
PHYSICAL REVIEW C JUNE 1998VOLUME 57, NUMBER 6
Transitions between complex configurations in the excitation of the double giant resonance
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The transitions between complex configurations, to which the giant dipole resonance~GDR! and the double
giant dipole resonance~DGDR! doorway states are coupled, are taken into account in second order perturba-
tion theory for the reaction amplitude. It is proved that only transitions between GDR and DGDR doorway
states play an essential role in the Coulomb excitation of the DGDR.@S0556-2813~98!01806-8#

PACS number~s!: 24.30.Cz, 23.20.2g, 25.70.De, 25.75.Dw
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After the first observation of the double giant dipole res
nance~DGDR! in relativistic heavy ion collisions~RHIC’s!
@1,2# the magnitude of its excitation cross section attrac
special attention. This is because the first data@2# indicated a
strong enhancement of the DGDR excitation in136Xe ~by a
factor of 2–4! as compared to the theoretical predictio
available@3,4#. Several attempts have been made to und
stand the reason for this phenomenon@5–10#. A few years
later a similar experiment with the excitation of the DGD
in 208Pb brought other intriguing news@11# which was inter-
preted as good agreement between experiment and theo
some corrections to the pure harmonic picture of the DG
excitation were added@5,7–10,12#. Unless a good systemati
study is achieved, the question of the excitation cross sec
of the DGDR in RHIC’s remains open. This has stimulat
theoretical studies on the different processes which migh
responsible for an enhancement of the DGDR strength fu
tion.

Recently it was argued that transitions between comp
configurations, to which the GDR and DGDR doorway sta
are coupled, may be responsible for the enhanced DG
decay into the GDR states as compared to the GDR de
into the ground state@13#. However, it should be remem
bered that because of the available phase space two co
quentg emissions from the DGDR are not the same as
inverse process of the DGDR excitation. The transitions
tween the GDR and the DGDR complex configurations w
not taken into account in previous microscopic stud
@10,14,15#. The role of these transitions for the DGDR exc
tation in RHIC’s will be considered in the present paper
will be concluded that their role is marginal in the proce
under consideration although a huge amount of theE1
strength is hidden in the GDR→DGDR transition. This
negative result ensures that calculations, in which only tr
sitions between collective components of the GDR a
DGDR are taken into account and which are much easie
carry out, require no further corrections.

The main mechanism for the DGDR excitation in RHIC
within a semiclassical approach is a two-step process
→GDR→DGDR @16#. Corrections to second-order perturb
tion theory arising from coupled channels were studied
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Ref. @6#. Although for grazing impact parameters th
coupled-channel calculation deviates on the 20% level fr
second-order perturbation theory, it makes only a sm
change to the total cross sections. That is, for not too sm
impact parameters second-order perturbation theory wo
quite well. Indeed, this has been observed recently in
analysis of the experiment on DGDR excitation in lead p
jectiles impinging on differentZ targets@11#.

Thus, we can use, for the excitation probability of t
DGDR,

PDGDR~Ef , b!5
1

4(M f
U(

i ,Mi

a0~0!→1
i
2~Mi !

E1~m!
~Ei , b!

3a1
i
2~Mi !→[12312] f ~M f !

E1~m8!
~Ef2Ei , b!U2

,

~1!

where the indexi labels intermediate states belonging to t
GDR, andaJ1(M1)→J2(M2)

E1(m) is the first-orderE1 excitation am-

plitude for the transitionJ1(M1)→J2(M2) in a collision
with impact parameterb. For each state,J andM denote the
total angular momentum and the magnetic projection,
spectively.

The amplitudeaJ1(M1)→J2(M2)
E1(m) is given by

aJ1~M1!→J2~M2!
E1~m! ~E, b!5~J1M11muJ2M2!^J2uuE1uuJ1&

3 f E1~m!~E, b!.

It is a product of the reduced matrix element^J2uuE1uuJ1& for
the E1 transition between the statesJ1(M1) and J2(M2)
which carries nuclear structure information and the react
function f E1(m)(E, b). The latter depends on the excitatio
energy, charge of the target, and beam energy and is ca
lated according to Ref.@17#. Except for the dependence o
the excitation energy, it does not carry any nuclear struct
information. The cross section for the DGDR is obtain
from Eq. ~1! by integration over impact parameters, starti
from a minimal valuebmin to infinity. This minimal value is
chosen according to Ref.@6#. It is worthwhile to mention that
the factorization used in Eq.~1! is not always valid; i.e.,
second-order amplitudes are not always square or produc
first-order ones. In fact, the second-order amplitude also c
3476 © 1998 The American Physical Society
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57 3477BRIEF REPORTS
tains a term proportional to the principal value of an integ
of first-order amplitudes. However, as shown in Ref.@3#, this
term contributes very little to the second-order amplitude a
has been neglected.

In microscopic approaches the strength of the GDR
split among several one-phonon 1a

2 states~due to Landau
damping!. The wave functionu1a

2& couples to complex con
figurationsu1b

2& yielding the GDR width. We use the inde
a for simple configurations and the indexb for complex
ones, respectively. Thus, the wave function of thei th 12

state in the GDR energy region has the form

u1i
2&5(

a
Si

GDR~a!u1a
2&1(

b
Ci

GDR~b!u1b
2&, ~2!

where the coefficientsSi
GDR(a) and Ci

GDR(b) can be ob-
tained by diagonalizing the nuclear model Hamiltonian
the set of wave functions~2!.

The total E1 strength of the GDR excitation from th
ground state, B GDR(E1)5( i u^1i

2uuE1uu0g.s.
1 &u2, remains

practically the same as in the one-phonon random phase
proximation~RPA! calculation because the direct excitatio
of complex configurations from the ground state is a f
orders of magnitude weaker as compared to the excitatio
one-phonon states. However, these complex configurat
play a fundamental role for the width of the GDR.

The wave function of the 21 component of the DGDR
states can be written in a similar fashion:

u2 f
1&5 (

ã5$a13a2%

Sf
DGDR~ ã !u@1a1

2 31a2

2 #21&

1(
a9

S̃f
DGDR~a9!u2a9

1 &1(
b8

Cf
DGDR~b8!u2b8

1 &.

~3!

In this equation we separated in the first term the doorw
@12312# DGDR configurations from other two-phono
configurations~second term! and complex configuration
~the last term!. The same equation as Eq.~3! is valid for the
01 DGDR states~see Ref.@7# for a discussion on the role o
the 01, 11, and 21 DGDR states in the excitation process!.

The total E1 transition strength between the GDR a
DGDR, ( f ( i u^21(01) f uuE1uu1i

2&u2, is much larger as com
pared to that for the GDR excitation,( i u^1i

2uuE1uu0g.s.
1 &u2,

from the ground state. This is because the former inclu
transitions not only between doorway GDR and DGD
states but also between complex configurations as well.
enhancement factor should be the ratio between the de
of doorway and complex configurations in the GDR ene
region. But in the two-step excitation process the sum o
intermediate GDR states in Eq.~1! reduces the total transi
tion strength for g.s.→GDR→DGDR to ;2uBGDR(E1)u2

~the factor of 2 appears due to the bosonic character of
two phonons which also holds if Landau damping is tak
into account!. To prove this we substitute the wave functio
of the GDR and DGDR states given by Eqs.~2! and ~3! in
expression~1!. We obtain two terms. The first one corr
sponds to transitions between doorway GDR and DG
l
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states ~after the GDR is excited from the ground sta
through its doorway component!,

Amm85(
i

(
aa8ã

Si
GDR~a! f E1~m!~Ei , b!^1a

2uuE1uu0g.s.
1 &

3Si
GDR~a8!Sf

DGDR~ ã ! f E1~m8!~Ef2Ei , b!

3^@1a1

2 31a2

2 # f uuE1uu1a8
2 &da2 ,a8, ~4!

and the second one accounts for transitions between com
configurations in the wave functions of Eqs.~2! and ~3!:

Bmm85(
i

(
aa8bb8

Si
GDR~a! f E1~m!~Ei , b!^1a

2uuE1uu0g.s.
1 &

3Ci
GDR~b!Cf

DGDR~b8! f E1~m8!~Ef2Ei , b!

3^@1a8
2

31b
2# f uuE1uu1b

2&db8,[a83b] . ~5!

The second reduced matrix element in the above eq
tions is proportional to the reduced matrix element betwe
the ground state and the doorway one-phonon configura
@7#.

For a given impact parameterb, the function
f E1(m)(E, b) can be approximated by a constant val
f E1(m)

0 @16# for the relevant values of the excitation energie
Then the energy dependence can be taken out of summa
and orthogonality relations between different components
the GDR wave functions can be applied@14#. The orthogo-
nality relations between the wave functions imply th
( iSi

GDR(a)Ci
GDR(b)[0. This means that the termBmm8 van-

ishes. The termAmm8 summed over projections and all fina
states yields a transition probability to the DGDR
PDGDR(Ef , b), which is proportional to 2uB GDR(E1)u2 in
second-order perturbation theory. This argument was the
son for neglecting the termBmm8 in previous calculations of
the DGDR excitation in Refs.@10,14,15# where the coupling
of doorway GDR and DGDR states to complex configu
tions was taken into account.

In Fig. 1 we plot the value of xE1(E)
52p*dbb(mufE1(m)(E, b)u2 as a function of energy calculate

FIG. 1. The energy dependence of the208Pb ~640A MeV! 1
208Pb reaction function calculated within first-order perturbati
theory. The square indicates the location of the GDR in208Pb.
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3478 57BRIEF REPORTS
for the 208Pb ~640A MeV! 1 208Pb reaction. This value cor
responds tos GDR if B GDR(E1)51. The square in this figure
indicates the location of the DGR in208Pb. This figure dem-
onstrates that the functionxE1(E) changes by 60% in the
GDR energy region. The role of this energy dependence
other effects has been considered in Refs.@6–8#. Taking into
account that one-phonon 1a

2 configurations are fragmente
over a few MeV@15#, when a sufficiently large two-phono
basis is included in the wave function given by Eq.~2!, the
role of theBmm8 term in the excitation of the DGDR shoul
be studied in more detail.

To accomplish this task we have performed first a sim
fied calculation in which we used theboson-typeHamil-
tonian

H5(
a

vaQa
†Qa1(

b
ṽbQ̃b

†Q̃b1(
a,b

Ub
a~Qa

†Q̃b1H.c.!,

~6!

where Qa
† is the phonon creation operator andva is the

energy of this one-phonon configuration;Q̃b
† is the operator

for the creation of a complex configuration with energyṽb ,
and Ub

a is the matrix element for the interaction betwe
these configurations. We have assumed that the energy
ference between two neighboring one-phonon configurat
is constant and equalsDv. An equidistant spacing with en
ergy Dṽ was assumed for the complex configurations. W
also have used a constant valueU for the matrix elements o
the interaction. TheB GDR(E1) value was distributed sym
metrically over doorway one-phonon configurations. Th
the free parameters of this model areDv, Dṽ, andU, the
number of one-phonon and complex configurations, and
distribution of the B GDR(E1) value among the doorwa
states. The only condition we want to be satisfied is that
energy spectrum for the GDR photoexcitation be the sam
the one known from the experiment.

After all parameters are fixed we diagonalize the mo
Hamiltonian of Eq.~6! on the set of wave functions of Eq
~2! for the GDR and on the set of Eq.~3! for the DGDR. The
diagonalization procedure yields information on eigenen
gies of the 1i

2 GDR states and on the coefficientsSi
GDR(a)

andCi
GDR(b), respectively. One also obtains information

eigenenergies of the 2f
1 or 0f

1 DGDR states and the coeffi

cientsSf
DGDR(ã) andCf

DGDR(b8), respectively. With this in-
formation we are able to study the role of theBmm8 term in
the excitation of the DGDR in RHIC’s.

The large number of free parameters allows an infin
number of suitable choices. In fact, not all of the parame
are really independent. For example, the increase in the n
ber of simple or complex configurations goes together w
the decreasing of the value ofU. This is necessary for a
correct description of the GDR photoabsorption cross s
tion. This makes it possible to investigate the role of t
Bmm8 term in different conditions of weak and strong Land
damping and for a different density of complex configu
tions. In our calculations we vary the number of collecti
doorway states from 1 to 7 and the number of complex c
figurations from 50 to 500. The value ofU then changes
from about 100 to 500 keV. The results of one of the
or
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calculations for the excitation of the 21 component of the
DGDR in 208Pb ~640A MeV! 1 208 Pb collisions are pre-
sented in Fig. 2. For a better visual appearance the result
averaged with a smearing parameter equal to 1 MeV. T
dashed curve shows the results of a calculation in wh
sDGDR

A (E)[sDGDR(E);*db buAmm8u
2 and the results of an

other one in whichsDGDR
A1B (E)[sDGDR(E);*db buAmm8

1Bmm8u
2 are represented by a solid curve.

Our calculation within this simple model indicates that t
role of theBmm8 term in second-order perturbation theory
negligibly small, although the totalB(E1) strength for tran-
sitions between complex GDR and DGDR configuratio
considered separately, is more than two orders of magnit
larger than the ones between doorway GDR and DGDR c
figurations. The valueDs5(sDGDR

A1B 2sDGDR
A )/sDGDR

A , where
sDGDR

A(A1B)5*sDGDR
A(A1B)(E)dE, changes in these calculation

from 1% to 2.5%. The results practically do not depend
the number of complex configurations accounted for. T
maximum value ofDs is achieved in a calculation with a
single doorway GDR state~no Landau damping!. This is
because the value ofU is the larger in this case and th
fragmentation of the doorway state is stronger. Thus, in s
a situation, the energy dependence of the reaction ampli
modifies appreciably the orthogonality relations. But in ge
eral the effect is marginal.

We also performed a calculation with more realistic wa
functions for the GDR and DGDR states taken from o
previous studies@10# which were based on a microscop
quasiparticle phonon model~QPM! @18#. These wave func-
tions include 6 and 21 doorway states for the GDR a
DGDR, respectively. The complex configurations are tw
phonon states for the GDR and three-phonon states for
DGDR. The energies of the doorway states and comp
configurations were obtained from RPA equations and
matrix elements of the interaction,Ub

a , were calculated on a
microscopic footing without free parameters by making u
of the QPM Hamiltonian and internal fermion structure
phonons. The valueDs is equal in this realistic calculation

FIG. 2. The cross section for the excitation of the 21 component
of the DGDR in the reaction208Pb~640A MeV! 1 208Pb, calculated
within second-order perturbation theory. The dashed curve sh
the contribution of theE1 transition between doorway GDR an
DGDR configurations only. The solid curve is a sum of the abo
result and the contribution of theE1 transitions between comple
GDR and DGDR configurations. See the text for details.
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57 3479BRIEF REPORTS
to 0.5%. This result is not surprising because realistic ca
lations with only two-phonon complex configurations, and
limited number of them, somewhat underestimate the G
width which is crucial for the modification of the orthogo
nality relations.

In conclusion, we investigated the role of transitions b
tween complex GDR and DGDR configurations with
second-order perturbation theory for the DGDR excitation
RHIC’s. We have proved that these transitions play a m
ginal role in the process under consideration and it is su
a,
v.

.G

o

s.

C.
-

R

-

n
r-
-

cient to take into account only transitions between
ground state and doorway GDR and DGDR configuration
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