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We study the effects of channel coupling in the excitation dynamics of giant resonances in relativistic heavy
ions collisions. For this purpose, we use a semiclassical approximation to the coupled-channels problem and
separate the Coulomb and the nuclear parts of the coupling into their main multipole components. In order to
assess the importance of multistep processes, we neglect the resonance widths and solve the set of coupled
equations exactly. Finite widths are then considered. In this case, we handle the coupling of the ground state
with the dominant giant dipole resonance exactly and study the excitation of the remaining resonances within
the coupled-channels Born approximation. A comparison with recent experimental data is made.
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I. INTRODUCTION

Relativistic Coulomb excitation~RCE! is a well estab-
lished tool to unravel interesting aspects of nuclear struct
@1#. Examples are the studies of multiphonon resonances
the SIS accelerator at the GSI facility, in Darmstadt, Ge
many @2,3#. Important properties of nuclei far from stability
@4# have also been studied with this method. The RCE
duced by large-Z projectiles and/or targets, often yields larg
cross sections in grazing colisions. This results from t
large nuclear response~in the region of the giant resonances!
to the acting electromagnetic fields. As a consequence
strong coupling between the excited states is expected T
coupling might be responsible for the large discrepancies
tween experimental data of RCE and the calculations ba
on first-order perturbation theory@1–3#, or the harmonic os-
cillator model.

In the present paper, we apply a semiclassical method@5#
to the coupled-channels~CC! problem and study RCE in
several collisions between heavy ions. In this method, t
projectile-target relative motion is approximated by a clas
cal trajectory and the excitation of the giant resonances
treated quantum mechanically@6,7#. The use of this method
is justified due to the small wavelengths associated with
relative motion. In Sec. II, we neglect the resonance widt
and introduce the semiclassical CC equations for relativis
Coulomb excitation. The time-dependent matrix elements
the main multipole components of the Coulomb~Sec. II A!
and nuclear~Sec. II B! parts of the coupling interaction are
calculated. The CC equations are then solved in some lim
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ing cases. Section III is devoted to the excitation of res
nances of finite widths. Generalizing the schematic treatme
of Ref. @6#, we present an ‘‘exact’’ solution for the coupling
between the ground state~g.s.! and the dominant GDR. The
excitation of the weaker resonances are then evalua
through the coupled-channels Born approximation~CCBA!,
from the g.s. and GDR amplitudes. In Sec. IV we apply th
results of the previous sections to specific cases and mak
comparison with recent experimental data. Finally, in Sec.
we summarize our results and present the conclusions of
work.

II. THE SEMICLASSICAL METHOD
FOR THE CC-PROBLEM

In relativistic heavy ion collisions, the wavelength assoc
ated to the projectile-target separation is much smaller th
the characteristic lengths of system. It is, therefore, a reas
able approximation to treatr as a classical variabler (t),
given at each instant by the trajectory followed by the rel
tive motion. At high energies, it is also a good approximatio
to replace this trajectory by a straight line. The intrinsic dy
namics can then be handled as a quantum mechanics p
lem with a time dependent Hamiltonian. This treatment
discussed in full details by Alder and Winther in Ref.@5#.

The intrinsic stateuc(t)& satisfies the Schro¨dinger equa-
tion

@H1V~r ~ t !!#uc~ t !&5 i\
]uc~ t !&

]t
. ~1!

Above, H is the intrinsic Hamiltonian andV is the
channel-coupling interaction.

Sa
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53 335THEORY OF MULTIPHONON EXCITATION IN HEAVY-ION . . .
Expanding the wave function in the set$um&; m50,N%
of eigenstates ofH, whereN is the number of excited states
included in the coupled-channel problem, we obtain

uc~ t !&5 (
m50

N

am~ t !um&exp~2 iEmt/\!, ~2!

whereEm is the energy of the stateum&. Taking scalar prod-
uct with each of the stateŝnu, we get the set of coupled
equations

i\ȧn~ t !5 (
m50

N

^nuVum&ei ~En2Em!t/\am~ t !, n50 to N.

~3!

It should be remarked that the amplitudes depend also on
impact parameterb specifying the classical trajectory fol-
lowed by the system. For the sake of keeping the notat
simple, we do not indicate this dependence explicitly. W
write, therefore,an(t) instead ofan(b,t). Since the interac-
tion V vanishes ast→6`, the amplitudes have as initia
condition an(t→2`)5d(n,0) and they tend to constan
values ast→`. Therefore, the excitation probabity of an
intrinsic stateun& in a collision with impact parameterb is
given as

Pn~b!5uan~`!u2. ~4!

The total cross section for excitation of the stateun& can
be approximated by the classical expression

sn52pE Pn~b!bdb. ~5!

Since we are interested in the excitation of speci
nuclear states, with good angular momentum and pa
quantum numbers, it is appropriate to develop the tim
dependent coupling interactionV(t) into multipoles. In Ref.
@8#, a multipole expansion of the electromagnetic excitati
amplitudes in relativistic heavy ion collisions was carrie
out. This work used first order perturbation theory and t
semiclassical approximation. The time dependence of
multipole interactions was not explicitly given. In Sec. II A
we show how this time dependence can be explicitly o
tained, from the Taylor-series expansion of the Lie´nard-
Wiechert potentials@9# and the continuity equation for the
nuclear current.

In Sec. II B we deduce the time dependence and the m
tipole decomposition of the nuclear interaction in relativist
nucleus-nucleus collisions. The nuclear absorption at co
sions below grazing impact parameter is also accounted

A. Coulomb excitation

We consider a nucleus 1 which is at rest and a relativis
nucleus 2 which moves along thez axis and is excited from
the initial stateuI iM i& to the stateuI fM f& by the electromag-
netic field of nucleus 1. The nuclear states are specified
the spin quantum numbersI i , I f and by the corresponding
magnetic quantum numbersMi and M f , respectively. We
assume that the relativistic nucleus 2 moves along a straig
line trajectory with impact parameterb, which is therefore
the
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also the distance of the closest approach between the ce
of mass of the two nuclei at the timet50. We shall consider
the situation whereb is larger than the sum of the two
nuclear radii, such that the charge distributions of the tw
nuclei do not strongly overlap at any time. The electroma
netic field of the nucleus 2 in the reference frame of nucle
1 is given by the usual Lorentz transformation@9# of the
scalar potentialf(r )5Z1e/ur u, i.e.,

f~r 8,t !5gf@b82b,g~z82vt !#,

A~r 8,t !5
v

c
gf@b82b,g~z82vt !#. ~6!

Hereb ~impact parameter! andb8 are the components of the
radius vectorsr and r 8 transverse tov.

The time-dependent matrix element for electromagne
excitation is of the form

Vfi~ t !5^I fM f uFr~r 8!2
v

c2
•J~r 8!Gf~r 8,t !uI iM i&. ~7!

A Taylor-series expansion of the Lie´nard-Wiechert poten-
tial aroundr 850 yields

f~r 8,t !5gf@r ~ t !#1g¹f@r ~ t !#•r 81•••, ~8!

wherer5(b,gvt), and the following simplifying notation is
used:

¹f@r #[¹8f~r 8,t !ur85052¹bf~r !2
]

]~vt !
f~r !ẑ

52¹bf~r !2
v

c2
]

]t
f~r !. ~9!

Thus

Vfi~ t !5^I fM f uFr~r 8!2
v

c2
•J~r 8!G

3@gf~r !1gr 8•¹f~r !#uI iM i&. ~10!

Using the continuity equation

¹•J52 ivr, ~11!

wherev5(Ef2Ei)/\, and integrating by parts,

Vfi~ t !5^I fM f u H J~r !•F¹8

iv
2

v

c2G J
3@gf~r1gr 8•¹f~r !#uI iM i&. ~12!

In spherical coordinates

r 8•¹f5
A4p

3 (
m521

1

amr 8Y1m* , ~13!

where

am5êm•¹f, ~14!
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and êm are the spherical unit vectors

ê657
1

A2
~ êX6êY!, ê05êZ .

We will use the relations

r

c2
5

v
c2
ê05

v
c2
A4p

3
¹~rY10* ! ~15!

and

¹3L ~r kYlm!5 i ~k11!¹~r kYlm!, ~16!

whereL52 i r3¹.
Then, one can write

J•S ¹

iv
2

v

c2D @gf1gr 8•¹f#

52gJ•F vc2 ~¹f•r 8!2A4p

3

3H (
m521

1
am

iv
¹8~r 8Y1m!2

v
c2

f¹8~r 8Y10* !J G . ~17!

The last term in the above equation can be rewritten as

S J• vc2D ~r 8•¹f!5
v
2c2

J•@ ê0~r 8•¹f!1~r 8•ê0!¹f#

1
v
2c2

J•@ ê0~r 8•¹f!2~r 8•ê0!¹f#.

~18!

The first term in this equation is symmetric under par
inversion, and contributes to the electric quadrupole (E2)
excitation amplitudes, since

v
2c2

J•@ ê0~r 8•¹f!1~r 8•ê0!¹f#5
v
2c2

J•¹8@z8~r 8•¹f!#.

~19!

The second term in Eq.~18! is antisymmetric inJ and r 8,
and leads to magnetic dipole (M1) excitations. Indeed, using
Eqs.~13!–~16!, one finds

v
2c2

J•@ ê0~r 8•¹f!2~r 8•ê0!¹f#

5
v
2c2

J•FA4p

3 (
m521

1

am~21!mL ~rY1,2m!G . ~20!

Thus only the first two terms on the right-hand side of E
~17! contribute to the electric dipole (E1) excitations. Insert-
ing them into Eq.~12!, we get

Vfi
~E1!~ t !5gA4p

3 (
m521

1

~21!mbm

3^I fM f uM~E1,2m!uI iM i&, ~21!
ity

q.

where

M~E1,2m!5
i

vE d3rJ~r !•¹~rY1m!

5E d3rr~r !rY1m~r !, ~22!

and

b652am52~¹f•êm!5êm•
]f

]b
,

b052a02 i
vv
c2

f. ~23!

The derivatives of the potentialf are explicitly given by

]f

]bx
[¹bx

fur85052 x̂bx
Z1e

@b21g2v2t2#3/2
,

¹zfur85052 ẑg2vt
Z1e

@b21g2v2t2#3/2
. ~24!

Using the results above, we get for the electric dipo
potential

Vfi
~E1!~ t !5A2p

3
gHE1~t!@Mfi~E1,21!2Mfi~E1,1!#

1A2gtFE1~t!2 i
vvb
c2

3~11t2!E2~t!GMfi~E1,0!J , ~25!

wheret5gvt/b, and

E1~t!5
Z1e

b2@11t2#3/2
and E2~t!5

Z1et

b@11t2#3/2
~26!

are the transverse and longitudinal eletric fields generated
relativistic nucleus with chargeZ1e, respectively. From the
definition

Mfi~M1,m!52
i

2cE d3rJ~r !•L ~rY1m!, ~27!

and Eq.~19!, we find

Vfi
~M1!~ t !5 iA2p

3

v
c
E1~t!@Mfi~M1,1!2Mfi~M1,21!#.

~28!

The currentJ in Eq. ~27! is made up of the usual convectiv
part and a magnetization part, proportional to the intrin
~Dirac and anomalous! magnetic moment of the nucleons.
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To obtain the electric quadrupole (E2) potential we use the third term in the Taylor expansion of Eq.~8!. Using the
continuity equation, a part of this term will contribute toE3 andM2 excitations, which we neglect. We then find that

Vfi
~E2!~t !52Ap

30
gH 3E3~t!@Mfi~E2,2!1Mfi~E2,22!#1gF6tE3~t!2 i

vv
gc2

~11t2!E1~t!G
3@Mfi~E2,21!1Mfi~E2,1!#1A6g2F ~2t221!E3~t!2 i

vv
gc2

t~11t2!E1~t!GMfi~E2,0!J , ~29!
so

s
ts.

r

whereE3(t) is the quadrupole electric field of nucleus 1
given by

E3~t!5
Z1e

b3@11t2#5/2
. ~30!

The fieldsE i(t) peak aroundt50, and decrease fastly
within an intervalDt.1. This corresponds to a collisiona
time Dt.b/gv. This means that numerically one needs
integrate the coupled-channels equations@Eq. ~3!# only in a
time interval within a rangen3Dt around t50, with n
equal to a small integer number. This will be shown later
connection with the calculation presented in Sec. IV.

Using the Wigner-Eckart theorem we can write@10#

Mfi~El,m!5~21! I f2M fS I f l I i

2M f m Mi D
3^I fM f uuM~El!uuI iM i&. ~31!
,

l
to

in

A phase convention for the nuclear states can be found
that the reduced matrix elements^I fM f uuM(El)uuI iM i& are
real numbers@5#. For the case of giant resonances, sum rule
are very useful to guess the values of these matrix elemen
It is usual to use the reduced transition probability

B~El;I i→I f !5
1

2I i11 (
MiM f

u^I iM i uM~El,m!uI fM f&u2

5
1

2I i11
u^I i uuM~El!uuI f&u2, ~32!

in terms of which the energy-weighted sum-rules yield, fo
theE1 andE2 excitations,

B~E1;I i→I f !5S 1

2I f11D 9

4p

\2

2mN

NZ

AEx
e2, ~33!

and
it was

heorem
onons,
r the

tivistic
B~E2;I i→I f !5S 1

2I f11D \2

mN

15R2

4pEx
e23H Z2/A, for isoscalar excitations;

NZ/A, for isovector excitations;
~34!

whereN, Z, andA are the neutron, charge, and mass number of the excited nucleus, respectively. In these equations
assumed that an isolated state with energyEx exhausts the sum rule.

The matrix elements for the transitions between multiphonon states can be determined by using the Wigner-Eckart t
and the reduced matrix elements inferred from sum rules, as described in Secs. II A and II B. In the case of perfect ph
i.e., eigenstate solutions of the harmonic oscillator, the following relation holds for the reduced matrix elements fo
transition 0→1 andn21→n @13#:

u^n21uuVE/N,1uun&u25nu^0uuVE/N,1uu1&u2. ~35!

The factorn on the right-hand side~rhs! is the boson enhacement factor.

1. Approximate solutions

In most cases, the first-order perturbation theory is a good approximation to calculate the amplitudes for rela
Coulomb excitation. It amounts to usingak5dk0 on the right-hand side of Eq.~3!. The time integrals can be evaluated
analytically for theVEi(t) perturbations, given by Eqs.~25!, ~28!, and~29!. The result is

a1st
~E1!52 iA8p

3

Z1e

\vb
jHK1~j!@Mfi~E1,21!2Mfi~E1,1!#1 i

A2
g
K0~j!Mfi~E1,0!J , ~36!

whereK1 (K2) is the modified Bessel function of first~second! degree, andj5vb/gv. For theE2 andM1 multipolarities,
we obtain respectively,
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a1st
~E2!52iAp

30

Z1e

g\vb2
j2HK2~j!@Mfi~E2,2!1Mfi~E2,22!#1 igS 22

v2

c2DK1~j!@Mfi~E2,21!1Mfi~E2,1!#

2A6K0~j!Mfi~E2,0!J , ~37!
er
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and

a1st
~M1!5A8p

3

Z1e

\cb
jK1~j!@Mfi~M1,1!2Mfi~M1,21!#.

~38!

These expressions are the same as those obtained from
formulas deduced in Ref.@8#. We note that the multipole
decomposition developed by those authors is accomplis
by a different approach, i.e., using recurrence relations
the Gegenbauer polynomials, after the integral on time
performed. Therefore, the above results present a good ch
for the time dependence of the multipole fields deduced he

A simplified model, often used in connection with mu
tiphonon excitations, is the harmonic vibrator model. In th
model, the resonance widths are neglected and the coup
channel equations can be solved exactly, in terms of the fi
order excitation amplitudes@1#. The excitation amplitude of
thenth harmonic oscillator state, for any timet, is given by

ah.o.
~n! ~ t !5

@a1st~ t !#
n

An!
exp$2ua1st~ t !u2/2%, ~39!

where a1st(t) is the excitation amplitude for the
0(g.s.)→1(one phonon) calculated with the first-order
perturbation theory.

For the excitation of giant resonances,n can be identified
with the state corresponding to a multiplen of the single
giant resonance state. This procedure has been often use
order to calculate the cross sections for the excitation of m
tiphonon giant resonances. Since this result is exact in
harmonic vibrator model, it accounts for all coupling be
tween the states. However, this result can be applied to st
ies of giant resonance excitation only if the same class
multipole states is involved. That is, if one considers on
electric dipole excitations, and use the harmonic oscilla
model, one can calculate the excitation probabilities, a
cross sections, of the GDR, double GDR, triple GDR, e
Equation~39! is not valid if the excitation of other multipo-
larities are involved, e.g., if the excitation of dipole state
and quadrupole states are treated simultaneously. In Ref.@12#
a hybrid harmonic oscillator model has been used. In t
work, it is assumed that the difference between the amp
tudes obtained with the harmonic oscillator model and w
nth order perturbation theory is due to the appearence of
exponential term on the rhs of Eq.~39!. This exponential
takes care of the decrease in the occupation amplitude of
ground state as a function of time. As argued in Ref.@12#, the
presence of other multipole states, e.g., of quadrupole sta
together with dipole states, may be accounted for by add
the first order excitation amplitudes for the quadrupole sta
to the exponent in Eq.~39!. This would correct for the flux
the

hed
for
is
eck
re.
l-
is
led-
rst-

d in
ul-
the
-
ud-
of
ly
tor
nd
tc.

s

his
li-
ith
the

the

tes,
ing
tes

from the ground state to the quadrupole states. In oth
words, Eq.~39! should be corrected to read

ah.o.
~n! ~pl,t !5

@a1st~pl,t !#n

An!

3exp H 2 (
p8l8

ua1st~p8l8,t !u2/2J . ~40!

The harmonic oscillator model is not in complete agre
ment with the experimental findings. The double-GDR an
double-GQR states do not have exactly twice the energy
the respective GDR and GQR states@2,3#. Apparently, the
matrix elements for the transition from the GDR~GQR! to
the double-GDR~double-GQR! state does not follow the
boson-rule@13# ~see end of Sec. III!. This is borne out by the
discrepancy between the experimental cross sections for
excitation of the double GDR and the double GQR with th
perturbation theory, and with the harmonic oscillator mod
@2,3#. Thus a coupled-channels calculation is useful to dete
mine which matrix elements for the transitions among th
giant resonance states reproduce the experimental data.

B. Nuclear excitation and strong absorption

In peripheral collisions the nuclear interaction betwee
the ions can also induce excitations. This can be easily c
culated in a vibrational model. The amplitude for the excita
tion of a vibrational mode by the nuclear interaction in rela
tivistic heavy ion collisions can be obtained assuming tha
residual interactionU between the projectile and the targe
exists, and that it is weak. According to the Bohr-Mottelso
particle-vibrator coupling model, the matrix element for th
transitioni→ f is given by

Vfi
N~lm!~r ![^I fM f uUuI iM i&

5
dl

A2l11
^I fM f uYlmuI iM i&Ylm~ r̂ !Ul~r !,

~41!

wheredl5blR is the vibrational amplitude, ordeformation
length, R is the nuclear radius, andUl(r ) is the transition
potential.

The deformation lengthdl can be directly related to the
reduced matrix elements for electromagnetic transitions. U
ing well-known sum rules for these matrix elements on
finds a relation between the deformation length and t
nuclear masses and sizes. For isoscalar excitations one
@14#
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d0
252p

\2

mN^r 2&

1

AEx
, dl>2

2 5
2p

3

\2

mN
l~2l11!

1

AEx
,

~42!

whereA is the atomic number,̂r 2& is the rms radius of the
nucleus, andEx is the excitation energy.

The transition potentials for nuclear excitations can b
related to the optical potential in the elastic channel. Th
basic idea is that the interaction between the projectile a
the target induces surface vibrations in the target. Only t
contact region between the nuclei in grazing collisions is o
relevance. One thus expects that the interaction potentia
proportional to the derivatives of the optical potential in th
elastic channel, which peak at the surface. This is discuss
in details in Ref.@14#. The transition potentials for isoscalar
excitations are

U0~r !53Uopt~r !1r
dUopt~r !

dr
, ~43!

for monopole, and

U2~r !5
dUopt~r !

dr
, ~44!

for quadrupole modes.
For dipole isovector excitations

d15
p

2

\2

mN

A

NZ

1

Ex
, ~45!

where Z (N) the charge~neutron! number. The transition
potential in this case is@14#

U1~r !5xSN2Z

A D S dUopt

dr
1
1

3
R0

d2U opt

dr2 D , ~46!

where the factorx depends on the difference between th
proton and the neutron matter radii as

x
2~N2Z!

3A
5

Rn2Rp

1
2 ~Rn1Rp!

5
DRnp

R0
. ~47!

Thus the strength of isovector excitations increases with t
difference between the neutron and the proton matter rad
This difference is accentuated for neutron-rich nuclei an
should be a good test for the quantityDRnp which enters the
above equations.

The time dependence of the matrix elements above can
obtained by making a Lorentz boost. Since the potentia
Ul@r (t)# peak strongly att50, we can safely approximate
u(t).u(t50)5p/2 in the spherical harmonic of Eq.~41!.
One gets
e
e
nd
he
f
l is
e
ed

e

he
ii.
d

be
ls

Vfi
N~lm!~r ![^I fM f uUuI iM i&

5g
dl

A2l11
^I fM f uYlmuI iM i&YlmS u5

p

2 D
3Ul@r ~ t !#, ~48!

wherer (t)5Ab21g2v2t2.
Using the Wigner-Eckart theorem, the matrix element o

the spherical harmonics becomes

^I fM f uYlmuI iM i&

5~21! I f2M fF ~2I i11!~2l11!

4p~2I f11! G1/2S I f l I i

2M f m Mi
D

3S I f l I i

0 0 0D . ~49!

For high energy collisions, the optical potentialU(r ) can
be constructed by using the t-rr approximation@15#. One
gets

U~r !52
\v
2

sNN~aNN1 i !E r1~r 8!r2~r2r 8!d3r 8,

~50!

wheresNN is the nucleon-nucleon cross section, andaNN is
the real-to-imaginary ratio of the forward (u50°) nucleon-
nucleon scattering amplitude. A set of the experimental va
ues of these quantities, useful for our purposes, is given
Table I.

We are not interested here in diffraction and refractio
effects in the scattering, but on the excitation probabilitie
for a given impact parameter. The strong absorption occu
ring in collisions with small impact parameters can be in
cluded. This can be done by using the eikonal approximatio
and the optical potential, given by Eq.~50!. The practical
result is that the excitation probabilities for a given impac

TABLE I. Parameters@16# for the nucleon-nucleon amplitude,
f NN(u50°)5(kNN/4p) sNN( i1aNN).

E @MeV/nucl# sNN @ fm2# aNN

85 6.1 1
94 5.5 1.07
120 4.5 0.7
200 3.2 0.6
342.5 2.84 0.26
425 3.2 0.36
550 3.62 0.04
650 4.0 20.095
800 4.26 20.075
1000 4.32 20.275
2200 4.33 20.33
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parameterb, including the sum of the nuclear and the Cou
lomb contributions to the excitation, are given by

Pfi~b!5uafi
C~b!1afi

N~b!u2

3expH 2sNNE dzE d3rr1~r 8!r2~r2r 8!J ,
~51!

wherer5Ab21z2. The corresponding excitation cross se
tions are obtained by an integration of the above equat
over impact parameters.

III. THE EFFECT OF FINITE RESONANCE WIDTHS

Up to now we have assumed that the excited states
isolated states, with zero width. However, this assumption
not realistic and it is important to study the effect of finit
resonance widths on the excitation amplitudes. This is s
cially relevant for the case of excitation of giant resonanc
which have a broad structure. The simplest way to study t
effect is by using the coupled-channels Born approximatio
This approximation was used in Ref.@6# to describe the ex-
citation of the double giant resonance in relativistc heavy i
collisions. It is based on the idea that in such cases only
coupling between the ground state and the dominant gi
dipole state has to be treated exactly. The reason is that
transitions to giant quadrupole and to the double-phon
states have low probability amplitudes, even for small impa
parameters. However, an exact treatment of the back-a
forth transitions between the ground state and the giant
pole state is necessary. This leads to modifications of
transitions amplitudes to the remaining resonances, wh
are populated by the ground state and the GDR. In Ref.@6#
the application of the method was limited to the use of
schematic interaction, and the magnetic substates were
glected. These deficiencies are corrected here. The me
allows the inclusion of the width of the giant resonances in
-
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very simple and straightforward way. It will be useful for u
to compare with the coupled-channels calculations with is
lated states, as we described in the previous sections. Fig
1 represents our procedure. The GDR is coupled to t
ground state while the remaining resonances are fed by th
two states according to first order perturbation theory. T
coupling matrix elements involves the ground state and a
of doorway statesuDlm

(n)&, wheren specifies the kind of reso-
nance andlm are angular momentum quantum number
The amplitudes of these resonances in real continuum sta
are

a~n!~e !5^f~e!uDlm
~n!&, ~52!

wheref(e) denotes the wave function of one of the nume
ous states which are responsible for the broad structure of
resonance. In this equatione5Ex2En , whereEx is the ex-
citation energy andEn is the centroid of the resonance con
sidered.

As we have stated above, in this approach we use
coupled-channels equations for the coupling between
ground state and the GDR. This results in the followin
coupled-channels equations:

FIG. 1. Schematic representation of the excitation of giant res
nances, populated in heavy ion collisions.
i\ȧ0~ t !5(
m

E de^f~e!uD1m
~1!&^D1m

~1!VE1,m~ t !u0&expH 2
i

\
~E11e!tJ ae,1m

~1! ~ t !

5(
m

E dea~1!~e !Vm
~01!~ t !expH 2

i

\
~E11e!tJ ae,1m

~1! ~ t !, ~53!
te

and

i\ȧe,1m
~1! ~ t !5@~a~1!~e !Vm

~01!~ t !#* exp$ i ~E11e!t/\%a0~ t !.
~54!

Above, (n51) stands for the GDR,a0 denotes the occupa-
tion amplitude of the ground state andae,1m

(1) the occupation
amplitude of a state located at an energye away from the
GDR centroid, and with magnetic quantum numberm
(m521,0,1). We used the shorthand notationVm

(01)(t)
5^D1m

(1)uVE1,m(t)u0&.
Integrating Eq.~54! and inserting the result in Eq.~53!,
we get the integro-differential equation for the ground sta
occupation amplitude

ȧ0~ t !52
1

\2(
m

Vm
~01!~ t !E deua~1!~e !u2E

2`

t

dt8@Vm
~01!~ t8!#*

3exp$2 i ~E11e!~ t2t8!/\%a0~ t8!, ~55!

where we used thatae,1m
(1) (t52`)50. To carry out the inte-
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gration overe, we should use an appropriate parametrizati
for the doorway amplitudea (1)(e). A convenient choice is
the Breit-Wigner~BW! form

ua~1!~e !u25
1

2p F G1

e21G1
2/4G , ~56!

whereG1 is chosen to fit the experimental width. In this cas
this integral will be the simple exponential

E deua~1!~e !u2 expH 2 i
~E11e!t

\ J

5expH 2 i
~E12 iG1/2!t

\ J . ~57!

A better agreement with the experimental line shapes
the giant resonances is obtained by using a LorentzianL)
parametrization forua (1)(e)u2, i.e.,

ua~1!~e !u25
2

p F G1Ex
2

~Ex
22E1

2!21G1
2Ex

2G , ~58!

whereEx5E11e. The energy integral can still be performe
exactly @11# but now it leads to the more complicated resu

E deua~1!~e !u2 expH 2 i
~E11e!t

\ J

5S 12 i
G1

2E1
DexpH 2 i

~E12 iG1/2!t

\ J 1DC~ t !, ~59!

whereDC(t) is a nonexponential correction to the deca
For the energies and widths involved in the excitation
giant resonances, this correction can be shown numeric
to be negligible. It will therefore be ignored in our subse
quent calculations. After integration overe, Eq. ~55! reduces
to
on

e,

of
(

d
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ȧ0~ t !52S 1(
m

Vm
~01!~ t !E

2`

t

dt8@Vm
~01!~ t8!#*

3expH 2 i
~E12 iG1/2!~ t2t8!

\ J a0~ t8!, ~60!

where the factor S 1 is S 151 for BW shape and
S 1512 iG1/2E1 for L shape.

We can take advantage of the exponential time depe
dence in the integrand of the above equation, to reduce it
a set of second order differential equations. Introducing th
auxiliary amplitudesAm(t), given by the relation

a0~ t !511(
m

Am~ t !, ~61!

with initial conditionsAm(t52`)50, and taking the de-
rivative of Eq.~60!, we get

Äm~ t !2F V̇m
~01!~ t !

Vm
~01!~ t !

2
i

\ S E12 i
G1

2 D G Ȧm~ t !

2S 1

uVm
~01!~ t !u2

\2 F11(
m8

Am8~ t !G50. ~62!

Solving the above equation, we geta0(t). Using this am-
plitude and integrating Eq.~54!, one can evaluateae,1m

(1) (t).
The probability density for the population of a GDR con
tinuum state with energyEx in a collision with impact pa-
rameterb, P1(b,Ex), is obtained through the summation
over the asymptotic (t→`) contribution from each magnetic
substate. We get

P1~b,Ex!5ua~1!~Ex2E1!u2

3(
m

U E
2`

`

dt8 exp$ iExt8%

3@Vm
~01!~ t8!#* a0~ t8!U2, ~63!

whereua (1)(Ex2E1)u2 is given by Eq.~56! or by Eq. ~58!,
depending on the choice of the resonance shape.

To first order, DGDR continuum states can be populate
throughE2 coupling from the ground state or throughE1
coupling from GDR states. The probability density arising
from the former is given by Eq.~63!, with the replacement of
the line shapeua (1)u2 by its DGDR counterpartua (2)u2 ~de-
fined in terms of parametersE2 andG2) and the use of the
appropriate coupling-matrix elementsVm

(02)(t) with the E2
time dependence given by~29!. On the other hand, the con-
tribution from the latter process is
P2~b,Ex!5ua~2!~Ex2E2!u2S 1(
n

U E
2`

`

dt8 exp$ iExt8%(
m

@Vnm
~12!~ t8!#* E

2`

t8
dt9@Vm

~01!~ t9!#

3expH 2 i
~E12 iG1/2!~ t2t8!

\ J a0~ t9!U2, ~64!
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We should point out that Eq.~64! is notequivalent to second-
order perturbation theory. This would be true only in th
limit a0(t)→1. In our approach,a0(t)Þ1, since it is modi-
fied by the time-dependent coupling to the GDR state. T
coupling is treated exactly by means of the coupled-chann
equations. We consider that this is the main effect on t
calculation of the DGDR~double giant dipole resonance!
excitation probability. This approach is justified due to th
small excitation amplitude for the transition 1→2, since
a1(t)!a0(t).

Equations similar to~63! can also be used to calculate th
ISGQR ~isoscalar giant quadrupole resonance! and IVGQR
~isovector giant quadrupole resonance! excitation probabili-
ties, with the proper choice of energies, widths, and tran
tion potentials@e.g.,VE2(t), or VN2(t), or both#.

In the next section we will apply the results of Secs. II A
II B, and III, to analyze some examples of relativistic nucle
and Coulomb excitation.

IV. APPLICATIONS

We consider the excitation of giant resonances in208Pb
projectiles, incident on208Pb targets at 640 A MeV. This re-
action has been recently studied at the GSI/SIS, Darms
@2#. For this system the excitation probabilities of the isove
tor giant dipole~IVGD! at 13.5 MeV are large and, conse
quently, high order effects of channel coupling should
relevant. To assess the importance of these effects, we
sume that the GDR state depletes 100% of the ener
weighted sum rule and neglect the resonance width. The
fluence of resonance widths will be considered later, in S
IV B.

A. Zero-width calculations

As a first step, we study the time evolution of the excit
tion process, solving the coupled-channels equations fo
reduced set of states. We consider only the ground state~g.s.!
and the GDR. The excitation probability is then compar

FIG. 2. Time dependence of the occupation probabilitiesua0u2

andua1u2, in a collision with impact parameterb515 fm. The time
is measured in terms of the dimensionless variablet5(vg/b)t.
The system is208Pb ~640 MeV A! 1 208Pb.
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with that obtained with first order perturbation theory. This i
done in Fig. 2, where we plot the occupation probabilities o
the g.s.,ua0(t)u2, and of the GDR,ua1(t)u2, as functions of
time, for a collision with impact parameterb515 fm. As
discussed earlier, the Coulomb interaction is strongly peak
aroundt50, with a width of the orderDt.b/gv. Accord-
ingly, the amplitudes are rapidly varying in this time range. A
comparison between the CC calculation~solid line! and first
order perturbation theory~dashed line! shows that the high
order processes contained in the former lead to an app
ciable reduction of the GDR excitation probability. From this
figure we can also conclude that our numerical calculation
can be restricted to the interval210,t,10, where
t5(gv/b)t is the time variable measured in natural units
Outside this range, the amplitudes reach asymptotic value

It is worthwhile to compare the predictions of first orde
perturbation theory with those of the harmonic oscillato
model and the CC calculations. In addition to the GDR, w
include the following multiphonon states: a double giant d
pole state (2̂ IVGD! at 27 MeV, a triple giant dipole state
(3^ IVGD! at 40.5 MeV, and a quadruple giant dipole stat
(4^ IVGD! at 54 MeV. The coupling between the mul-
tiphonon states are determined by boson factors, as explain
at the end of Sec. II B. Direct excitations of the multiphono
states from the g.s. are not considered. The angular mom
tum addition rules for bosons yields the following angula
momentum states:L50 and 2, for the 2̂ GDR state;
L51, 2, and 3, for the 3̂ GDR state; andL50, 1, 2, 3, and
4, for the 4̂ GDR state. We assume that states with the sam
number of phonons are degenerate. In Table II, we show t
resulting cross sections. The excitation probabilities and th
cross section were calculated with the formalism of Sec. I
The integration over impact parameter was carried out in th
intervalbmin,b,`. As we discuss below, the low-b cut-off
value @13# b min514.3 fm mocks up absorption effects. We
have checked that the CC results are not significantly a
fected by the unknown phases of the transition matrix el
ments. Since the multiphonon spectrum is equally space

TABLE II. Excitation cross sections~in milibarns! of the
IVGDR, and of then3GDR states in the reaction208Pb1208Pb at
640 MeV A. A comparison with first order perturbation theory and
the harmonic oscillator is made.

State 1st pert. th. Harm. osc. c.c.

IVGD 3891 3235 3210
2^ IVGD 388 281 280
3^ IVGD 39.2 27.3 32.7
4^ IVGD 4.2 2.4 3.2

TABLE III. Transition probabilities atb514.3 fm, for the reac-
tion 208Pb1208Pb at 640 MeV A. A comparison with first order
perturbation theory is made.

Trans. 1st pert. th. c.c.

g.s.→g.s. 0.515
g.s.→IVGD 0.506 0.279
g.s.→ISGQ 0.080 0.064
g.s.→IVGQ 0.064 0.049
g.s.→2^ IVGD 0.128 0.092
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and the coupling matrix elements are related through bos
factors~see the end of Sec. II B!, the harmonic oscillator and
the CC cross sections should be equal. In fact the numer
results of these calculations given in the table are very clo
We also see that the excitation cross sections of triple- a
quadruple-phonon states are much smaller than that for
2^GDR. Therefore, we shall concentrate our studies on
2^GDR, neglecting other multiphonon states.

Next, we include the remaining important giant res
nances in 208Pb. Namely, the isoscalar giant quadrupo
~ISGQ! at 10.9 MeV and the isovector giant quadrupo
~IVGQ! at 22 MeV. Also in this case, we use 100% of th
energy-weighted sum rules to deduce the strength matrix
ements. In Table III, we show the excitation probabilities in
grazing collision, withb514.3 fm. We see that first order
perturbation theory yields a very large excitation probabili
for the IVGD state. This is strongly reduced in a couple
channels~c.c.! calculation, as we have already discussed
connection with the Fig. 2. The excitations of the remainin
states are also influenced. They are reduced due to the l
ering of the occupation probabilities of the g.s. and of th
IVGD state in the c.c. calculation. As expected, perturbati
theory and c.c. calculations agree at large impact paramet
when the transition probabilities are small. For the excitati
of the 2^ IVGD state we used second-order perturbatio
theory to obtain the value in the second column. The pr
ence of the ISGQR and the IVGQR influence the c.c. pro
abilities for the excitation of the GDR and the 2^ IVGD,
respectively.

We should also consider the effects of strong absorpt
in grazing collisions, as discussed in Sec. II B. In Fig. 3 w
plot the GDR excitation probability as a function of the im
pact parameter. In the solid line, we consider absorption
cording to Eq.~51!. In the construction of the optical poten
tial we used the g.s. densities calculated from the drop
model of Myers and Swiatecki@17#. As shown in Ref.@1#,
this parametrization yields the best agreement between
periment and theory. The dashed line does not include
sorption. To simulate strong absorption at low impact para
eters, we useb min515.1 fm as a lower limit in the impact

FIG. 3. The GDR excitation probabilities as functions of th
impact parameter, for sharp and smooth absorptions. The syste
208Pb ~640 MeV A! 1 208Pb.
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parameter integration of Eq.~5!. This value was chosen such
as to lead to the same cross section as that obtained from
solid line.

In Fig. 4, we plot the nuclear contributions to the excita
tion probability, and as a function of the impact paramete
We study the excitation of the isoscalar giant monopole res
nance~ISGMR!, the IVGDR, and the ISGQR. The ISGMR
in 208Pb is located at 13.8 MeV. As discussed previousl
isovector excitations are suppressed in nuclear excitat
processes, due to the approximate charge independenc
the nuclear interaction. We use the formalism of Sec. II B
with the deformation parameters such that 100% of the su
rule is exhausted. This corresponds to the monopole am
tude a050.054. The IVGDR and ISGQR deformation pa
rameters ared150.31 fm andd250.625 fm, respectively.
The IVGQR excitation probability is much smaller than th
other excitation probabilities and is, therefore, not show

e
m is

FIG. 4. Nuclear excitation probabilities as functions of the im
pact parameter. The system is208Pb ~640 MeV A! 1 208Pb.

FIG. 5. Excitation energy spectra of the main giant resonanc
for both Breit-Wigner and Lorentzian line shapes. The system
208Pb ~640 MeV A! 1 208Pb.
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The nuclear excitation is peaked at the grazing impact p
rameter and is only relevant within an impact parame
range of;2 fm. Comparing to Fig. 3, we see that thes
excitation probabilities are orders of magnitude smaller th
those for Coulomb excitation. Consequently, the correspo
ing cross sections are much smaller. We get 14.8 mb for
isoscalar GDR, 2.3 mb for the ISGQR, and 2.3 mb for th
IVGDR. The interference between the nuclear and the Co
lomb excitation is also small and can be neglected.

B. Effect of resonance widths

We now turn to the influence of the giant resonan
widths on the excitation dynamics. We use the CCBA fo
malism developed in Sec. III. Schematically, the CC proble
is that represented Fig. 1. As we have seen above, the st
gest coupling occurs between the g.s. and the GDR.

In Fig. 5, we show the excitation energy spectrum for th
GDR, the DGDR~a shorthand notation for the 2̂IVGD!,
ISGQR and IVGQR. The centroid energies and the widths
these resonances are listed in Table IV. The figure sho
excitation spectra obtained with both Breit-Wigner~BW! and
Lorentzian (L) line shapes. One observes that the BW andL
spectra have similar strengths at the resonance maxi
However, the low energy parts~one or two widths below the
centroid! of the spectra are more than one order of magnitu
higher in the BW calculation. The reason for this behavior
that Coulomb excitation favors low energy transitions an
the BW has a larger low energy tail as compared with t
Lorentzian line shape. The contribution from the DGD
leads to a pronounced bump in the total energy spectru
This bump depends on the relative strength of the DGD

FIG. 6. Ratio between the DGDR and the GDR cross sections
208Pb1 208Pb collisions, as a function of the bombarding energ

TABLE IV. Centroid energies and widths of the main giant res
nances in208Pb.

GDR DGDR ISGQR IVGQR

Er ~MeV! 13.5 27.0 10.9 20.2
G ~MeV! 4.0 5.7 4.8 5.5
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with respect to the GDR. In Fig. 6, we show the ratio
s DGDR/s GDR as a function of the bombarding energy. We
observe that this ratio is roughly constant in the energy ran
E lab/A520021000 MeV and it falls beyond these limits.
This range corresponds to the SIS energies at the GS
Darmstadt facility.

We now study the influence of the resonance widths an
shapes on the GDR and DGDR cross sections. This study
similar to that presented in Ref.@6#, except that we now have
a realistic three dimensional treatment of the states and co
sider different line shapes. In the upper part of Fig. 7, de
noted by~a!, we showsGDR as a function ofGGDR, treated
as a free parameter. We note that the BW andL parametri-
zations lead to different trends. In the BW case the cro
section grows withG GDR while in the L case it decreases.
The growing trend is also found in Ref.@6#, which uses the
BW line shape. The reason for this trend in the BW case
that an increase in the GDR width enhances the low ener
tail of the line shape, picking up more contributions from th
low energy transitions, favored in Coulomb excitation. O
the other hand, an increase of the GDR width enhances
doorway amplitude to higher energies where Coulomb exc
tation is weaker. In Figs. 7~b! and 7~c!, we study the depen-
dence ofs GDR on G GDR. In Fig. 7~b!, the DGDR width is
kept fixed at the value 5.7 MeV while in Fig. 7~c! it is kept
proportional tos GDR, fixing the ratioG DGDR/G GDR5A2.

in
y.

FIG. 7. Dependence ofs GDR ands DGDR on the GDR width,
treated as a free parameter. For details see the text. The system
208Pb ~640 MeV A! 1 208Pb.

o-

TABLE V. Cross sections in milibarns for the excitation of giant
resonances in lead, for the reaction208Pb1208Pb at 640 MeV A.

GDR DGDR ISGQR IVGQR

2704 184~199! @198# 347 186
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53 345THEORY OF MULTIPHONON EXCITATION IN HEAVY-ION . . .
The first point to be noticed is that the BW results are sy
tematically higher than theL ones. This is a consequence o
the different low energy tails of these functions, as discuss
above. One notices also thats DGDR decreases withGGDR
both in the BW andL cases. This trend can be understood
terms of the uncertainty principle. If the GDR width is in
creased, its lifetime is reduced. Since the DGDR is dom
nantly populated from the GDR, its short lifetime leads
decay before the transition to the DGDR.

To assess the sensitivity of the DGDR cross section on
strength of the matrix elements and on the energy position
the resonance, we present in Table V the cross sections
the excitation of the GDR, DGDR, ISGQR, and IVGQR
obtained with the CCBA approximation and 100% of th
sum rules for the respective modes. In this calculation
have included the strong absorption, as explained in S
II B. For comparison, the values inside parenthesis~and
brackets! of the DGDR excitation cross section include
direct excitation of theL52 DGDR state. We assumed tha
20% of theE2 sum rule could be allocated for this excitatio
mode of the DGDR. The cross sections increase by less t
10% in this case. The value inside parenthesis~brackets!
assume a positive~negative! sign of the matrix element for
the direct excitation.

Since the excitation of the DGDR is weak, it is very we
described by Eq.~64! and the DGDR population is approxi-
mately proportional to the squared strength ofV(12). There-
fore, to increase the DGDR cross section by a factor of 2
is necessary to violate the relation of Eq.~35! by the same
factor. This would require a strongly anharmonic Ham
tonian for the nuclear collective modes, which would not b
supported by traditional nuclear models@13#. Arguments
supporting such anharmonicities have recently been p
sented in Ref.@18#. Another effect arising from anharmonic
ity would be the spin or isospin splitting of the DGDR. Sinc
the Coulomb interaction favors lower energy excitations, it
clear that a decrease of the DGDR centroid would increa
its cross section. A similar effect would occur if a strong
populated substate is splitted to lower energies. To study
point, we have varied the energy of the DGDR centroid
the range 20 MeV<EDGDR<27 MeV. The obtained
DGDR cross sections~including direct excitations! are equal
to 620 mb, 299 mb, and 199 mb, for the centroid energies
20 MeV, 24 MeV, and 27 MeV, respectively. Although th
experimental data on the DGDR excitation@2,3# seem to
indicate thatE DGDR;2EGDR, a small deviation~in the range
of 10–15 %! of the centroid energy from this value might b
possible. However, the data are not conclusive, and m
experiments are clearly necessary. We conclude that, fr
the arguments analyzed here, the magnitude of the DG
cross section is more sensitive to the energy position of t
state. The magnitude of the DGDR cross section would
s-
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crease by a factor 2 if the energy position of the DGD
decreases by 20%, as found in Ref.@18#.

V. DISCUSSION AND CONCLUSIONS

In this paper we investigated at great length the excitati
of giant resonances in heavy-ion reactions. Both the sing
and double-giant dipole resonances were considered. The
fect of the finite lifetimes of these resonances on their ex
tation probabilities was carefully assessed. The comparis
with the available experimental data shows that some ph
ics is still missing. Here we address this issue.

In our discussion of the excitation of a damped giant res
nance, the damping arises from the coupling to the lar
number of noncollective states that surround the GDR a
shares with it its quantum numbers. One should keep in mi
that our final result for the excitation probability involves a
implicit average over the ‘‘chaotic’’ degrees of freedom
whose quantum manifestation is just the fine structure stat
At this point one is reminded of a well known fact in reac
tion theory, namely, ensemble or energy averaged cross s
tions contain two pieces: one obtained from an average a
plitude, or ‘‘optical’’ piece, and a second piece which arise
from the fluctuations. We expect similar contribution of th
fluctuations to the excitation probability in the case of th
GR. Here, however, the fluctuations are in the ‘‘host
nucleus and not in the compound nucleus.

At this point, we recall similar type of fluctuations which
constitute the dominant piece in the case of deep inelas
heavy ion reactions@19#, when it is assumed that only cha
otic channels are involved in the inelastic transitions. Th
investigation of the effects of fluctuations on the excitatio
of giant resonances in heavy-ion reactions, following th
procedure of@19#, is underway and will be reported in a
future publication.
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