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Stopping of swift protons in matter and its implication for astrophysical fusion reactions
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The velocity dependence of the stopping power of swift protons in low-energy collisions is investigated. At
low projectile energies the stopping is mainly due to nuclear stopping and charge exchange of the electron. The
second mechanism dominates atEp>200 eV. A dynamical treatment of the charge exchange mechanism based
on two-center electronic wave functions yields transparent results for the exchange probability. We predict that
the stopping cross sections vary approximately asvp

1.35 for projectile protons on hydrogen targets in the 1 keV
energy region.

PACS number~s!: 26.20.1f, 34.50.Bw
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Nuclear fusion reactions proceed in stars at low energ
e.g., of the order of 10 keV in our Sun@1,2#. At such low
energies it is extremely difficult to measure the cross sect
for charged-particle-induced fusion reactions at laborat
conditions due to the Coulomb barrier. One often use
theoretical model to extrapolate the experimental data to
low-energy region. Such extrapolations are sometimes
from reliable, due to unknown features of the low-ener
region. For example, there might exist unknown resonan
along the extrapolation or even some simple effect wh
one was not aware of before. One of these effects is
laboratory atomic screening of fusion reactions@3,4#. It is
well known that the laboratory measurements of low-ene
fusion reactions are strongly influenced by the presenc
the atomic electrons. This effect has to be corrected fo
order to relate the fusion cross sections measured in the l
ratory with those in a stellar environment. Another screen
effect, arising from free electrons in the stellar plasma, w
not be treated here. For about one decade, until 1996,
observed a large discrepancy between the experimental
and the best models available to treat the screening ef
The simplest~and perhaps the best! of these models, the
so-called adiabatic model, predicts that as the projec
nucleus penetrates the electronic cloud of the target the e
trons become more bound and the projectile energy incre
by energy conservation. Since the fusion cross sections
crease strongly with the projectile’s energy, this tiny amo
of energy gain~of the order of 10–100 eV! leads to a large
effect on the measured cross sections. However, in orde
explain the experimental data, an extra amount of energ
necessary — about twice the value obtained by the adiab
model. This is puzzling, since more refined dynamical m
els, e.g., the time-dependent Hartree-Fock model@5#, include
electronic excitation and thus yield a screening energy wh
is smaller than that obtained with the adiabatic model.

This problem was apparently solved in 1996 by Langan
and collaborators@6# and by Bang and collaborators@7#, who
observed that the experimental data for3He(d,p)4He — the
reaction for which the screening effect was best studied
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was probably obtained with an erroneous extrapolation of
stopping power for deuterons in helium targets to the lo
energy regime. The fusion reaction occurs at a point ins
the target after the projectile has slowed down by inter
tions with the atomic targets. In the experimental analy
one needs to correct for this energy loss in order to assign
correct projectile energy value for that reaction. These c
rections were usually based on the Andersen-Ziegler tabl
the stopping power of low-energy particles@8#. Because of
the lack of experimental information on the stopping pow
at the extreme low projectile energies needed for astroph
cal purposes, the Anderson-Ziegler tabulation was extra
lated to the required energy, another example of a dange
extrapolation procedure. In fact, Golser and Semrad@9# ob-
served a strong departure of their experimental data from
extrapolations based on the Andersen-Ziegler tables for
stopping of low-energy protons on helium targets. Gran
and Schwietz@10# performed a dynamical calculation of th
energy dependence of the stopping power for this system
confirmed that the extrapolation procedure cannot be
tended to very low energies. Whereas at higher energies
stopping is mainly due to the ionization of the target ele
trons, at astrophysical energies it is mainly due to cha
exchange between the target and the projectile. Refere
@6# and@7# used these arguments to explain the long-stand
discrepancy between theory and experiment for the lo
energy dependence of the reaction3He(d,p)4He. Other re-
actions of astrophysical interest~e.g., those listed in by Rolfs
and co-workers@3,4#! should also be corrected for this effec

In this work we address the problem of the stopping
very-low-energy ions in matter. To simplify matters, w
study the simplest systemp1H. It displays important fea-
tures of the stopping power and has the advantage of all
ing a simple solution.

Our approach is based on the solution of the tim
dependent Schro¨dinger equation for the electron in a dy
namical two-center field. The static two-centerp1H system
was solved by Teller in 1930@11#. He showed that as the
distance between the protons decreases the hydrogen or
split into two or more orbitals, depending on its degenera
in the two-center system. Analogous problems are w
known in quantum systems@12#. For example, take two iden
tical potential wells at a certain distance. For large distan
©2000 The American Physical Society02-1
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the states in one well are degenerated with regard to
states in the other potential well. As they approach this
generacy is removed due to the influence of barrier tun
ing. Thus, the lowest-energy state of hydrogen, 1s, splits into
the 1ss and the 2ps states as the protons approach ea
other. The 1ss state is space symmetrical, while the 2ps
state is antisymmetric. As the proton separation distance
creases their respective energies decrease. AtR.1 Å the
energy of the 2ps state starts to increase again, while t
energy of the 1ss state continues to decrease. For prot
distances much smaller than 1 Å the 1ss and the 2ps
energies correspond to those of the first and second stat
the He atom, respectively@11#.

Let us now consider the dynamical case. The full tim
dependent wave function for the system can be expande
terms of two-center statesfn(t) governed by the Schro¨-
dinger equation

@H01Vp~ t !#fn~ t !5En~ t !fn~ t !,

with H05p̂e
2/2me1VT , ~1!

whereVp(t)52e2/ur1R/2u is the electron-projectile proton
interaction potential andVT52e2/ur2R/2u is the electron-
target proton interaction for a proton-proton separation d
tanceR(t). Note that in our formulation the two-center wav
functions depend on time, as well as their energiesEn(t).
The full electronic wave function is obtained by a sum ov
all orthonormal two-center states:

uC~ t !&5(
n

an~ t !ufn~ t !&,

with E d3rfn~ t !fm~ t !5dnm . ~2!

Inserting this expansion into Eq.~1! we obtain

i\
d

dt
am~ t !5Em~ t !am~ t !2 i\(

n
an~ t !K mU d

dt UnL . ~3!

Using Eq.~1! one can easily show that, formÞn,

K mU d

dt UnL 5
^mudVp /dtun&
En~ t !2Em~ t !

, ~mÞn!. ~4!

Moreover, using the second relation of Eq.~2!, one can
show that̂ mud/dtum&50, if um& is real. This indeed will be
our case. Our basisun(t)& is formed by two-center states at
given time t, i.e., a given proton separation distanceR(t).
These wave functions are real. Thus, the final coupl
channels equation for the two-center problem is given by

i\
d

dt
am~ t !5Em~ t !am~ t !2 i\ (

mÞn
an~ t !

^mudVp /dtun&
En~ t !2Em~ t !

.

~5!

At very low proton energies (Ep&1 keV) it is fair to
assume that only the low-lying states are involved in
electronic dynamics. Only at proton energies of the orde
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25 keV is the proton velocity comparable to the electr
velocity ve.ac. Thus, the evolution of the system is almo
adiabatic atEp&10 keV. The higher states require too mu
excitation energy and belong to different degeneracy mul
lets. The initial electronic wave function is a superposition
1ss and 2ps two-center states. One thus expects that o
these states are relevant for the calculation. In fact, at th
energies the population of the 2p atomic state in charge ex
change is much less than the population of the 1s atomic
state. These assumptions are well supported by the calc
tions of Grande and Schwietz@10#, who have used a dynami
cal approach based on target-centered wave functions
their approach one has to include a great amount of tar
centered states in order to represent well the strong distor
of the wave function as the projectile closes in the target.
also have assumed that the proton follows a classical tra
tory determined by an impact parameterb.

Equation~5! does not look like the usual form of coupled
channels equations in the theory of the time-depend
Schrödinger equation. But we can put it in such form b
rewriting the equation as

i\
d

dt S a1

a2
D 5S V11E0 iW

iW V21E0
D S a1

a2
D , ~6!

where the indices1 and2 refer to the 1ss and 2ps states,
respectively,E05213.6 eV,V6(t)5E6(t)2E0, and

W~ t !5\
^C1udVp /dtuC2&

E1~ t !2E2~ t !

[\
^C1ss~ t !udVp /dtuC2ps~ t !&

E1ss~ t !2E2ps~ t !
. ~7!

In this form, the potentialsV6(t) and W(t) act like poten-
tials in the usual coupled-channels equations. We use
formalism of Teller @11# to calculate the wave function
C6(R) at different interproton distancesR(t) corresponding
to a particular timet. The static Schro¨dinger equation is
solved in elliptical coordinates. This yields two coupled d
ferential equations which can be solved by expanding
solutions in a Taylor series. A set of recurrence relations
obtained for the expansion coefficients when the bound
conditions are used. The energiesE1ss(R) andE2ps(R) are
obtained by adjusting the constant which separates the
coupled equations@11# to its correct matching value.

When t→6`, V6→0 and W→0. The initial state, an
electron localized in the target, can be written in terms of
degenerate symmetric,C15C1ss , and antisymmetric,C2

5C2ps , states:

FT5
1

A2
~C11C2!, at t→2`, ~8!

where bothFT and C6 are normalized wave functions. I
the electron is localized in the projectile, the wave functi
Fp5(C12C2)/A2, whent→2`, is used. We will con-
sider only the condition of Eq.~8!, namely, an electron lo-
calized at the target att→2`. These relations are well
2-2
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STOPPING OF SWIFT PROTONS IN MATTER AND ITS . . . PHYSICAL REVIEW C 62 045802
known quantum mechanical results; the asymptotic tw
center wave functions can be written as combinations
target- and projectile-centered 1s wave functions: C6

5(Fp6FT)/A2.
Starting with a target localized electron we assign the

tial conditionsa651/A2 at t→2` and solve Eq.~6! nu-
merically. Although att→1` the probabilitiesua6u2 remain
very close to 1/2, the amplitudesa6 acquire phases which
change the relative population of the projectile and the ta
1s state. We correct for energy conservation which feeds
increasing binding energy of the electron back to an incre
ing relative motion energy of the two protons as they co
closer. This is specially important asEp becomes of the or-
der of hundreds of eV and smaller. In Fig. 1 we show
time dependence ofV6(t) andW(t) for Ep510 keV and a
nearly central collision,b50.1 Å . One observes that th
potentialsV6(t) extend much farther out thanW(t). More-
over, we find that asEp decreases the potentialW decreases
faster than the projectile’s velocityvp . This is mainly due to
the derivative ofVp in Eq. ~7!. At Ep.100 eV the potential
W loses its relevance as compared toV6 , which have no
dependence onvp . This becomes clear in Fig. 2. In thi
figure we show the exchange probability as a function of
impact parameter for two projectile energies. The solid l
is the full solution of Eq.~6!. The dashed line is the approx
mation obtained when we setW50 in Eq. ~6!. In the latter
case, the equations decouple and it is straightforward
show that the exchange probability is given by

Pexch5u(
6

a6~`!^FTuC6~`!&u2

5
1

2
1

1

2
cosH 1

\E2`

`

@E2~ t !2E1~ t !#dtJ . ~9!

At Ep510 keV there is an appreciable difference betwe
the full calculation and the approximation~9!. But for Ep
5100 eV the results are practically equal, except for v
small impact parameters at which the potentialW still has an
effect.

One observes that the exchange probability is not cons
at small impact parameters, but oscillates wildly around 0

FIG. 1. Time dependence of the interaction potentialsV6(t) and
W(t) for Ep510 keV and a nearly central collisionb50.1 Å .
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especially for low projectile energies. One might naively a
sume that because the collision is almost adiabatic, the
tem loses memory of to which nucleus the electron is bou
after the collision. Thus, for small impact parameters o
would expect a 50% probability of finding the electron
one of the nuclei att5`. However, this is not what happen
From Eq.~9! we see that minima of the probability occur fo
impact parameters satisfying the relation

E
2`

`

@E2~ t !2E1~ t !#dt52p\~n11/2!, n50,1,2, . . . ,N.

~10!

This relation looks familiar, of course. It simply states th
the interference between the 1ss and the 2ps states induces
oscillations in the exchange probability. The electron tunn
back and forth between the projectile and the target dur
the ingoing and the outgoing parts of the trajectory. Wh
the interaction time is an exact multiple of the oscillatio
time, a minimum in the exchange probability occurs. T
average probability over the smaller impact parameters
indeed 0.5. As the impact parameter decreases from infin
the first maximum in the exchange probability indicates
beginning of the region of strong exchange probability. O
sees that at low proton energies this starts atb.3 Å . The
size of the hydrogen atom is about 0.5 Å and thus the e
tron travels in a forbidden region~tunnels! of about 2 Å from
the target to the projectile. This is possible because of
strong interference between the 1ss and the 2ps states,
which for some trajectories satisfy the quantum relation~10!.

To obtain the stopping power we need the total cross s
tion for charge exchange,s52p*Pexchbdb. This is shown
in Fig. 3. The solid line is the full coupled-channels calcu
tion, while the dashed line uses approximation~9! for the
exchange probability. We observe that the approximation~9!
reproduces well the full calculation even at the highest en

FIG. 2. The exchange probability as a function of the imp
parameter for two projectile energies. The solid line is the full s
lution of Eq. ~6!. The dashed line is the approximation obtain
when we setW50 in Eq. ~6!.
2-3
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gies. The reason is that the potentialW is always smaller
than V6 for large impact parameters which have mo
weight on the integral cross section. We also compare
calculations with the lowest energy data of McClure@13#.
The formalism developed here is inappropriate for energ
in the tens of keV range and higher, as the projectile velo
becomes comparable to or higher than the electron velo
This implies that two-center states with higher energy a
even continuum states~ionization! should be included in the
calculation. ForEp→0, the charge exchange cross sect
becomes the constant values(Ep50)537.88310216 cm2.
This happens because, whenEp→0 and as the projectile
nears the target, the increasing electron binding in the t
center system acts as a push in the relative motion energ
compensate for energy conservation. The average resu
that the cross section for charge exchange becomes app
mately constant for projectile energies of tens of eV a
below.

In Fig. 4 we show the stopping cross section of the p
ton. The stopping cross section is defined asS
5( iDEi s i , whereDEi is the energy loss of the projectil
in a process denoted byi. The stopping powerSP5dE/dx,

FIG. 3. The solid line is the full coupled-channels calculati
for the charge-exchange cross section, while the dashed line
approximation~9! for the exchange probability. The experiment
data are from McClure@13#.

FIG. 4. The stopping cross section of protons on H targets.
dotted line gives the energy transfer by means of nuclear stopp
while the solid line is our result for the charge-exchange stopp
mechanism. The data points are from the tabulation of Ander
and Ziegler@8#.
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the energy loss per unit length of the target material, is
lated to the stopping cross section byS5SP /N, whereN is
the atomic density of the material. In our charge-exchan
mechanism the electron is transferred to the ground stat
the projectile and the energy transfer is given byDE
5mevp

2/2, wherevp is the projectile velocity. Assuming tha
there are few free electrons in the material~e.g., in a hydro-
gen gas! only one more stopping mechanism at very lo
energies should be considered: the nuclear stopping po
This is simply the elastic scattering of the projectile off t
target nuclei. The projectile energy is partially transferred
the recoil energy of the target atom. The stopping cross s
tion for this mechanism has been extensively studied
Lindhard and collaborators~e.g., Ref. @14#!. The nuclear
stopping includes the effect of the electron screening of
nuclear charges.

The dotted line in Fig. 4 gives the energy transfer
means of nuclear stopping, while the solid line are our res
for the charge-exchange stopping mechanism. The d
points are from the tabulation of Andersen and Ziegler@8#.
We see that the nuclear stopping dominates at the low
energies, while the charge-exchange stopping is larger
proton energies greater than 200 eV. Since we neglect
difference between molecular and atomic hydrogen targ
there is a limitation to compare our results with the expe
mental data. But the order of magnitude agreement is goo
view of our simplifying assumptions. We do not consider t
change of the charge state of the protons as they pene
the target material. The exchange mechanism transforms
protons into H atoms. These again interact with the tar
atoms. They can lose their electron again by transfer to
1s state of the target@10#.

The best fit to our calculation for the stopping power f
proton energies in the range 100 eV to 1 keV yieldsS
;vp

1.35. This contrasts with the extrapolationS;vp , based
on the Andersen-Ziegler table. But this discrepancy is mu
less than the one obtained by Golser and Semrad@9# for
helium targets, who found a stopping power for protonsS
;vp

3.34 for protons in the energy range of 4 keV. No data
lower energies are available in this case. But the Golser
Semrad data, for proton energies above 3 keV, firmly in
cate that a high power dependence on the projectile velo
will be also valid at lower energies, in contrast to the pred
tions from the Andersen-Ziegler tables@8#. One cannot ex-
tend our calculations to helium targets as the initial wa
function cannot be described in terms of a simple sum
two-center states. A much larger two-center basis is ne
sary. Since the electrons in the helium target are more bo
than in the proton, the charge-exchange probability mus
much smaller than in the case of hydrogen targets. One
should indeed expect a much stronger dependence of
stopping on the projectile velocity. At very low energies,
the order of some hundreds of eV, the stopping cross sec
should be entirely dominated by nuclear stopping, even m
than for hydrogen targets.

The p1p→d1e11ne reaction is a very important on
occurring in, e.g., our Sun. But it proceeds via the we
interaction and its cross section is too small for studies un
the laboratory conditions@1,2#. Fortunately, a good theoreti

es

e
g,
g
n
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cal model exists for this reaction@16#. Other reactions could
be strongly influenced by the stopping power of protons a
deuterons due to the charge-exchange mechanism. The
be relevant for the study ofd1D reactions in stellar interiors
and fusion reactors. Another application is the D(p,g)3He
reaction which is important for the hydrogen burning
stars. In our Sun the most effective energy of this reactio
Ec.m.56.563.3 keV atT5153106 K. At this energy one
expects that the charge-exchange stopping cross se
should be as important as the ionization cross section.
perimental data exist at the lowest energy value of 16 k
@15,17#. Although the extrapolation based on theory appe
to be under control in this case, it is worthwhile to consid
a better study of the stopping power for this reaction. T
steep rise of the fusion cross sections at astrophysical e
-
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ys
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gies amplifies all effects leading to a slight modification
the projectile energy@18#. Our results show that the stoppin
mechanism does not follow a universal pattern for all s
tems. This calls for improved theoretical studies of char
exchange effects and for their independent experime
verification.
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