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Bremsstrahlung radiation by a tunneling particle: A time-dependent description
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We study the bremsstrahlung radiation of a tunneling charged particle in a time-dependent picture. In
particular, we treat the case of bremsstrahlung dudindecay and show deviations of the numerical results
from the semiclassical estimates. A standard assumption of a prefaenpediticle inside the well leads to
sharp high-frequency lines in the bremsstrahlung emission. These lines correspond to “quantum beats” of the
internal part of the wave function during tunneling arising from the interference of the neighboring resonances
in the open well[S0556-28189)50709-1

PACS numbds): 23.60+€, 03.65.Sq, 27.80:w, 41.60—m

Recent experimen{d] have triggered great interest in the that a stable numerical solution of the Satirmger equation,
phenomena of bremsstrahlung during tunneling processdeeping track simultaneously of fast oscillations in the well
which was discussed from different theoretical viewpoints in(*escape attempts)'and extremely slow tunneling, is virtu-
Refs.[2—4]. This can shed light on basic and still controver- ally impossible in this approach: fot'%o it would require
sial quantum-mechanical problems such as tunneling timeabout 16° time steps in the iteration process. Instead, we
[5], tunneling in a complex and nonstationary environmentstudy the bremsstrahlung in high enemgylecays, for which
[6], preformation of a tunneling cluster in a many-body sys-the decay time is treatable numerically. This allows us to pay
tem [7], and so on. It seems that decay offers a unique attention to qualitatively new aspects of the bremsstrahlung
possibility to study these fundamental questions. The discush decay processes, and compare with stationary approaches.
sion of the bremsstrahlung radiationdndecay, initiated by  Although one could envisage other ways of solving the time-
a semiclassical calculation of Dyakonov and Gorigliand  dependent Schdinger equation which could possibly
continued by a quantum-mechanical calculation in perturbahandle the real situation, this is beyond the scope of the
tion theory of Papenbrock and BertsgB] and a more de- present article, and we refer the reader to other methods, e.g.,
tailed comparison of quantum-mechanical calculations witithose discussed in R€fL0].
classical and semiclassical results by Takigastal. [4], For ana particle being accelerated from the turning point
shows a complicated interference pattern arising from théo infinity, the classical bremsstrahlung can be calculated
contributions to bremsstrahlung from inner, under the baranalytically. Using well-known equations, see, for example
rier, and outer, in the classically allowed region, parts of thd11,12, and integrating along the outward branch of the Ru-
wave function. Currently the experimental data are not contherford trajectory in a head-on collision we get for the en-
clusive, and more exclusive experiments, with better statisergy emitted by bremsstrahlung per frequency intecal
tics, are needed to give a clearer understanding of the phé the long-wavelength approximation,
nomena.

The theoretical approaches of Reff8,4] assume a stan- 87 w?
dard stationary description of quantum tunneling which is dE(w)=— 3z§ﬁe2|pr(w)|2, 1)
very successful for-decay lifetime and probabilities. How- c

ever, a time-dependent picture of a decay pro¢@$& may

be essential in understanding physics of the bremsstrahlunghere

and similar processes, in particular, in obtaining the appro-

priate bremsstrahlung spectrum. This can be shown, for ex- ma

ample, by looking into a case where there is no Coulomb pr(w)= Ee”””zKi’v( V) 2

acceleration after the tunneling. In this Rapid Communica-

tion we model the time evolution of a wave function during . . .

tunneling using againx decay as an example. We do not 1S the Fourier tre_msform of the particle momentum,

attempt to compare our results with experimental data. Th& Mn-4A/(A+4) is the reduced mass, andei=(2A

reason is simple. Thex decay time, e.g., the lifetime of —47)/(A+4) is the eff_ectlve Charge of the _partl_cle+ the

2190 is many orders of magnitude larger than typical imeglaughter nucleusA,Z) in the dipole approximation. In Eq.

for an a-particle to traverse across the nucleus. This implieg1), p,=p-r, a=Z€’/E,, v=E, alfivg, E, is the energy of
the a particle, andv, its asymptotic velocity. The functions
K;,(x) are the modified Bessel functions of imaginary order,

*Electronic address: bertu@if.ufrj.br andK{,(x) are their derivatives with respect to the argument.
"Electronic address: dani@if.ufrj.br Dividing this equation by the photon energy =7, we get
*Electronic address: zelevinsky@nscl.msu.edu the differential probability per unit energy for the brems-
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FIG. 1. Average momenturfin MeV/c) for « energies of 23.1 FIG. 2. Classical brt_emsstrahlung emissi_on pro_babndptted
MeV () and 20 MeV(b). In (a) the dotted line is the classical 'N€S: quantum-mechanical spectruiashed linesusing only the
momentum for ane particle running away from the closest ap- part of the wave_funct.lor! outside the barrier, and using t_he full
proach distance. The dashed line is the average momentum calcERac€ Wave functiofsolid lines. The upper part of the graph is for
lated according to Eq(4), but using only the part of the wave Ea—23:1 MeV, while the lower part s foE,=20 MeV.

function outside the barrier, i.e., the integral in E4) extending ) )
from Ry = 2Z€?/E,, to infinity. The solid line represents the mo- 1(b)]. The a-energies are changed by keeping the number of

mentum calculated according to Be), but including the full space Nodes constantin this case, seven nodesnd varying the
range of the wave function. depth of the potential from 14 to 18 MeV, respectively. The

barrier height is 27.6 MeV. The dotted line is the classical
strahlung, i.e.dP/dE, = (1/E,)dE(w)/dE, . At low photon ~ momentum for arx particle running away from the closest
energies, we use the relatiofe” ™K/ (v)]?>—1 to show approach distance. The dashed line is the average momentum
that calculated according to E¢4), but using only the part of the

wave function outside the barrier, i.e., the integral in &g.

dP 2 1 _, [vo 2 extending fromR. =2 Z€?/E,, to infinity. In this case, the
d_Ey: EE—V eff®| o 3 wave function enterind4) is normalized within this space
range.

We solve the time-dependent ScHimger equation for The resulting “quantum-mechanical” momentum at the
the a particle in a potential welh- Coulomb barrier, and later stage is closer to the classical one. However, the
calculate the radial momentum from guantum-mechanical momentum increases slower than the

classical one, due to the extended nature of the particle’s
D,(t) = ﬁf dru*(r.t) qu(r,t) 4) wave function. As a consequence, one expects that the Fou-
r i ' ar rier transform of the quantum momentum has its higher fre-

quencies suppressed, as compared to the classical case. The

whereu(r,t) is the radial part of the total wave function. A solid line represents the momentum calculated according to
similar numerical study of the time evolution for the problem Eq. (4), but including the full space range of the wave func-
of the @ decay was performed by Seret al. [9]. tion. One observes a wiggling pattern associated with the

The time-dependent Schdimger equation is solved, start- interference of neighboring quasistationary states of the par-
ing with ans-wave wave function for am particle confined ticle inside the nucleus. The leaking of the inner part of the
in a radial wellV(r)=—V, for r<R,, andV(r)=-V,  wave function creates an effective oscillating dipole that
+2Z€%R, for r=R,. We setR,=8.75 fm, realistic for the emits radiation. The same leaking creates the perturbation
a+2%Po case[3]. At t=0 we switch the potential to a mixing different resonance states. The Fourier transform of
spherical square well with depthV, for r <Ry and a Cou- the particle momentum should therefore contain appreciable
lomb potential Ze*/r for r =R, which triggers the tunnel- amplitudes associated with this motion, as observed in Fig.
ing. At a given timet the wave function is found by using the 2, solid line. Asymptotically, the momenta calculated in all
standard method of inversion of a tridiagonal matrix at eachtifferent ways coincide at large times.
time step incremenit (see, e.g., Refl15]). The space is In Fig. 2 the dotted lines show the classical bremsstrah-
discretized in steps dfx=0.05 fm, and the time step used is lung emission probability, the dashed lines show the
At=mc(Ax)?/#. In Fig. 1 we plot the average momentum “quantum-mechanical” momentum using only the part of
for a energies of 23.1 MeV\Fig. 1(a)] and 20 MeV|[Fig.  the wave function outside the barrier, and the solid lines are
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for the full space range of the wave function, as a function of L
the photon momentum. The upper part of the graph is for 400
E,=23.1 MeV, while the lower part is foE,=20 MeV.
Since the quantum-mechanical momentum of the particle in-
creases slower than the classical one, the spectrum at larger
photon energies is suppressed in comparison with the classi-
cal one. Also, when one includes the whole wave function,
the bremsstrahlung spectrum is even more suppressed at ol v
large photon energies. However, at very large photon ener- 500 1000 1500 2000
gies E,=8.5 MeV) the spectrum shows a peak, revealing t [fmsc]
the interference between the different components of the 107 — T
wave function in the well. The widtlAE of the peak is
related to the lifetime of the quasistationary state. Eqr
=23 MeV we findAE=0.2 MeV while forE =20 MeV the
width is narrow,AE=0.02 MeV. These values agree with
the conventional Gamow formula for the width of the qua-
sistationary state of the particle with the same energy and
potential parameters.

In order to assess the relevance of the bremsstrahlung

200

Momentum

(@)

. ; . E., [MeV
during tunneling and to shed light on the nature of the peaks v MeV]
in Fig. 2 we wil now consider aw particle confined within FIG. 3. (3) Momentum(in MeV/c) of a particle in a square well
a three-dimensional square well with=—V, for r<R,, plus barrier as a function of timéb) Corresponding bremsstrahlung

V=Uy for Ry<r<R;, and V=0, otherwise. We use the spectrum.
parameterdk;=8.75 fm,R;—Ry=1 fm, Vo=14 MeV, U,

=27.6 MeV, andE,=24.2 MeV. For this problem a much  (r) as the initial state. We obtained a bremsstrahlung spec-

simpler time-dependent solution can be found. The timeyym for the soft part of the spectrum which is by far smaller

dependent wave function is obtained from the expansion than that displayed in Fig.(B). Moreover, the spectrum de-
cays much faster than ours. This can be understood as fol-

u(r,t)=f dE a(E)eEY" ug(r), (5) lows. Thfa soft part.of the spectrum is QUe to the prems_strah—

lung during tunneling. For a particle in a one-dimensional
tunneling motion through a square barrier, Dyakonov and

where ug(r) is the continuum(radial) wave function with Gornyi's approach yields the spectrum given by

energy E, normalized to 4 fdrug(r)ug (r)=38(E—E")

and dP 4 U,

dEy_ngZEy

a(E)=4wf drug(r) ug(r), (6)

Z2a exp(— 2k,d)
e
Xexp —2—||1+exp — ||, (7)

where uy(r) is the radial wavefunction of the initial state. hvy hvy
For a square well plus barriery(r), ug(r), anda(E) are
given analytically. The time-dependent wave function is ob-where Uy is the barrier heighty,=y2(Uy,—E,)/m is the
tained from Eq.(5) by a simple integration. imaginary velocity of the particle during tunneling, adds

In Fig. 3(a) we plot the momentum of the particle for this the barrier width.
system as a function of time. We observe a similar pattern as This formula shows that the semiclassical bremsstrahlung
in Fig. 1(a), solid curve, but with stronger oscillations, due to spectrum of a tunneling particle varies Iﬁ$l, for low pho-
the quantum beats. In Fig(l3 we show the corresponding ton energies, and d®xp(—2E,d/%v,)/E,, for high photon
bremsstrahlung spectrum. The resulting pattern is very simienergies. The slope parameter for high photon energies is
lar to that displayed in Fig. 2. It is important to notice how- given by 2/%v, as displayed by the dashed line in Figh)3
ever that there is no Coulomb acceleration for this systemHowever, the spectrum obtained from the dynamical calcu-
The lower part of the energy spectrum is due solely to thdation, solid line in Fig. 8), has a smaller slope parameter.
tunneling through the barrier, while the peak at higher enerAdditionally, the spectrum shows pronounced peaks at large
gies is again due to the interference of the resonances durimghoton energies. Figure 4, where we show the scattering
the tunneling process. phase shift for the system “wel- barrier,” clarifies the

We have compared the lower part of the spectrum in Figorigin of these peaks. The resonances at 15.7, 24.2, and 35.4
3(b) with the result of Dyakonov and Gorn{2]. They have MeV correspond tgbound or virtual levels in the well. The
obtained the bremsstrahlung spectrum for a tunneling chargemplitudes of Eq(6) are presented in Fig.(d) where the
using perturbation theory and semiclassical wave functionsesonance peaks are also evident. The peaks at 9.1 MeV and
for the initial and final state of the particle. We have done all.1 MeV, shown in Fig. @), are due to interference of
similar calculation, but using the bound-state wave functiorresonances at 15.7 MeV and 35.4 MeV with the initial state
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amplitude

[MeV]

FIG. 4. (a) Phase shiftsl 0) for the a+2%o system, assum-
ing a radial square well size of 8.75 fm a square barrier of 1 fm
located at the border of the welb) Amplitudes for the overlap of
the initial state E=24.2 Me\) of the closed wellbarrier of infi-
nitely large width with neighboring states of the open well.

of energy 24.2 MeV. The quantum beats apparently corre

spond to the energy differences (24.25.7=8.5) MeV and
(35.4-24.2=11.2) MeV, respectively. These values are
close to the energies of the peaks appearing in Rig. 3

The bremsstrahlung peaks associated with quantum beaés
are present in any dynamical tunneling process, since an inj-
tial localized state always has some overlap amplitude with

neighboring states of the open well. The importance of thes
peaks, or, equivalently, of the admixture of neighboring reso

nances, decreases if the initial state is a very sharp resonan

as in the case of the decay of?*%Po studied inf1]. Until
now it was poorly understood how am particle was pre-
formed inside a nucleus. The possible manifestations of vir
tually excited clusters in nuclei are predicted to be seen i
knockout reactions induced by protons or electrdi$
Studying bremsstrahlung radiation in the tunneling proces
can provide additional information. Indeed, the initial wave

n
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trum. The observation of those peaks would be valuable for
inferring the content of the initial wave function of a pre-
formed a particle (or fission produgt

The coupling to the radiation field can also influence the
tunneling process. Such effects require a fully quantum-
mechanical approach which can be formulated in spirit of the
classical work by Pauli and Fief43]. It includes important
feedback effects which renormalize the particle trajectory by
the coupling to the accompanying radiation fi¢ldf|. The
exact solution of these equations is crucial in the case where
the photon energy is comparable to the particle energy. For
example, in the decay of very low energys this coupling
may reduce the yield of high energy photons. The reason is
that when a particle emits a photon before tunneling, it
looses energy and this leads to a reduction of its barrier tun-
neling probability. The exact results might be sensitive to the
shape of the barrier. We hope to come to this formulation of
the problem elsewhere.

In conclusion, we have obtained the bremsstrahlung spec-
trum of a tunneling particléan « particle in a nucleusby
directly solving the time-dependent Sctieger equation.

As expected, we have found that there are large deviations
from the classical bremsstrahlung spectrum. We have also
demonstrated that aproaches based on perturbation theory
miss an important piece of information, namely, the time-
ependent modification of the particle wave function in the
well during the decay time. This leads to substantial emis-
sion of photons with frequencies close to those of quantum
Beats between neighboring resonances. This effect should be

rceelevant in radiation emitted during decay in nuclei. In a
more general case, the time dependence of the wave function
of a tunneling particle seems to deviate substantially from
the spectrum calculated by using perturbation theory with
semiclassical wave functions. More experimental data on
bremsstrahlung radiation by a tunneling particle would be
very welcome in learning more about preformation states

and dynamics of quantum beats.

function must be of a localized nature, thus having a nonzero This work was supported in part by the Brazilian funding
amplitude for carrying a part of the wave function of an agencies CNPq, FAPERJ, FUJB/UFRJ, and PRONEX, under
adjacent resonance. For high-lying states, as shown abov€pntract No. 41.96.0886.00, and by NSF Grant No. 96-
this leads to pronounced peaks in the bremsstrahlung spe85207.
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