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The effects of retardation in the Coulomb excitation of radioactive nuclei in intermediate energy collisions
(Ejap~100 MeV/nucleoi are investigated. We show that the excitation cross sections of low-lying states in
Hpe, 384045 and**4%Ar projectiles incident on gold and lead targets are modified by as much as 20% due to
these effects. The angular distributions of decayjngys are also appreciably modified.
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I. INTRODUCTION ergy up to 10-20 MeV can be readily excited. The experi-

The excitation of a nucleus by means of the electroma mental problem is to ensure that the collision impact
y Ynarameter is such that the nuclei do not overlap their mat-

net|_c mteracpon with .anothe.r nupleus IS k_nown as Coulom er distributions so that the process consists of Coulomb
excitation. Since the interaction is proportional to the charge

Z of the nucleus, Coulomb excitation is especially useful inexcitation only. This has been achieved by a careful fil-
' P y tering of the experimental events in terms of scattering

:gezgoll’“usl!gnC(Z)fulk:)en?\éyel)(()Cr;tSétiv(\)l:’:r}chosssiI:Seedc?fot?lse zrgrf]gg'rz?r?langles, multiplicity of particles, angular distributions, us-
) g1ng light and heavy targets, et(2-8|.

energy is sufficiently below the Coulomb barrier. In this case The theory of Coulomb excitation in low-energy colli-

the ions follow a Rutherford trajectory and never come S%ions is very well understood]. It has been used and im-

close so that their nuclear matter overlaps. This mechanlsmmveOI for over 30 years to infer electromagnetic properties

has be_en used for_many years to siudy the electromagnetﬁ? nuclei and has also been tested in the experiments to a
properties of low-lying nuclear stat¢s].

The probability for Coulomb excitation of a nuclear Statehigh level of precision. A large number of small corrections
probabiiity e ) " . are now well known in the theory and are necessary in order
[f) from an initial state|i) is large if the transition time;;

—#(E,~E)=1/wy is greater than the interaction tintg, :_o ana#yzte experiments on multiple excitation and reorienta-
. . o . ! ion effects.
;ane/l% an?o?sg\i%'32|82:1§,'0r}\év:thiglofhejtcigggozggtgﬁt?grce The standard semiclassical theory of Coulomb excitation
Coulomb excitation is Iargé if tha diébacity parametesat- at low ene_rgies assumes tha}t the relative motion takes plgce
isfies the condition on a classical Ru_therford trajectory, as Iong_ as_the transition
energyE; =E;—E; is small compared to the kinetic energy of
the system. The cross section for exciting a definite final

_ tcoII _ =l Lo s .
&= T Cen <1. (1)  state|f) from the initial statdi) is then given by
fi v
This adiabatic cutofflimits the possible excitation energies d_(’ - d_f’ P, 3)
below 1-2 MeV in sub-barrier collisions. dQ /i ¢ \dQ/gum =

A possible way to overcome this limitation, and to excite
high-lying states, would be the use of higher projectile enerwhere P;_; is the probability, evaluated in perturbation
gies. In this case, the closest approach distance, at which ttieeory, of the excitation of the target by the time-
nuclei still interact only electromagnetically, is of the order dependent electromagnetic field of the projecfild.
of the sum of the nuclear radiR=Rp+Ry, whereP refers to In the case of relativistic heavy ion collisions pure Cou-
the projectile and to the target. For very high energies one lomb excitation may be distinguished from the nuclear reac-
has also to take into account the Lorentz contraction of th&ons by demanding extreme forward scattering or avoiding
interaction time by means of the Lorentz facter(1 the collisions in which violent reactions take pla@. The
-v2/c?)712, with ¢ being the speed of light. For such colli- Coulomb excitation of relativistic heavy ions is thus charac-

sions the adiabacity condition, E¢L), becomes terized by straight-line trajectories with impact paramdter
larger than the sum of the radii of the two colliding nuclei. A
iR detailed calculation of relativistic electromagnetic excitation
&R) = 7 <1. (2 on this basis was performed by Winther and Alf&l As in

the nonrelativistic case, they showed how one can separate
From this relation one obtains that for bombarding enerthe contributions of the several electiEN) and magnetic
gies around and above 108eV/nucleon,states with en- (M\) multipolarities to the excitation. Later it was shown
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that a quantum theory for relativistic Coulomb excitation dation simultaneously, one should solve the general classical
leads to minor modifications of the semiclassical requi. problem of the motion of two relativistic charged particles. A
In Ref. [11] the connection between the semiclassical andletailed study of these effects has been done in RE3s14.
quantum results was fully clarified. More recently, a coupled-n Ref. [14] it was shown that the Rutherford trajectory is
channels description of relativistic Coulomb excitation wasmodified as the retardation due to the relativistic effects
developed12]. starts to set in. This already occurs for energies as low as
The semiclassical theory of Coulomb excitation for low- 10 MeV/nucleon. It was also shown that if we use the scat-
energy collisions accounts for the Rutherford bending of theering plane perpendicular to theaxis, we may write the
trajectory, but relativistic retardation effects are neglectednew Coulomb trajectory parametrized by
while in the theory of relativistic Coulomb excitation recoil ——
effects on the trajectory are negleci@te assumes straight- x=a[coshw+ €], y=a|e’-1sinhw, z=0, (4)
line motion), but retardation is handled correctly. In fact, the
onset of retardation brings new important effects such as the
steady increase of the excitation cross sections with increas-
ing bombarding energy. In a heavy ion collision around
100 MeV/nucleon the Lorentz factoy is about 1.1. Since Wwhere e=1/sif®/2), with ® being the deflection angle.
this factor enters in the excitation cross sections in manylhe impact parameter is related to the deflection angle by
ways, as in the adiabacity parameter, E2), one expects b=acot(®/2). The only difference from Eq(4) and the
that some sizablé10% —20% modification of the theory of usual parametrization of the Rutherford trajectory at
nonrelativistic Coulomb excitation would occur. Also, recoil nonrelativistic energies is the replacement of theaif-
corrections are not negligible, and the relativistic calcula-distance of closest approach in a head-on collision a
tions based on a straight-line parametrization of the trajec=ZpZ7€/meu? by a=ay/y. This simple modification agrees
tory are not completely appropriate to describe the excitatioyery well with numerical calculations based on the Darwin
probabilities and cross sections. Lagrangian and the next order correction to the relativistic
These questions are very relevant, as Coulomb excitatioifiteraction of two chargefsl4].
has proven to be a very useful tool in the investigation of Retardation also affects the dynamics of the Coulomb ex-
rare isotopes in radioactive beam facilitigg. Thus, it is  Citation mechanism and needs to be included in collisions
appropriate to investigate the effects of retardation and recowith energies around 100 MeV/nucleon and higher. A de-
corrections in Coulomb excitation at intermediate and hightailed account of this has been given in Rgf3]. The end
energies. In this paper we will assess these problems by ugesult is that the amplitude for Coulomb excitation of a target
ing the semiclassical approach of R¢L3]. As we shall from the initial stateli) to the final statgf) by a projectile
show in the following sections, both retardation and recoilwith chargeZ, moving along a modified Rutherford trajec-
effects must be included for bombarding energies in thdory is given by
range 30—200 MeV per nucleon.
This can be accomplished in a straightforward way in the as = Z__PeE Am
semiclassical approach with a relativistic trajectory, appro- i\, 2A+1
riate for heavy ion collisions, and the full expansion of the
glectromagneti)é propagatfi3]. In most situatiopns, the Cou- + SIMN, ) Mi(MA, = w)}, 5)
lomb excitation is a one-step process, which can be welivhere Mq;(7\, w) are the matrix elements for electromag-
described in first-order perturbation theory. Exceptions occunetic transitions, defined as
for very loosely bound nuclei, for example, the excitation of
i [4] or ®B [3,8], in which case the electromagnetic tran- Mo (EX. ) = @n+1nh
sition matrix elements are very large due to the small binding (BN, ) = KMo\ + 1)
and consequently large overlap with the continuum wave ) 3
functions. Another exception is the excitation of multiple gi- X L{jx(kr) Y\, (3, @)} d°r, (6)
ant resonances, due to the strong collective response Qfherel =—-ir XV and
heavy nuclei to the short electromagnetic pulse delivered in

a
t=—[w+ e sinhw],
U

(= D* {S(EN, W) M(EN, — u)

jr(r) -V

heavy ion collisions at relativistic energigs, . _ i2n+ 1N f )
M5(MN, p) = e+ D) Jri(r)
Il. COULOMB EXCITATION FROM LOW L{ja(kr) Yy (9, @)} dr, (7)

TO HIGH ENERGIES . . S
with o defined as the excitation frequentw=E;-E; and

In the semiclassical theory of Coulomb excitation the nu-«=w/c. Using the Wigner-Eckart theorem
clei are assumed to follow classical trajectories and the ex-
citation probabilities are calculated in time-dependent pertur- My (k= ) = (= 1),f_Mf< lf N ><| MmN
bation theory. At low energies one uses Rutherford = " H - My M "
trajectorieq 1] while at relativistic energies one uses straight (8)
lines for the relative motiorf9,10. In intermediate energy
collisions, where one wants to account for recoil and retarthe geometric coefficients can be factorized in Eg).
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The orbital integralS(m\, w) are given by[after perform- Crotp y s oup
ing a translation of the integrand by— w+i(7/2)] SIMA, p) == e [(2\ + /(2N + 3T (N + 1) = p?]

Xcot(H2)I(MN, u),

S(Ex ):&l(Ek ) 9
T e e R with

(= )™wi2 - for X + u=even

\/2x+1v/<x—m!<x+m!

C\.= A A=-pw)!! N+ ) (10)
0 for A + n=o0dd,
and[15]
[vg\Mt 1 * _(e+i sinhw— € — 1coshw)*
1(EN - —il == - —w{/Zf d e coshwelgw
(Ex w0 I(c) xen-pue ) e (i sinhw+ 1)1
x{()\+ Dh, - zhq - %eg coshwhx} (11
[
and doi; _4n°Z2¢ , , < B(m\, 1 — 1) ,
T AP el = LD
i(vg/C)M'l S TN ( )
(M - > —71-{/2J (e coshwi{w
(MX, w) (2)\—1)!!6 _xdwe e (16)
(e+isinhw— e -1 COShW)”h @ where=E or M stands for the electric or magnetic mul-
(ie sinhw+ 1)~ A tipolarity, and
(12
In the above equations, all the first-order Hankel functions Bm\, li— 1) =57 > (M |?
h, are functions of : Mi.My
1 2
v TN 1|<|f||M(7T7\)|||i>| (17)
zzgg(ie sinhw+ 1), (13 :
] is the reduced transition probability.
with
¢ wa  wa, (14 Ill. RELATIVISTIC AND NONRELATIVISTIC LIMITS
v w The nonrelativistic limit is readily obtained by usindc
The square modulus of E@5) gives the probability of —0 in the expressions in Sec. Il. In this cage; 0 in Eq.
exciting the target from the initial stafeM;) to the final state (13 and

[IiM;) in a collision with the center of mass scattering angle
9. If the orientation of the initial state is not specified, the _ 1
cross section for exciting the nuclear state of dpiis hy—-i2n-1! o

aet 1
> laglfd, (15

do = —
THTTL 21\,

v 1
N+ 1)h, —zh - Eeg coshwh, — iN(2N = 21) ! e
where a2¢*d()/4 is the elastioRutherford cross section.
Using the Wigner-Eckart theorem, E¢8), and the or-

thogonality properties of the Clebsch-Gordan coefficients,
gives which yields

(18
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[(EN, u) = e_ﬂ'flzf dw @ ¢ coshwHiw

(e+i sinhw— e - 1coshw)*
(ie sinhw+ )M~

. (19

I(MX, @) = 1(EX+ 1, ). (20)

These are indeed the orbital integrals for nonrelativistic

Coulomb excitation, as defined in Edl-E.49) of Ref. [16].
In the relativistic limit,v/c—1,{—0 in Eq. (14), and e
=h/a— . However, the combination

wﬂb

f(b):é’ﬁ:? (21)

can remain finite.

The results for the orbital integrals can be expressed
closed analytical forms. First we translate back the int
grands in Egs(11) and(12) by —i(7/2) to get

A+1
I(E)\,,u):—i<v?§>

Xf dw é‘f sinh w

1
N2 -1l
(1 +i sinhw)*
(coshw)»1

x [(x +1) hy—zh., + i%g sinhwh, | (22)

and

0

H A+1
|(U§/C) f dw h)\(Z) ei§ sinhw

(2 -1
(1 +i sinhw)*
(coshw)*

I(MA, w) =

(23)

where nowz=(v/c)¢ coshw, and we took the limitZ—0
and e—. For the lowest multipolarities these integrals

can be obtained in terms of modified Bessel functions by

assuming the long-wavelength approximatioffR) <1,

valid for almost all cases of practical interest. In this casey |

we can also use the approximation of E¢E3). From Eq.
(4), in the relativistic limit, sinhw=vt/b and r=b coshw.
Thus, the integrals can be rewritten as

(b+ivt)*
(bZ + v2t2)()\+ﬂ+l)/2

I(EN, w) =va e ™2 J dt &P

vto
X 1_IH)E§ , (24)
- o . (b+ivt)“
LM\, p) =va*te ™2 LO dt e (b? + p22)Murdl2
(25

These integrals can be calculated analyticglly] to give

PHYSICAL REVIEW C68, 044609(2003

dF(\, u,
I(EX, ) =F(\, f)-;—cf%,
(26)
I(MA, ) =F(N+ 1,4, &),
where
a\V > o1
FON, 1, &) =2(- 1)“**”’2(55) > =D
n=-\
P (0)
peamg) K®: (27)

In this equationPff"B) are the Jacobi polynomials and
K,(x) are modified Bessel functions. Sincet+u=even
(odd) for electric (magneti¢ excitations, we only need to

ialculate the integrals fou=+1 for the E1 multipolarity,
ej,L:O, =2 for the E2 multipolarity, andu=0 for the M1

multipolarity, respectively.
To leading order irg,

2a
I(E1, £1) = FI@' I(M1,0 =1(E2, 0)

2a? 28
= FI@' I(E2, £2) = @I(g),
_ 1 for é=1
7(¢) -5&(5)—{0 for £=1. (28)

When inserted in Eqg9) and(16) the above results yield
the correct relativistic Coulomb excitation cross sectifis
in the long-wavelength approximation. Thus, we have shown
explicitly that Eqs(4)—(16) reproduce the nonrelativistic and
relativistic Coulomb excitation expressions, as proved nu-
merically in Ref.[13]. We can now analyze the intermediate
energy regior(E;,,~ 100 MeV/nucleoh, where most experi-
ments with radioactive beams are being performed.

IV. »-RAY ANGULAR DISTRIBUTIONS

As for the nonrelativistic casgl6,18, the angular distri-
tions of v rays following the excitation depend on the
frame of reference considered. It is often more convenient to
express the angular distribution of theays in a coordinate
system with thez axis in the direction of the incident beam.
This amounts in doing a transformation of the excitation am-
plitudes by means of the rotation functioD$n,m. The final
result is identical to Eqs(Il.A.66) and (IIl.LA.77) of Ref.
[16], with the nonrelativistic orbital integrals replaced by
Egs.(11) and(12), respectively. The angular distribution of
the y rays emitted into solid angle,, as a function of the
scattering angle of the projectil®, ®), is given by

W(Q,) = kE a (0, ®, DAVY, (). (29)

In our notation, thez axis corresponds to the beam axis,
anda} (0, ®, {) are given by
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(9, @, ) = b /by,

where, for electric excitationfl 6],

(30

bEN®, & )= 2 (x A k)‘l
@ P 0= J2k+1\1 -1 0

«S (—1)%‘()\ 7\, k’)
mo—u K

pp '

m m™
XY)\# E,O Y)‘M, E,O

XI(EX, w)(EX, u')D, <f+9,f,q>).
i\ 2722
(31)

In Eq. (29) the coefficientsA™ are given by

AN =F 1,102 Bl 1 g 1AA,
I’

(32)

where|A |2 is the intensity(in sec?) of the 2-pole radia-
tion in the y transition from the excited statgto the state
f. Explicitly, the |-pole conversion coefficier, is given

by
ALz 87T(|+1) 1((1))2I+1 1/2
L TP AT

X (20¢+ 1)1 [iSOM () |1, (33)

with s(l)=I for electric (w=E) ands(l)=1+1 for magnetic
(w=M) transitions. The produck A, is always real since
(-1)%V=(the parity. The coefficients Fy(l,1",14, 1) are

geometrical factors defined by

Fell, 1,1, 1) = (= D'MaLy(20 + (21" + 1) (21 + 1)(2k + 1)
<| K k){l I’ k}

X
1 -1 0/l It g

Fll, 1 1) = Bl 1T ). (395

The normalization of the coefficieng, (©, ®, ¢) is such
that aj(®, @, Y)=1. Only terms with everk occur in Eq.
(29).

The total angular distribution of the rays, which inte-

(34)

and
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xxk)

Ex __2<A)\k)'1 _(
b (¢) = BRI\l -1 0 > ( 1)"M .

!

up' Kk

m o™
XY)\M E,O Y}\M’ E,O

xf deel (EN, w)I(EN, p')
€0
XYl =, = + sim(1/e) (38)
ki 2! 2 €)]-
€ is the minimum value of the eccentricity, associated
with the maximum scattering angle®, by ¢
=1/siM®y/2). One can show that the coefficients" are
real, even if the orbital integrals are not. Their imaginary
parts cancel out in the sum ovgu'.

For M1 excitations

i 8 (1 1 k)‘l(l 1 k) v <w o) 2
k7 Jk+1\1 -1 0/ \o 0 o/| *\2

><J dee(e® — 1)I(M1, 01(M1, 0)
€0
ao T
><Yk0(—, —+ sin‘l(l/e)> . (39
22
The normalization of the coefficienmﬁ(g) is such that
ay({)=1. Again, only terms with evea}({) occur in Eq(36).
In the case ofM1 excitations Eq(39) contains onlyx
=p=u'=0 and one getsy'*()=1, independent of. Since
for small{ the magnitude oa{;(g) decreases appreciably with
k we will only considery ray emission after excitation
through electric multipoles, in particular, the dependence of
a5 anda5? on ¢ This dependence is very weak at energies
E =100 MeV/nucleon. In that case, one can use the ap-
proximate relations, Eq(28), for excitation energies such
that £<1. This condition is met for reactions with neutron-
rich or proton-rich nuclei where the excitation energies in-
volved are of the order dE,~1 MeV. It is then straightfor-
ward to show that

a5'=1, &’=-2, and &’=-025. (40

We thus come to the important conclusion that in high-
energy collisions and low excitation energi€s,~1 MeV,
the angular distribution of rays from decays after Coulomb
excitation does not depend on the parametens ¢&.

Although the cross sections fdftl andE2 excitations do

grates over all scattering angles of the projectile, is given bylot contain interference terms, thedecay of the excited

W(6,) = g ax(OAMPy(coss,), (36)

where thez axis corresponds to the beam axis and the

statistical tensors are given by
a({) = bi/b},

where (for electric excitations[16],

(37)

state can contain an interference term with mE2i+M1
multipolarities. The angular distribution of thg rays from
the deexcitation of these states is given[hg]

WEZML(9.) = 2\ oy o>, alPMHOF(L, 2,15, 1)
k

X3 MM, TG 1Py (cost,),
I’

(41)

where oy, (0gy) is the total magnetic dipoldelectric
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quadrupolg excitation cross section and where the sign ofwhich takes account of the finite solid-angle opening of
the square root is the same as the sign of the reduceithe y-ray detectof22]. It follows that
matrix elementi|| M(M1)|f) (i| M(E2)|/f)). These latter

N — A\
are the same as those occurring in the radiative ddcay 4, (0, D, ) =a, (0, D, HF(\Aily). (46)
—i. The a>M* coefficients in Eq.(41) are given by In the case where the particle scatters into an annular

EoM1_ LE2ML, B3 M counter about the beam directigne., the z axis), or for

g = bbb (42) angular distributions where the scattered particle is not de-

where bﬁ is given by Eq.(38) and tected at al[Eq. (36)], only k=0 terms survive. Usually the
coefficients are normalized so that

HEZMI 4 (2 1 k\*
ko 7 k+#1\l -1 0 W(6,) =1 +k§4 Br(OA(SI "l )Q(E,) Py(cos 6,).
2 1 k
<3 (- 1)#( )YzM(Z,O)YZO(f.O) “0
u w0 p 2 2 The alignment of the initial state is now specified by the
statistical tensoB}; which is related to the statistical ten-
xffo dee\e - 11(E2, w)(M1, 0) sors introduced above by
L B = v2k+ 1 a/ (48
XYyl 51 5 +sin(1le) |. (43 o }
22 when the particle is detected in an annular counter, and
Using the relations in Eq.28) and performing the sum- B\ = aﬁ(é)Fk()\M'lf) (49)
mation above it is straightforward to show that #R) <1 t
-~ when the particle is not detected at @l detected in such
a " =0 for anyk. a way as to include all kinematically allowed scattering

Thus, in high-energy collisions, there is no interference®Nd'es:

term from mixedE2-M1 excitations in the angular distri-
bution of emittedy rays. V. NUMERICAL RESULTS

The form of the expressions for the angular distribution In Table | we show the numerical results for the orbital

used here has followed that of Chap. 11 of R&6]. Experi- integral I(E2, ) for a deflection angle of 10° and fou
menters usually find it more convenient to write the angula_,  _, Tﬁe calculations have been done using the code
distribution in a slightly different form which separates the CO,ULI,NT [23]. The results fory=1 agree within 1/1000 with
statistical tensors that describe the orientation of the state dLlﬁe numericél values obtained in R§24], also reprinted in

to the excitation process from the geometrical factors assorap o || 12 of Ref[16]. One observes that the results of the

ciated with they-ray decay and gives the g_eometrlcal faCtorsintegrals fory=1.1, corresponding to a laboratory energy of
the same form as occurs in the formulation+sfy correla-

tions (cf. Ref.[16], p. 311: see also Ref§19,20). The gen- about 100 MeV/nucleon, differ substantially from the results

; . . for y=1 (nonrelativistig, specially for large values af. For
era! expression fpr the-ray decay into solid angle, af.t(.ar a fixed scattering anglé increases with the excitation en-
projectile scattering to the ang(®, ®), where the transition

. ergy. Thus, one expects that the relativistic corrections are
takes place between the Coulomb excited stated a lower greater as the excitation energy increases.
stateg [see Eq(29)] becomes

For y=1 the imaginary part of the orbital integrals van-
_ A p ishes. But ag and vy increase the imaginary part becomes

W(QV)_kEK %0, ©, DAL gl ) QB Vil L), important. This is shown in Fig. 1 where the ratio of the

imaginary to real parts of the orbital integrflE2, 2) is

(44) shown for¢=0.1 (dashed curveand {=1 (solid curve as a
where theA(8,I"I4l;) coefficients are related to the so- function of y. . .
calledF coefficient[Eq. (34)] for the y-ray transition be- Except for the very low energies such tre attains a
tween the statek and |, with mixed multipolaritiesl and  large value, and for the very large excitation enerdiesthe
I” and mixing ratios, [16,21] by the expression parametet is much smaller than unity. Also, at intermediate
energies the scattering angle is limited to very forward scat-
AN g =[F Il g) + 28 F (1114l ) tering. It is useful to compare the orbital integrals with their
n 5$Fk(|’|’|f|g)]/(1+5§)- (45) limiting expressions given by Eq28), i.e., the relativistic

limit to leading order iné. This is shown in Fig. 2 where the
Note that fork=0 we haveAy=Fy=1, and due to the nor- real(solid lineg and imaginary partglong-dashed lingsof
malization used, the matrix elements, E®3), are not the orbital integral(E1, 1) are compared to the approxima-
needed. In most situations one is interested in the possiblion of Eg. (28) (dashed ling for y=1.1 (Egp
mixing of E2 and M1 multipolarities in the decay of =100 MeV/nucleoh Figure 2b) shows the same results,
—(¢. Thus, one only needs th€2/M1 mixing ratio. The but for the orbital integral(E2, 2). The comparison is made
quantity Q(E,) is the solid-angle attenuation coefficient in terms of the variablé=€ which is the appropriate vari-
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TABLE I. The classical orbital integrals f@&2 Coulomb excitation. The table lists the values of the classical orbital intdgEasu) for
a deflection angle of 10° and fa=2, 0, —2. These entries are given in the form of a number followed by the power of ten by which it should

be multiplied. The value outsid@nside) the brackets are foy=1 (y=1.1).

I4 N, u=2,2 N, u=2,0 N, u=2,-2
0.0 5.064-3)[5.052-3)] 1.333-2)[1.332-2)] 5.064-3)[5.073-3)]
0.1 8.67%-4)[1.105-3)] 6.505-3)[7.621-3)] 1.195-2)[1.205-2)]
0.2 1.89%-4)[2.8971-4)] 2.280-3)[3.276-3)] 7.765-3)[9.487-3)]
0.3 4.42%-5)[7.849-5)] 7.311-4)[1.296-3)] 2.245-3)[5.47Q-3)]
0.4 1.069-5)[2.122-5)] 2.245-4)[4.920-4)] 1.468-3)[2.728-3)]
0.5 2.637-6)[5.599-6)] 6.716-5)[1.821(-4)] 5.442-4)[1.251-3)]
0.6 6.598-7)[1.402-6)] 1.975-5)[6.627-5)] 1.908-4)[5.431-4)]
0.7 1.668-7)[3.169-7)] 5.739-6)[2.383-5)] 6.438-5)[2.268-4)]
0.8 4.250-8)[5.580-8)] 1.652-6)[8.492-6)] 2.110-5)[9.201-5)]
0.9 1.090-8)[1.906-9)] 4.724-7)[3.004-6)] 6.765-6)[3.650-5)]
1.0 2.807-9)[-5.003-9)] 1.343-7)[1.057-6)] 2.131-6)[1.422-5)]
1.2 1.886-10)[-1.845-9)] 1.071-8)[1.291-7)] 2.031-7)[2.074-6)]
1.4 1.282-11)[-3.551-10)] 8.426-10)[1.556-8)] 1.858-8)[2.902-7)]
1.6 8.788-13)[-5.699-11)] 6.566-11)[1.851-9)] 1.651-9)[3.941-8)]
1.8 6.068-14)[-8.381-12)] 5.078-12)[2.200-10)] 1.433-10)[5.2271-9)]
2.0 4.213-15[-1.170-12)] 3.904-13)[2.591-11)] 1.222-11)[6.809-10)]
4.0 1.294-26)[-1.211-21)] 2.364-24)[1.111-20)] 1.464-22)[5.663-19)]

able for high-energy collisions. Only f@<1 do the expres- lomb excitation cross sections of the first excited state in
sions in the relativistic limit reproduce the correct behavioreach nucleus as a function of the bombarding energy per
of the orbital integrals. Although the imaginary parts of thenucleon. The cross sections are given in millibarns. The
orbital integrals are small, the real parts show substantiahumbers inside parentheses and brackets were obtained with
deviations from the approximations of E&8) at intermedi-  pure nonrelativistic and relativistic calculations, respectively.
ate energie$E,,,=100 MeV/nucleon The minimum impact parameter is chosen so that the dis-
We now apply the formalism to specific cases. We studytance of closest approach corresponds to the sum of the
the effects of relativistic corrections in the collision of the nuclear radii in a collision following a Rutherford trajectory.
radioactive nuclef®4°4%5 and*4Ar on gold targets. These One observes that at 10 MeV/nucleon the relativistic correc-
reactions have been studiedBf,~40 MeV/nucleon at the tions are important only at the level of 1%. At
MSU facility [25]. In the following calculations, the condi- 500 MeV/nucleon, the correct treatment of the recoil correc-
tions may be such that there will be contributions from
nuclear excitation, but these will be neglected as we are only 03 . . : . :

interested in the relativistic effects in Coulomb excitation at
intermediate energy collisions. In Table Il we show the Cou- - 0.2
=
5]
01 = 01 _
Ob0—c-7-"=-"===~~+
— 005 0.016———————————
T oof _ oot m—— O
= o 0.008F
‘E’ -0.05¢F \E, 0.004 - E2 i
0.1 S
0 0.4 0.8 1.2
-0.15 &
Y FIG. 2. Upper figure: Rea(solid lineg and imaginary part

(long-dashed linesof the orbital integrall(E1, 1) for y=1.1 (Ejqp
FIG. 1. The ratio of the imaginary to real parts of the orbital =100 MeV/nucleon The approximation of Eq28) is shown by
integral I(E2, 2) is shown fors=0.1 (dashed curveand {=1 (solid the dashed line. Lower figure: Same plot, but for the orbital integral
curve) as a function ofy. 1(E2, 2.
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TABLE Il. Coulomb excitation cross sections of the first excited state’8fi°*%5 and “**%r projectiles at 10, 50, 100, and
500 MeV/nucleon incident on gold targets. The numbers inside parenthesis and brackets were obtained with pure nonrelativistic and
straight-line relativistic calculations, respectively. The numbers at the center are obtained with the full integration(df)Eoel (12).

Nucleus E, B(E2) 10 MeV/nucleon 50 MeV/nucleon 100 MeV/nucleon 500 MeV/nucleon
(MeV) (e#fm?) oc (mb) oc (mb) oc (mb) oc (mb)
385 1.29 235 (492) 500 [651] (80.9 91.7[117] (40.5 50.1[57.1] (9.8) 16.2[16.3
405 0.89 334 (877) 883[1015 (145.3 162183 (76.1) 85.5[93.4 (9.5) 20.9[21]
423 0.89 397 (903 9081235 (142.7 158175 (65.1) 80.1[89.4 (9.9) 23.2[23.4
44pr 1.14 345 (747) 752985 (133) 141[164 (63.3 71.7[80.5 (8.6) 17.5[17.6
4BAr 1.55 196 (404) 408[521] (65.8 74.4[88.5 (30.2 37.4[41.7] (5.72) 10.8[11]

tions[included in Egs(11) and(12)] is relevant on the level tivistic equations for Coulomb excitation, E¢26), but
of 1%. Thus the nonrelativistic treatment of Coulomb exci-with the recoil correction, Eq.50), respectively. Figure 3
tation [16] can be safely used for energies below aboutis a plot of Eq.(51) for the excitation of thed.89 MeV
10 MeV/nucleon and the relativistic treatment with a state in*°S+7Au collisions as a function of the bombard-
straight-line trajectory [9] is adequate above about ing energy. One observes that the largest discrepancy is
500 MeV/nucleon. However at energies aroundobtained by using the nonrelativistic equatioéR) for
50-100 MeV/nucleon, accelerator energies common to moshe Coulomb excitation cross sections at high energies.
radioactive beam facilitie6eMSU, RIKEN, GSI, GANIL), it  The relativistic analytical equation®) also do not do a
is very important to use a correct treatment of recoil andgood job at low energies, as expected. But the relativistic
relativistic effects, both kinematically and dynamically. At equations with the recoil correction of EG0) improve
these energies, the corrections can add up to 50%. Thesensiderably the agreement with the exact calculation. At
effects were also shown in R¢f.3] for the case of excitation 10 MeV/nucleon thedeviation from the exact calculation
of giant resonances in collisions at intermediate energies. Asmounts to 6% for the case shown in Fig. 3. However, the
shown here, they are also relevant for the low-lying exciteddeviation of the RR treatment tends to increase for cases
states. where higher nuclear excitation energies are involved
As another example, we calculate the Coulomb excitatiof13]. The cross section for the excitation of low-energy
cross sections of'Be projectiles on lead targets!Be is a  states is mainly due to collisions with large impact param-
one-neutron halo nucleus with one excited bound gatat  eters for which recoil corrections are not relevant. For
320 keV). Its 3+ ground state is strongly coupled to the ex- high-lying states, e.g., giant resonances, only the smaller
cited state with the strongeBt transition observed between impact parameters are effective in the excitation process.
bound nuclear states. TH¥E1) value for this transition is Therefore, in this situation, the correct treatment of recoil
0.116€? fm? [25]. The one-neutron separation energy is onlyeffects is more relevant.
506 keV and the coupling to the continuum has to be in- For !*Be projectiles on lead targets at 50 MeV/nucleon
cluded in an accurate calculation. However, the influence othe Coulomb excitation cross sections of the excited state in
higher-order effects in the Coulomb excitation of the excited
state in intermediate energy collisions was shown in Refs. 40 .

[27-29 to be less than 7%. We thus neglect these effects | I |
here.

In Ref. [9] a recoil correction for the theory of relativistic 3 30~ NR
Coulomb excitation was proposed. It was shown that one can OZ - g
use the equations for relativistic Coulomb excitation and ob- e |
tain reasonable results for collisions at low energies if one o
replaces the impact parameteby g ~~~~~~~ 1

10~ =
b'=b+—a. (50) - RR .
2 0 I |||||||I\\|‘|;|\~|||n

10 100 1000

The advantage of this approximation is that one can use
the analytical formulas for relativistic Coulomb excitation
[e.g., Egs.(26) and (27)] and easily include the recail
correction Eq.(50). We define the percent deviation

Ejab [MeV/nucleon]

FIG. 3. Equation(51) for the excitation of the 0.89 MeV state in
405 +197Au collisions as a function of the bombarding energy. The
solid line corresponds to the use of the nonrelativistic integrals, Eq.
(19), compared to the exact calculation using Ef). The same is
plotted for the other two caseéR) with the relativistic equation
whereo; is the cross section obtained with the relativistic (26) and (RR) with the relativistic equatiorf26) using the recoil
(i=R), nonrelativistic(i=NR), and (i=RR) with the rela- correction, Eq(50).

_ (Texact™ Ti)

A=——7—r,

Oexact

(51)
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1.2 . . . TABLE lIl. Statistical coefficients entering E¢47) for S pro-
jectiles at 100 MeV/nucleon incident on gold targets.

NR Exact R

0.8

gE? | BE? 0.95 1.03 111
2 B2 0.183 0.192 0.207

0.4 pgE2 . _ _ _
4 gold targets and scattering to all kinematically allowed
- - angles with closest approach distance larger than the sum of
the nuclear radii. NRR) denotes the nonrelativisticelativ-
e —— istic) values. We notice that the statistical tensors are not as
0 0.4 0.8 1.2 1.6 . . . .
much influenced by the retardation and recoil corrections as
Ex [MeV] in the case of the cross sections. The reason is that the sta-
tistical tensors involve ratios of the integral of the orbital
FIG. 4. Statistical '[enSOt'B(ZEZ) and BzEZ) as a function of the inte_gra]s. These ratios tend.tq vyash out the corrections in the
excitation energy of the lowest state 3 projectiles incident on  Orbital integrals due to relativistic effects. On the other hand,
gold targets. The energy of the state is varied artificially. for scattering to a specific angle the corrections can be larger
becausay,, in Eq. (44) are determined largely by geometry
1Be are given by 311 mb, 305 mb, and 398 mb for nonrel-and hence they can be sensitive to both relativistic distortions
ativistic, exact, and relativistic calculations, respectively. Atof the orbit and recoil effects causing non-straight-line
100 MeV/nucleon the same calculations lead to 159 mbtrajectories.
185 mb, and 225 mb, respectively. Thus, the same trend as in

Statistical Tensors

the results of Table Il is also observed 6t excitations of VI. CONCLUSIONS
low-lying states. )
Experiments of Coulomb excitation dfBe projectiles We have extended the study of REE3)] to include retar-

have been performed at GANI(43 MeV/nucleon [30], at dation effects in the Coulomb excitation of low-lying states
RIKEN (64 MeV/nucleoi [31], and at MSU(57—60 MeV/ in collisions of rare isotopes at intermediate enerdigg,
nucleon [32]. The extracted values &E1)~0.05¢? fm?in ~100 MeV/nucleoi In particular, we have studied the ef-
the GANIL experiment is in disagreement with the lifetime fects of retardation and recoil in the orbital integrals entering
experiment of Ref.[26] and could not be explained by the calculation of Coulomb excitation amplitudes. We have
higher-order effects in Coulomb excitation at intermediateShown that the nonrelativistic and relativistic theories of
energy collisiong27-29. However, the deduced values of Coulomb excitation are reproduced in the appropriate energy
B(E1)~0.1 € fm? in the RIKEN and MSU experiments are regime. We have also shown that at intermediate-energies
in good agreement with the lifetime measuremg2] and corrections to the low- or high-energy theories of Coulomb
with the theoretical cross sections of Coulomb excitation. €Xcitation are as large as 20%. _ _ _
We now study the effects of retardation in the angular, Wesg‘%’f StUd'eg4t£‘f excitation of the first excited states in
distributions ofy-ray decaying from Coulomb excited states. - B&: >****S, and**“*Ar projectiles incident on gold and
We first test the range of validity of the approximation in Eq. Ieaq targets. It is clear from the results that retarda}uon cor-
(40). For this purpose we artificially vary the energy of the '€ctions are of the order of 10%-20% at bombarding ener-
first excited 2 state in3S. This would simulate what hap- 9i€S around 50100 MeV/nucleon. Therefore, they must be
pens in the case of a nucleus with very low-lying exCitedaccounted for in order to correctly analyze the cross sections
states, or very high bombarding energies. As we see frofdnd angular distributions of decayingrays in experiments
Fig. 4, the statistical tensoﬁ((Ez) asymptotically attain the at radioactive beam facilities running at intermediate

(E2) _ (E2) _ . ... energies.
valuesB;™=1.19 ancB.4' .—0.267)\a'ccord|ng to thg limits in Another important consequence of our study is that retar-
Eqg. (40) and the definition ofB,; in Eq. (40), since F,

dation effects must also be included in calculations of higher-
=-0.5976 andF,=-1.0690. The convergence to these

. . . ) > order effects(e.g., coupled-channels calculatignsommon
asymptotic values increases with the bombarding energies, &$ ihe Coulomb breakup of halo nuclg#]. Work in this
expected from the conditions which lead to validity of yirection is in progress.

E.b/yhic<1, for the lowest impact parametéebs which are
the most relevant for the Coulomb excitation process. At
1 GeV/nucleon this condition is easily met for states of the
order of 1 MeV. This research was supported in part by the U.S. National

Finally, we show in Table Il the statistical tens@§? in  Science Foundation under Grant Nos. PHY00-7091, PHY99-
Eq. (47) for 38S projectiles at 100 MeV/nucleon incident on 83810, and PHY00-70818.
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