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Double giant resonances in deformed nuclei
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We report on the first microscopic study of the properties of two-phonon giant resonances in deformed
nuclei. The cross sections of the excitation of the giant dipole and the double giant dipole resonances in
relativistic heavy ion collisions are calculated. We predict that the double giant dipole resonance has a one-
bump structure with a centroid 0.8 MeV higher than twice the energy for the single giant dipole resonance in
the reaction under consideration. The width of the double resonance equals 1.33 of that for the single reso-
nance.@S0556-2813~98!07110-6#

PACS number~s!: 24.30.Cz, 23.20.2g, 25.70.De, 25.75.Dw
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One of the most exciting progresses in the field of gi
resonances in atomic nuclei over the last few years was
experimental observation of two-phonon giant resonan
@1#. Nowadays, we may speak about some systematic
their properties~the energy position, width, and excitatio
probability! in spherical nuclei although it is still sparse an
some open questions in this field stimulate theoretical stu
~see, e.g., Refs.@2–15#!. An investigation on the propertie
of two-phonon giant resonances together with similar stud
on low-lying two-phonon states@16# should give an answe
about how far the harmonic picture of boson-type excitatio
holds in finite fermion systems such as atomic nuclei.

The possibility to observe two-phonon giant resonance
deformed nuclei with the present state of art experime
techniques is still questionable. This is mainly because of
fact that one has to expect a larger width of these resona
as compared to spherical nuclei. Also, the situation with
low-lying two-phonon states in deformed nuclei is much le
clear than in spherical ones.

The first experiment with the aim to observe the dou
giant dipole resonance~DGDR! in 238U in relativistic heavy
ion collisions~RHIC! was performed recently at the GSI/S
facility by the LAND Collaboration@17#. It will take some
time to analyze the experimental data and to present the
experimental evidence of the DGDR in deformed nuclei
any. The first microscopic study of properties of the DGD
in deformed nuclei is the subject of the present paper.
main attention will be paid to the width of the DGDR and
shape.

In a phenomenological approach the GDR is conside
as a collective vibration of protons against neutrons.
spherical nuclei this state is degenerate in energy for dif
ent values of the spinJ512 projectionM50,61. The same
is true for the 21 component of the DGDR with projectio
M50,61,62. In deformed nuclei with an axial symmetr
like 238U, the GDR is split into two componentsI p(K)
512(0) and I p(K)512(61) corresponding to vibration
against two different axes. In this approach one expec
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three-bump structure for the DGDR with the valueK50,
K561 andK50,62, respectively. Actually, the GDR pos
sesses a width and the main mechanism responsible for
deformed nuclei is the Landau damping. Thus, the conc
sion on how three bumps overlap and what is the real sh
of the DGDR in these nuclei, i.e., either a three-bump o
flat broad structure, can be drawn out only from some c
sistent microscopic studies.

In the present paper we use the quasiparticle pho
model ~QPM! @18# to investigate the properties of the GD
and the DGDR in238U. The QPM, although with somewha
different technical details which reflect the difference b
tween spherical and deformed nuclei, was used to investi
the same resonances in spherical nuclei in Refs.@6,8,10,15#.
The model Hamiltonian includes an average field for proto
and neutrons, monopole pairing and residual interaction
separable form. We use in our calculations for238U the pa-
rameters of Woods-Saxon potential for the average field
monopole pairing from the previous studies@19#. They were
adjusted to reproduce the properties of the ground state
low-lying excited states. The average field has a static de
mation with the deformation parametersb250.22 andb4
50.08. To construct the phonon basis for theK50 andK
561 components of the GDR we use the dipole-dipole
sidual interaction~for more details, see, e.g., Ref.@18#!. The
strength parameters of this interaction are taken from R
@20# where they have been fitted to obtain the centroid of
B@E1, 0g.s.

1 →12(K50,61)# strength distribution at the
value known from experiment@21# and to exclude the cente
of mass motion. In this approach, the information on t
phonon basis~i.e., the excitation energies of phonons a
their internal fermion structure! is obtained by solving the
RPA equations. For electromagneticE1-transitions we use
the free values of the effective charges,eeff

Z(N)5eN(2Z)/A.
The results of our calculation of theB(E1) strength dis-

tribution over u1K50
2 ( i )& and u1K561

2 ( i 8)& GDR states are
presented in Fig. 1, together with the experimental data.
index i in the wave function stands for the different random
phase approximation~RPA! states. All one-phonon state
with the energy lower than 20 MeV and with theB(E1)
value larger than 1024 e2 fm2 are accounted for. Their tota
number equals to 447 and 835 for theK50 and K561
2750 ©1998 The American Physical Society
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PRC 58 2751DOUBLE GIANT RESONANCES IN DEFORMED NUCLEI
components, respectively. Only the strongest of them w
B(E1)>0.2 e2 fm2 are shown in the figure by vertical lines
Our phonon basis exhausts 32.6% and 76.3% of the en
weighted sum rules, 14.83NZ/A e2 fm2 MeV, by the K
50 andK561 components, respectively. For a better
sual appearance we also present in the same figure
strength functions averaged with a smearing parame
which we take as 1 MeV. The short~long! dashed-curve
represent theK50 (K561) components of the GDR. Th
solid curve is their sum. The calculation reproduces well
two-bump structure of the GDR and the larger width of
K561 component. The last is consistent with the expe
ment @21# which is best fitted by two Lorentzians wit
widths equal toG152.99 MeV andG255.10 MeV, respec-
tively. The amplitudes of both maximums in the calculati
are somewhat overestimated as compared to the experi
tal data. This happens because the coupling of one-pho
states to complex configurations is not taken into acco
which can be more relevant for theK561 peak at higher
energies. But in general the coupling matrix elements
much weaker in deformed nuclei as compared to spher
ones and the Landau damping describes the GDR width
reasonable level.

The wave function of the 01 and 21 states belonging to
the DGDR are constructed by the folding of two 12 phonons
from the previous calculation. When a two-phonon state
constructed as the product of two identical phonons its w
function gets an additional factor 1/A2. The 11 component
of the DGDR is not considered here since its excitation
quenched in RHIC for the same reasons as in spherical nu
@10#. The anharmonicity effects that arise from interactio
between different two-phonon states are also not include
the present study. It was shown that these effects hav
A24/3 dependence on the mass numberA @14# and that they
are small for the DGDR@8,12,14#, even for136Xe and208Pb.

The folding procedure yields three groups of the DGD
states:

u@1K50
2 ~ i 1! ^ 1K50

2 ~ i 2!#0
K50
1 ,2

K50
1 &, ~1a!

u@1K50
2 ~ i ! ^ 1K561

2 ~ i 8!#2
K561
1 &, ~1b!

FIG. 1. The B(E1) strength distribution overK50 ~short-
dashed curve! andK561 ~long-dashed curve! 12 states in238U.
The solid curve is their sum. The strongest one-phonon 12 states
are shown by vertical lines, the ones withK50 are marked by a
triangle on top. Experimental data are from Ref.@21#.
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u@1K561
2 ~ i 18! ^ 1K561

2 ~ i 28!#0
K50
1 ,2

K50,62
1 &. ~1c!

The total number of nondegenerate two-phonon states eq
to about 1.53106. The energy centroid of the first group
the lowest and of the last group is the highest among th
So, we also obtain the three-bump structure of the DGD
But the total strength of each bump is fragmented ove
wide energy region and they strongly overlap.

Making use of the nuclear structure elements discus
above, we have calculated the excitation of the DGDR
238U projectiles (0.5A GeV) incident on 120Sn and 208Pb
targets, following the conditions of the experiment in R
@17#. These calculations have been performed in the sec
order perturbation theory@3#, in which the DGDR states o
Eqs. ~1! are excited within a two-step process: g.s.→GDR
→DGDR. As intermediate states, the full set of one-phon
u1K50

2 ( i )& and u1K561
2 ( i 8)& states was used. We have al

calculated the GDR excitation to first order for the sam
systems. The minimal value of the impact parameter, wh
is very essential for the absolute values of excitation cr
section has been taken according tobmin51.283(At

1/3

1Ap
1/3).

The results of our calculations are summarized in Fig
and Table I. In Fig. 2 we present the cross sections of
GDR ~part a! and the DGDR~part b! excitation in the
238U (0.5A GeV)1208Pb reaction. We plot only the

FIG. 2. The strength functions for the excitation:~a! of the
GDR, and ~b! of the DGDR in 238U in the 238U (0.5A GeV)
1208Pb reaction. In~a!, the short-dashed curve corresponds to
GDR (K50) and the long-dashed curve to the GDR (K561). In
~b! the dashed curve corresponds to the DGDR01 (K50), the
curve with circles to the DGDR21 ~K50!, the curve with squares to
the DGDR21 (K561), and the curve with triangles to th
DGDR21 (K562). The solid curve is the sum of all componen
The strength functions are calculated with the smearing param
equal to 1 MeV.
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smeared strength functions of the energy distributions
cause the number of two-phonon states involved is num
ous. The results for238U (0.5A GeV)1120Sn reaction look
very similar and differ only by the absolute value of cro
sections. In Table I the properties of the GDR and
DGDR, and their differentK components are given. The en
ergy centroid Ec and the second moment,m2

5A(ksk•(Ek2Ec)
2/(ksk, of the distributions are average

values for the two reactions under consideration.
The two-bump structure can still be seen in the cu

representing the cross section of the GDR excitation in238U
in RHIC as a function of the excitation energy. But its sha
differs appreciably from theB(E1) strength distribution@see
Fig. 2~a! in comparison with Fig. 1#. The reason for that is
the role of the virtual photon spectra. First, for the giv
value of the excitation energy and impact parameter i
larger for theK561 component than that for theK50 one
~see also the first two lines in Table I!. Second, for both
components it has a decreasing tendency with an increas
the excitation energy@3#. As a result, the energy centroid o
the GDR excitation in RHIC shifts by the value 0.7 MeV
lower energies as compared to the same value for theB(E1)
strength distribution. The second momentm2 increases by
0.2 MeV.

The curves representing the cross sections of the ex
tion of theK561 andK562 components of the DGDR in
238U in RHIC have typically a one-bump structure@see the
curves with squares and triangles in Fig. 2~b!, respectively#.
It is because they are made of two-phonon 21 states of one
type: the states of Eq.~1b! and Eq.~1c!, respectively. Their
centroids should be separated by an energy approxima
equal to the difference between the energy centroids of
K50 andK561 components of the GDR. They correspo
to the second and the third bumps in a phenomenolog
treatment of the DGDR. TheK50 components of the
DGDR include two groups of states: the states represe
by Eq.~1a! and those of Eq.~1c!. Its strength distribution has
two bumps@see the curve with circles for the 21(K50) and
the dashed curve for the 01(K50) components of the
DGDR, respectively#. The excitation of the states given b
Eq. ~1a! in RHIC is enhanced because of their lower en
gies, while the enhancement of the excitation of the sta

TABLE I. The properties of the different components of th
GDR and the DGDR in238U. The energy centroidEc , the second
moment of the strength distributionm2 in RHIC, and the cross
sectionss for the excitation of the projectile are presented for:~a!
238U (0.5A GeV)1120Sn, and~b! 238U (0.5A GeV)1208Pb.

Ec m2 s @mb#

@MeV# @MeV# ~a! ~b!

GDR(K50) 11.0 2.1 431.2 1035.4
GDR(K561) 12.3 2.6 1560.2 3579.1
GDR~total! 12.0 2.6 1991.4 4614.5

DGDR01(K50) 25.0 3.4 18.3 88.9
DGDR21(K50) 24.4 3.5 11.8 58.7
DGDR21(K561) 23.9 3.2 22.7 115.4
DGDR21(K562) 25.3 3.4 49.7 238.3
DGDR~total! 24.8 3.4 102.5 501.3
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given by Eq.~1c! is related to the strongest response of t
K561 components to the externalE1 Coulomb field in
both stages of the two-step process.

Summing together all components of the DGDR yields
broad one-bump distribution for the cross section for
excitation of the DGDR in238U, as a function of excitation
energy. It is presented by the solid curve in Fig. 2~b!. An-
other interesting result of our calculations is related to
position of the DGDR energy centroid and to the seco
moment of the DGDR cross section. The centroid of t
DGDR in RHIC is shifted to the higher energies by about 0
MeV from the expected value of two times the energy of t
GDR centroid. The origin for this shift is in the energy d
pendence of the virtual photon spectrums and it has noth
to do with anharmonicities of the two-phonon DGDR stat
In fact, the energy centroid of theB(E1, g.s.→1i

2)
3B(E1, 1i

2→DGDRf) strength function appears exactly
twice the energy of the centroid of theB(E1, g.s.→GDR)
strength distribution because the coupling between differ
two-phonon DGDR states are not accounted for in
present calculation. The same shift of the DGDR from tw
the energy position of the GDR in RHIC also takes place
spherical nuclei. But the value of the shift is smaller the
because in spherical nuclei the GDR and the DGDR stren
is less fragmented over their doorway states because o
Landau damping. For example, this shift equals 0.25 MeV
208Pb for the similar reaction. This effect is also seen wh
the DGDR position against the GDR is reported from expe
mental studies@22#. But the larger value of the shift unde
consideration in deformed nuclei should somehow simp
the separation of the DGDR from the total cross section
RHIC.

Another effect which also works in favor of the extractio
of the DGDR from RHIC excitation studies with deforme
nuclei is its smaller width thanA2 times the width of the
GDR, as observed with spherical nuclei. Our calculat
yields the value 1.33 for the ratioGDGDR/GGDR in this reac-
tion. The origin for this effect is in the different contribution
of the GDRK50 andK561 components to the total cros
section, due to the reaction mechanism. It should be rem
bered that only the Landau damping is accounted for
width of both the GDR and the DGDR. But since the effe
of narrowing of the DGDR width is due to the selectivity o
the reaction mechanism it will still hold if the coupling t
complex configurations is included in the calculation.

It may be argued that the procedure of independent e
tations of two RPA phonons applied in this paper is n
sufficient for a consistent description of the properties of
two-phonon giant resonances. This is true for the case
spherical nuclei where only the coupling of two GD
phonons to more complex, 3p3h, configurations allows one
to describe the DGDR width@8#. But the typical matrix ele-
ment of this coupling in deformed nuclei does not exceed
value of 200 keV@23# while in spherical nuclei it is an orde
of magnitude larger. It means that because of the coupl
the strength of each GDR RPA phonon will fragment with
the energy interval of 100–200 keV in deformed nuclei. T
last value should be compared to the second momentm2
presented in Table I which is the result of the Landau dam
ing accounted for in our calculation. Taking into account th
the reaction amplitude has a very weak energy depende
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PRC 58 2753DOUBLE GIANT RESONANCES IN DEFORMED NUCLEI
and that mixing of different RPA phonons in the GDR wa
function does not change the total strength@24#, the total
cross sections of the GDR and DGDR excitation in RH
will be also conserved.

To conclude, we present the first theoretical studies ba
on microscopic calculations of the properties of the tw
phonon giant dipole resonance in deformed nuclei in rela
istic heavy ion collisions. We predict that the excitatio
function has a one-bump shape and that there are at leas
a,
v.

i,

v,

o

s.
ed
-
-

wo

effects that work in favor of its experimental observatio
namely, the energy shift to higher energies, and the narr
ing of its width.
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