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Bremsstrahlung radiation by a tunneling particle: A time-dependent description
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We study the bremsstrahlung radiation of a tunneling charged particle in a time-dependent picture. In
particular, we treat the case of bremsstrahlung duringa decay and show deviations of the numerical results
from the semiclassical estimates. A standard assumption of a preformeda particle inside the well leads to
sharp high-frequency lines in the bremsstrahlung emission. These lines correspond to ‘‘quantum beats’’ of the
internal part of the wave function during tunneling arising from the interference of the neighboring resonances
in the open well.@S0556-2813~99!50709-7#

PACS number~s!: 23.60.1e, 03.65.Sq, 27.80.1w, 41.60.2m
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Recent experiments@1# have triggered great interest in th
phenomena of bremsstrahlung during tunneling proce
which was discussed from different theoretical viewpoints
Refs.@2–4#. This can shed light on basic and still controve
sial quantum-mechanical problems such as tunneling ti
@5#, tunneling in a complex and nonstationary environm
@6#, preformation of a tunneling cluster in a many-body sy
tem @7#, and so on. It seems thata decay offers a unique
possibility to study these fundamental questions. The disc
sion of the bremsstrahlung radiation ina decay, initiated by
a semiclassical calculation of Dyakonov and Gornyi@2# and
continued by a quantum-mechanical calculation in pertur
tion theory of Papenbrock and Bertsch@3# and a more de-
tailed comparison of quantum-mechanical calculations w
classical and semiclassical results by Takigawaet al. @4#,
shows a complicated interference pattern arising from
contributions to bremsstrahlung from inner, under the b
rier, and outer, in the classically allowed region, parts of
wave function. Currently the experimental data are not c
clusive, and more exclusive experiments, with better sta
tics, are needed to give a clearer understanding of the
nomena.

The theoretical approaches of Refs.@3,4# assume a stan
dard stationary description of quantum tunneling which
very successful fora-decay lifetime and probabilities. How
ever, a time-dependent picture of a decay process@8,9# may
be essential in understanding physics of the bremsstrah
and similar processes, in particular, in obtaining the app
priate bremsstrahlung spectrum. This can be shown, for
ample, by looking into a case where there is no Coulo
acceleration after the tunneling. In this Rapid Communi
tion we model the time evolution of a wave function durin
tunneling using againa decay as an example. We do n
attempt to compare our results with experimental data.
reason is simple. Thea decay time, e.g., the lifetime o
210Po, is many orders of magnitude larger than typical tim
for ana-particle to traverse across the nucleus. This imp
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that a stable numerical solution of the Schro¨dinger equation,
keeping track simultaneously of fast oscillations in the w
~‘‘escape attempts’’! and extremely slow tunneling, is virtu
ally impossible in this approach: for210Po it would require
about 1030 time steps in the iteration process. Instead,
study the bremsstrahlung in high energya decays, for which
the decay time is treatable numerically. This allows us to p
attention to qualitatively new aspects of the bremsstrahl
in decay processes, and compare with stationary approac
Although one could envisage other ways of solving the tim
dependent Schro¨dinger equation which could possibl
handle the real situation, this is beyond the scope of
present article, and we refer the reader to other methods,
those discussed in Ref.@10#.

For ana particle being accelerated from the turning po
to infinity, the classical bremsstrahlung can be calcula
analytically. Using well-known equations, see, for examp
@11,12#, and integrating along the outward branch of the R
therford trajectory in a head-on collision we get for the e
ergy emitted by bremsstrahlung per frequency intervaldv,
in the long-wavelength approximation,

dE~v!5
8pv2

3m2c3
Zeff

2 e2upr~v!u2, ~1!

where

pr~v!5
ma

2p
e2pn/2Kin8 ~n! ~2!

is the Fourier transform of the particle momentum,m
5mN•4A/(A14) is the reduced mass, andZeff5(2A
24Z)/(A14) is the effective charge of thea particle1 the
daughter nucleus (A,Z) in the dipole approximation. In Eq
~1!, pr5p• r̂ , a5Ze2/Ea , n5Eaa/\v0 , Ea is the energy of
the a particle, andv0 its asymptotic velocity. The functions
Kin(x) are the modified Bessel functions of imaginary ord
andKin8 (x) are their derivatives with respect to the argume
Dividing this equation by the photon energyEg5\v, we get
the differential probability per unit energy for the brem
©1999 The American Physical Society02-1
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strahlung, i.e.,dP/dEg5(1/Eg)dE(v)/dEg . At low photon
energies, we use the relationn2e2pn@Kin8 (n)#2

˜1 to show
that

dP

dEg
5

2

3p

1

Eg
Zeff

2 aS v0

c D 2

. ~3!

We solve the time-dependent Schro¨dinger equation for
the a particle in a potential well1 Coulomb barrier, and
calculate the radial momentum from

pr~ t !5
\

i E dru* ~r ,t !
]u~r ,t !

]r
, ~4!

whereu(r ,t) is the radial part of the total wave function.
similar numerical study of the time evolution for the proble
of the a decay was performed by Serotet al. @9#.

The time-dependent Schro¨dinger equation is solved, star
ing with ans-wave wave function for ana particle confined
in a radial well V(r )52V0 for r ,R0, and V(r )52V0
12Ze2/R0 for r>R0. We setR058.75 fm, realistic for the
a1210Po case@3#. At t50 we switch the potential to a
spherical square well with depth2V0 for r ,R0 and a Cou-
lomb potential 2Ze2/r for r>R0 which triggers the tunnel-
ing. At a given timet the wave function is found by using th
standard method of inversion of a tridiagonal matrix at ea
time step incrementDt ~see, e.g., Ref.@15#!. The space is
discretized in steps ofDx50.05 fm, and the time step used
Dt5mc(Dx)2/\. In Fig. 1 we plot the average momentu
for a energies of 23.1 MeV@Fig. 1~a!# and 20 MeV@Fig.

FIG. 1. Average momentum~in MeV/c) for a energies of 23.1
MeV ~a! and 20 MeV ~b!. In ~a! the dotted line is the classica
momentum for ana particle running away from the closest a
proach distance. The dashed line is the average momentum c
lated according to Eq.~4!, but using only the part of the wav
function outside the barrier, i.e., the integral in Eq.~4! extending
from Rcl5 2Ze2/Ea to infinity. The solid line represents the mo
mentum calculated according to Eq.~4!, but including the full space
range of the wave function.
03160
h

1~b!#. Thea-energies are changed by keeping the numbe
nodes constant~in this case, seven nodes!, and varying the
depth of the potential from 14 to 18 MeV, respectively. T
barrier height is 27.6 MeV. The dotted line is the classi
momentum for ana particle running away from the closes
approach distance. The dashed line is the average mome
calculated according to Eq.~4!, but using only the part of the
wave function outside the barrier, i.e., the integral in Eq.~4!
extending fromRcl52 Ze2/Ea to infinity. In this case, the
wave function entering~4! is normalized within this space
range.

The resulting ‘‘quantum-mechanical’’ momentum at th
later stage is closer to the classical one. However,
quantum-mechanical momentum increases slower than
classical one, due to the extended nature of the partic
wave function. As a consequence, one expects that the
rier transform of the quantum momentum has its higher f
quencies suppressed, as compared to the classical case
solid line represents the momentum calculated accordin
Eq. ~4!, but including the full space range of the wave fun
tion. One observes a wiggling pattern associated with
interference of neighboring quasistationary states of the
ticle inside the nucleus. The leaking of the inner part of t
wave function creates an effective oscillating dipole th
emits radiation. The same leaking creates the perturba
mixing different resonance states. The Fourier transform
the particle momentum should therefore contain apprecia
amplitudes associated with this motion, as observed in
2, solid line. Asymptotically, the momenta calculated in
different ways coincide at large times.

In Fig. 2 the dotted lines show the classical bremsstr
lung emission probability, the dashed lines show t
‘‘quantum-mechanical’’ momentum using only the part
the wave function outside the barrier, and the solid lines

cu-

FIG. 2. Classical bremsstrahlung emission probability~dotted
lines!, quantum-mechanical spectrum~dashed lines! using only the
part of the wave function outside the barrier, and using the
space wave function~solid lines!. The upper part of the graph is fo
Ea523.1 MeV, while the lower part is forEa520 MeV.
2-2
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for the full space range of the wave function, as a function
the photon momentum. The upper part of the graph is
Ea523.1 MeV, while the lower part is forEa520 MeV.
Since the quantum-mechanical momentum of the particle
creases slower than the classical one, the spectrum at la
photon energies is suppressed in comparison with the cla
cal one. Also, when one includes the whole wave functi
the bremsstrahlung spectrum is even more suppresse
large photon energies. However, at very large photon e
gies (Eg.8.5 MeV! the spectrum shows a peak, reveali
the interference between the different components of
wave function in the well. The widthDE of the peak is
related to the lifetime of the quasistationary state. ForEa
523 MeV we findDE50.2 MeV while forEa520 MeV the
width is narrow,DE50.02 MeV. These values agree wi
the conventional Gamow formula for the width of the qu
sistationary state of thea particle with the same energy an
potential parameters.

In order to assess the relevance of the bremsstrah
during tunneling and to shed light on the nature of the pe
in Fig. 2 we wil now consider ana particle confined within
a three-dimensional square well withV52V0 for r ,R0 ,
V5U0 for R0,r ,R1, and V50, otherwise. We use th
parametersR058.75 fm, R12R051 fm, V0514 MeV, U0
527.6 MeV, andEa524.2 MeV. For this problem a muc
simpler time-dependent solution can be found. The tim
dependent wave function is obtained from the expansion

u~r ,t !5E dE a~E!eiEt/\ uE~r !, ~5!

where uE(r ) is the continuum~radial! wave function with
energy E, normalized to 4p*druE* (r )uE8(r )5d(E2E8)
and

a~E!54pE dru0~r ! uE~r !, ~6!

where u0(r ) is the radial wavefunction of the initial state
For a square well plus barrieru0(r ), uE(r ), and a(E) are
given analytically. The time-dependent wave function is o
tained from Eq.~5! by a simple integration.

In Fig. 3~a! we plot the momentum of the particle for th
system as a function of time. We observe a similar pattern
in Fig. 1~a!, solid curve, but with stronger oscillations, due
the quantum beats. In Fig. 3~b! we show the correspondin
bremsstrahlung spectrum. The resulting pattern is very s
lar to that displayed in Fig. 2. It is important to notice how
ever that there is no Coulomb acceleration for this syst
The lower part of the energy spectrum is due solely to
tunneling through the barrier, while the peak at higher en
gies is again due to the interference of the resonances du
the tunneling process.

We have compared the lower part of the spectrum in F
3~b! with the result of Dyakonov and Gornyi@2#. They have
obtained the bremsstrahlung spectrum for a tunneling ch
using perturbation theory and semiclassical wave functi
for the initial and final state of the particle. We have don
similar calculation, but using the bound-state wave funct
03160
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u0(r ) as the initial state. We obtained a bremsstrahlung sp
trum for the soft part of the spectrum which is by far smal
than that displayed in Fig. 3~b!. Moreover, the spectrum de
cays much faster than ours. This can be understood as
lows. The soft part of the spectrum is due to the bremsstr
lung during tunneling. For a particle in a one-dimension
tunneling motion through a square barrier, Dyakonov a
Gornyi’s approach yields the spectrum given by

dP

dEg
5

4

3p

U0

mc2Eg

Zeff
2 a exp~22k1d!

3expS 22
Egd

\v1
D F11expS 2

Egd

\v1
D G2

, ~7!

whereU0 is the barrier height,v15A2(U02Ea)/m is the
imaginary velocity of the particle during tunneling, andd is
the barrier width.

This formula shows that the semiclassical bremsstrahl
spectrum of a tunneling particle varies asEg

21 , for low pho-
ton energies, and as@exp(22Egd/\v1)#/Eg , for high photon
energies. The slope parameter for high photon energie
given by 2d/\v1 as displayed by the dashed line in Fig. 3~b!.
However, the spectrum obtained from the dynamical cal
lation, solid line in Fig. 3~b!, has a smaller slope paramete
Additionally, the spectrum shows pronounced peaks at la
photon energies. Figure 4, where we show the scatte
phase shift for the system ‘‘well1 barrier,’’ clarifies the
origin of these peaks. The resonances at 15.7, 24.2, and
MeV correspond to~bound or virtual! levels in the well. The
amplitudes of Eq.~6! are presented in Fig. 4~b! where the
resonance peaks are also evident. The peaks at 9.1 MeV
11.1 MeV, shown in Fig. 3~b!, are due to interference o
resonances at 15.7 MeV and 35.4 MeV with the initial st

FIG. 3. ~a! Momentum~in MeV/c) of a particle in a square wel
plus barrier as a function of time.~b! Corresponding bremsstrahlun
spectrum.
2-3
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of energy 24.2 MeV. The quantum beats apparently co
spond to the energy differences (24.2215.758.5) MeV and
(35.4224.2511.2) MeV, respectively. These values a
close to the energies of the peaks appearing in Fig. 3~b!.

The bremsstrahlung peaks associated with quantum b
are present in any dynamical tunneling process, since an
tial localized state always has some overlap amplitude w
neighboring states of the open well. The importance of th
peaks, or, equivalently, of the admixture of neighboring re
nances, decreases if the initial state is a very sharp reson
as in the case of thea decay of 210Po studied in@1#. Until
now it was poorly understood how ana particle was pre-
formed inside a nucleus. The possible manifestations of
tually excited clusters in nuclei are predicted to be seen
knockout reactions induced by protons or electrons@7#.
Studying bremsstrahlung radiation in the tunneling proc
can provide additional information. Indeed, the initial wa
function must be of a localized nature, thus having a nonz
amplitude for carrying a part of the wave function of a
adjacent resonance. For high-lying states, as shown ab
this leads to pronounced peaks in the bremsstrahlung s

FIG. 4. ~a! Phase shifts (l 50) for thea1210Po system, assum
ing a radial square well size of 8.75 fm1 a square barrier of 1 fm
located at the border of the well.~b! Amplitudes for the overlap of
the initial state (E524.2 MeV! of the closed well~barrier of infi-
nitely large width! with neighboring states of the open well.
n,
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trum. The observation of those peaks would be valuable
inferring the content of the initial wave function of a pre
formeda particle ~or fission product!.

The coupling to the radiation field can also influence t
tunneling process. Such effects require a fully quantu
mechanical approach which can be formulated in spirit of
classical work by Pauli and Fierz@13#. It includes important
feedback effects which renormalize the particle trajectory
the coupling to the accompanying radiation field@14#. The
exact solution of these equations is crucial in the case wh
the photon energy is comparable to the particle energy.
example, in the decay of very low energya ’s this coupling
may reduce the yield of high energy photons. The reaso
that when a particle emits a photon before tunneling,
looses energy and this leads to a reduction of its barrier
neling probability. The exact results might be sensitive to
shape of the barrier. We hope to come to this formulation
the problem elsewhere.

In conclusion, we have obtained the bremsstrahlung sp
trum of a tunneling particle~an a particle in a nucleus! by
directly solving the time-dependent Schro¨dinger equation.
As expected, we have found that there are large deviat
from the classical bremsstrahlung spectrum. We have
demonstrated that aproaches based on perturbation th
miss an important piece of information, namely, the tim
dependent modification of the particle wave function in t
well during the decay time. This leads to substantial em
sion of photons with frequencies close to those of quant
beats between neighboring resonances. This effect shou
relevant in radiation emitted duringa decay in nuclei. In a
more general case, the time dependence of the wave func
of a tunneling particle seems to deviate substantially fr
the spectrum calculated by using perturbation theory w
semiclassical wave functions. More experimental data
bremsstrahlung radiation by a tunneling particle would
very welcome in learning more about preformation sta
and dynamics of quantum beats.
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