified due to theinclude the following multiphonon states: a double giant di-
small excitation amplitude for the transition—42, since Pole state (2IVGD) at 27 MeV, a triple giant dipole state
ay(t)<ao(t). (3®IVGD) at 40.5 MeV, and a quadruple giant dipole state

Equations similar td63) can also be used to calculate the (4®IVGD) at 54 MeV. The coupling between the mul-
ISGOR (isoscalar giant quadrupole resonanead IVGQR  tiphonon states are determined by boson factors, as explained

(w/b) t

(isovector giant quadrupole resonaneacitation probabili- at the end of Sec. Il B. Direct exc_itations of the multiphonon
ties, with the proper choice of energies, widths, and transistates from the g.s. are not considered. The angular momen-
tion potentialge.g., Ve,(t), or Vy(t), or botH. tum addition rules for bosons yields the following angular

In the next section we will apply the results of Secs. Il A, momentum statesL=0 and 2, for the ZGDR state;

Il B, and IlI, to analyze some examples of relativistic nuclearL =1, 2, and 3, for the  GDR state; and. =0, 1, 2, 3, and
and Coulomb excitation. 4, for the 4% GDR state. We assume that states with the same

number of phonons are degenerate. In Table Il, we show the
V. APPLICATIONS resulting cross sections. The excitation probabilities and the
: cross section were calculated with the formalism of Sec. Il.

We consider the excitation of giant resonances’i#Pb The integration over impact parameter was carried out in the
projectiles, incident orf%Pb targets at 640 A MeV. This re- intervalbpy,<b<c. As we discuss below, the locut-off
action has been recently studied at the GSI/SIS, Darmstad@lue[13] b n,=14.3 fm mocks up absorption effects. We
[2]. For this system the excitation probabilities of the isovec-nave checked that the CC results are not significantly af-
tor giant dipole(IVGD) at 13.5 MeV are large and, conse- fected by the unknown phases of the transition matrix ele-
quently, high order effects of channel coupling should bements. Since the multiphonon spectrum is equally spaced,
relevant. To assess the importance of theose effects, we as- TABLE lll. Transition probabilities ab=14.3 fm, for the reac-
sume that the GDR state depletes 100% of the energyio 209 208pp at 640 MeV A. A comparison with first order
weighted sum rule and neglect the resonance width. The insertyrbation theory is made.
fluence of resonance widths will be considered later, in Sec

IV B. Trans. 1st pert. th. c.c.
. . g.s—d.S. 0.515

A. Zero-width calculations 9.5—IVGD 0.506 0.279

As a first step, we study the time evolution of the excita- g.s—ISGQ 0.080 0.064
tion process, solving the coupled-channels equations for a g.s—IVGQ 0.064 0.049
reduced set of states. We consider only the ground &jae g.5—2®IVGD 0.128 0.092

and the GDR. The excitation probability is then compared
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FIG. 3. The GDR excitation probabilities as functions of the £ 4. Nuclear excitation probabilities as functions of the im-

impact parameter, for sharp and smooth absorptions. The system ﬂ)%tct parameter. The system3%Pb (640 MeV A) + 2%%pp.
20%p (640 MeV A) + 20%pp,

parameter integration of E¢b). This value was chosen such

and the coupling matrix elements are related through boso ) .
pling 9 as to lead to the same cross section as that obtained from the

factors(see the end of Sec. I)Bthe harmonic oscillator and -
the CC cross sections should be equal. In fact the numeric&lOIId I||_1e. I .
results of these calculations given in the table are very close, In Fig. 4’. we plot the nuclear contrlbutlpns to the excita-
We also see that the excitation cross sections of triple- an%?n probability, a.nd'as a funqtlon of the. Impact parameter.
quadruple-phonon states are much smaller than that for th e study the excitation of the isoscalar giant monopole reso-

2®GDR. Therefore, we shall concentrate our studies on th@agge(ISGMR)' the IVGDR, and the ISGQR. The ISGMR
2®GDR, neglecting other multiphonon states. in 2%%b is located at 13.8 MeV. As discussed previously,

Next, we include the remaining important giant reso_isovector excitations are suppressed in nuclear excitation
nances’ in 209k, Namely, the isoscalar giant qLJaCIrupoleprocesses, due to the approximate charge independence of

. . the nuclear interaction. We use the formalism of Sec. Il B,
E:\S/gg)) :: 213 ?/I e'\\/I/eXIS%mijn ttr;]?s Iig\slgctz; %gg tlgg(;)droufpt?]lgwith the deformation parameters such that 100% of the sum

energy-weighted sum rules to deduce the strength matrix e[—UIe is exhausted. This corresponds to the monopole ampli-

ements. In Table Ill, we show the excitation probabilities in a ude a0=0.0:$4._ '(I)'h3e1 ';’GDRdg”ﬂ 886(';?? deformatipn lpa-
grazing collision, withb=14.3 fm. We see that first order _rl_a%melt\tleres aRr 1_'t .t' m agn b'I'2t_' : r:n reipeiﬂve ){h
perturbation theory yields a very large excitation probability | '€ 'VGQR excitation probability is much smaller than the

for the IVGD state. This is strongly reduced in a Coupledother excitation probabilities and is, therefore, not shown.
channels(c.c) calculation, as we have already discussed in

connection with the Fig. 2. The excitations of the remaining 1000
states are also influenced. They are reduced due to the low-
ering of the occupation probabilities of the g.s. and of the
IVGD state in the c.c. calculation. As expected, perturbation
theory and c.c. calculations agree at large impact parameters,
when the transition probabilities are small. For the excitation
of the 2”IVGD state we used second-order perturbation
theory to obtain the value in the second column. The pres-
ence of the ISGQR and the IVGQR influence the c.c. prob-
abilities for the excitation of the GDR and thex?VGD,
respectively.

We should also consider the effects of strong absorption
in grazing collisions, as discussed in Sec. Il B. In Fig. 3 we
plot the GDR excitation probability as a function of the im-
pact parameter. In the solid line, we consider absorption ac-
cording to Eq.(51). In the construction of the optical poten-
tial we used the g.s. densities calculated from the droplet
model of Myers and SwiatecKil7]. As shown in Ref[1],
this parametrization yields the best agreement between ex-
periment and theory. The dashed line does not include ab- FIG. 5. Excitation energy spectra of the main giant resonances
sorption. To simulate strong absorption at low impact paramfor both Breit-Wigner and Lorentzian line shapes. The system is
eters, we usd ,,=15.1 fm as a lower limit in the impact 2%Pb (640 MeV A) + 2%pp.

GDR
DGDR
ISGQR
IVGQR
TOTAL

100

do/dE (mb/MeV)

GDR
DGDR

ISGQR
- IVGQR
TOTAL

do/dE (mb/MeV)

1 |||||||| I |||||,|||

[=2)
o
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TABLE V. Centroid energies and widths of the main giant reso-

nances in?°%Pb. 5000 ——T—T——T——T—
o) | (@) BW i
GDR DGDR ISGQR IVGQR g 4000 ——
é 3000F sme-eee -
E, (MeV) 13.5 27.0 10.9 20.2 (o} ) it
r (MeV) 4.0 5.7 4.8 55 2000 b—a—— e,
300 AN B A | T v 1 1
The nuclear excitation is peaked at the grazing impact pa- 200

rameter and is only relevant within an impact parameter
range of~2 fm. Comparing to Fig. 3, we see that these
excitation probabilities are orders of magnitude smaller than oolb—— s
those for Coulomb excitation. Consequently, the correspond-

Opapr (Mb)

ing cross sections are much smaller. We get 14.8 mb for the 0 o
isoscalar GDR, 2.3 mb for the ISGQR, and 2.3 mb for the E
IVGDR. The interference between the nuclear and the Cou- E 2001 .
lomb excitation is also small and can be neglected. b‘a’
100 i 1 A L Y ] L L A L A 1 A
B. Effect of resonance widths 0 1 2 3 4 5 6 7

. . T MeV
We now turn to the influence of the giant resonance Gor (MeV)

widths on the excitation dynamics. We use the CCBA for-
malism developed in Sec. Ill. Schematically, the CC problem g\, 7. Dependence af ¢pr and o pepr 0N the GDR width,
is that represented Fig. 1. As we have seen above, the strofieated as a free parameter. For details see the text. The system is
gest coupling occurs between the g.s. and the GDR. 208pp (640 MeV A) + 2%8pp.

In Fig. 5, we show the excitation energy spectrum for the
GDR, the DGDR(a shorthand notation for the®VGD), . . .
ISGQR and IVGQR. The centroid energies and the widths wath respect to the GD,R' In Fig. 6, we ,ShOW the ratio
these resonances are listed in Table IV. The figure show€ bepr/ cpr @s a function of the bombarding energy. We
excitation spectra obtained with both Breit-WigriBiV) and observe that this ratio is roughl_y constant in the energy range
Lorentzian () line shapes. One observes that the BW bnd E 1ao/A=200-1000 MeV and it falls beyond these limits.
spectra have similar strengths at the resonance maximahis range corresponds to the SIS energies at the GSI-
However, the low energy partsne or two widths below the Darmstadt facility.
centroid of the spectra are more than one order of magnitude We now study the influence of the resonance widths and
higher in the BW calculation. The reason for this behavior isshapes on the GDR and DGDR cross sections. This study is
that Coulomb excitation favors low energy transitions andsimilar to that presented in RgB], except that we now have
the BW has a larger low energy tail as compared with thea realistic three dimensional treatment of the states and con-
Lorentzian line shape. The contribution from the DGDRsider different line shapes. In the upper part of Fig. 7, de-
leads to a pronounced bump in the total energy spectrunhoted by(a), we showogpg as a function ofl' gpg, treated
This bump depends on the relative strength of the DGDRas a free parameter. We note that the BW anparametri-
zations lead to different trends. In the BW case the cross
section grows withl" spg While in theL case it decreases.
The growing trend is also found in Rd6], which uses the
BW line shape. The reason for this trend in the BW case is
that an increase in the GDR width enhances the low energy
tail of the line shape, picking up more contributions from the
low energy transitions, favored in Coulomb excitation. On
the other hand, an increase of the GDR width enhances the
doorway amplitude to higher energies where Coulomb exci-
tation is weaker. In Figs.(B) and 7c), we study the depen-
- . dence ofo gpg OnI' gpr. IN Fig. 7(b), the DGDR width is
kept fixed at the value 5.7 MeV while in Fig(dj it is kept

proportional too ¢pr, fixing the ratiol” pgpr/I" gpr= V2.

GSI/SIS

0.10

Spepr / Gopr

0.01 T T DT TABLE V. Cross sections in milibarns for the excitation of giant
~0.01 0.10 1.00 10.00 resonances in lead, for the reactiéfiPb+ 2°%b at 640 MeV A.
Epp (GeV A)

GDR DGDR ISGOR IVGQR

FIG. 6. Ratio between the DGDR and the GDR cross sections in 2704 184(199 [198] 347 186
208pp + 208%pp collisions, as a function of the bombarding energy.
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The first point to be noticed is that the BW results are syscrease by a factor 2 if the energy position of the DGDR
tematically higher than the ones. This is a consequence of decreases by 20%, as found in Refg].
the different low energy tails of these functions, as discussed

above. One notices also thatpgpg decreases witH gpr V. DISCUSSION AND CONCLUSIONS
both in the BW and. cases. This trend can be understood in ) ] ) o
terms of the uncertainty principle. If the GDR width is in- In this paper we investigated at great length the excitation

creased, its lifetime is reduced. Since the DGDR is domi©f giant resonances in heavy-ion reactions. Both the single-
nantly populated from the GDR, its short lifetime leads toand double—.gl.ant_dlpole resonances were conS|dered._ The gf-
decay before the transition to the DGDR. feqt of the flnl_t_e_ lifetimes of these resonances on their exci-
To assess the sensitivity of the DGDR cross section on thgi_tlon probabllltles was _carefully assessed. The comparison
strength of the matrix elements and on the energy position oith the available experimental data shows that some phys-
the resonance, we present in Table V the cross sections féS iS still missing. Here we address this issue.
the excitation of the GDR, DGDR, ISGQR, and IVGQR, N ourd|scu33|o_n of the excitation ofadamped giant reso-
obtained with the CCBA approximation and 100% of thenance, the damping arises from the coupling to the large
sum rules for the respective modes. In this calculation wélumber of noncollective states that surround the GDR and
have included the strong absorption, as explained in Seghares with itits quantum numbers. One should keep in mind
Il B. For comparison, the values inside parenthegiad _that.o_ur final result for the excitation probability involves an
bracket of the DGDR excitation cross section include aimPplicit average over the “chaotic” degrees of freedom
direct excitation of the. =2 DGDR state. We assumed that Whose quantum manifestation is just the fine structure states.
20% of theE2 sum rule could be allocated for this excitation At this point one is reminded of a well known fact in reac-
mode of the DGDR. The cross sections increase by less thdiPn theory, namely, ensemble or energy averaged cross sec-
10% in this case. The value inside parenthesisackets tions contain two pieces: one obtained from an average am-
assume a positivénegative sign of the matrix element for plitude, or “optical” piece, and a second piece which arises
the direct excitation. from the fluctuations. We expect similar contribution of the
Since the excitation of the DGDR is weak, it is very well fluctuations to the excitation probability in the case of the
described by Eq(64) and the DGDR population is approxi- GR. Here, howe_zver, the fluctuations are in the “host”
mately proportional to the squared strengthVé#2. There-  nucleus and not in the compound nucleus. _
fore, to increase the DGDR cross section by a factor of 2, it At this point, we recall similar type of fluctuations which
is necessary to violate the relation of E85) by the same constltgte the d.omlnant piece in the case of deep inelastic
factor. This would require a strongly anharmonic Hamil- N€avy ion reaction§l9], when it is assumed that only cha-
tonian for the nuclear collective modes, which would not be®tic channels are involved in the inelastic transitions. The
supported by traditional nuclear model3]. Arguments investigation of the effects of flgctuation_s on the expitation
supporting such anharmonicities have recently been pre?f giant resonances in heavy-ion reactions, following the
sented in Ref[18]. Another effect arising from anharmonic- Procedure of(19], is underway and will be reported in a
ity would be the spin or isospin splitting of the DGDR. Since future publication.
the Coulomb interaction favors lower energy excitations, it is
clear that a decrease of the DGDR centroid would increase
its cross section. A similar effect would occur if a strongly
populated substate is splitted to lower energies. To study this We would like to express our gratitude to Dr. Hans Em-
point, we have varied the energy of the DGDR centroid inling for useful comments and suggestions during the devel-
the range 20 Me¥:Epgpr=27 MeV. The obtained opment of this work. One of ugC.A.B.) acknowledges fi-
DGDR cross section@ncluding direct excitationsare equal nancial support from the GSI-Darmstadt and FAPESP. This
to 620 mb, 299 mb, and 199 mb, for the centroid energies ofork was supported in part by the Brazilian agencies CNPq
20 MeV, 24 MeV, and 27 MeV, respectively. Although the and FINEP. This work was also partially supported by the
experimental data on the DGDR excitati¢p,3] seem to National Science Foundation through a grant for the Institute
indicate tha€ pgpr~2Egpr, @ small deviatiorfin the range  for Theoretical Atomic and Molecular Physics at Harvard
of 10-15 % of the centroid energy from this value might be University and Smithsonian Astrophysical Observatory. The
possible. However, the data are not conclusive, and moreork of M.S.H. at MIT was supported in part by funds pro-
experiments are clearly necessary. We conclude that, fromided by the U.S. Department of Ener¢9OE) under coop-
the arguments analyzed here, the magnitude of the DGDRrative agreement DE-FC02-94ER40818, and the work at the
cross section is more sensitive to the energy position of thislarvard-Smithsonian Center for Astrophysics was supported
state. The magnitude of the DGDR cross section would inby the National Science Foundation.
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