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I. INTRODUCTION

The excitation of a nucleus by means of the electromag-
netic interaction with another nucleus is known as Coulomb
excitation. Since the interaction is proportional to the charge
Z of the nucleus, Coulomb excitation is especially useful in
the collision of heavy ions, with cross sections proportional
to Z2. Pure Coulomb excitation is assured if the bombarding
energy is sufficiently below the Coulomb barrier. In this case
the ions follow a Rutherford trajectory and never come so
close so that their nuclear matter overlaps. This mechanism
has been used for many years to study the electromagnetic
properties of low-lying nuclear states[1].

The probability for Coulomb excitation of a nuclear state
ufl from an initial stateuil is large if the transition timetfi
="/sEf−Eid=1/vfi is greater than the interaction timetcoll
=a0/v, in a heavy ion collision with closest approach distance
a0 and projectile velocityv. That is, the cross section for
Coulomb excitation is large if theadiabacity parametersat-
isfies the condition

j =
tcoll

tfi
= v f i

a0

v
, 1. s1d

This adiabatic cutofflimits the possible excitation energies
below 1–2 MeV in sub-barrier collisions.

A possible way to overcome this limitation, and to excite
high-lying states, would be the use of higher projectile ener-
gies. In this case, the closest approach distance, at which the
nuclei still interact only electromagnetically, is of the order
of the sum of the nuclear radii,R=RP+RT, whereP refers to
the projectile andT to the target. For very high energies one
has also to take into account the Lorentz contraction of the
interaction time by means of the Lorentz factorg=s1
−v2/c2d−1/2, with c being the speed of light. For such colli-
sions the adiabacity condition, Eq.(1), becomes

jsRd =
v f iR

gv
, 1. s2d

From this relation one obtains that for bombarding ener-
gies around and above 100MeV/nucleon,states with en-

ergy up to 10−20 MeV can be readily excited. The experi-
mental problem is to ensure that the collision impact
parameter is such that the nuclei do not overlap their mat-
ter distributions so that the process consists of Coulomb
excitation only. This has been achieved by a careful fil-
tering of the experimental events in terms of scattering
angles, multiplicity of particles, angular distributions, us-
ing light and heavy targets, etc.f2–8g.

The theory of Coulomb excitation in low-energy colli-
sions is very well understood[1]. It has been used and im-
proved for over 30 years to infer electromagnetic properties
of nuclei and has also been tested in the experiments to a
high level of precision. A large number of small corrections
are now well known in the theory and are necessary in order
to analyze experiments on multiple excitation and reorienta-
tion effects.

The standard semiclassical theory of Coulomb excitation
at low energies assumes that the relative motion takes place
on a classical Rutherford trajectory, as long as the transition
energyEfi=Ef−Ei is small compared to the kinetic energy of
the system. The cross section for exciting a definite final
stateufl from the initial stateuil is then given by

S ds

dV
D

i→f

= S ds

dV
D

Ruth

Pi→f , s3d

where Pi→f is the probability, evaluated in perturbation
theory, of the excitation of the target by the time-
dependent electromagnetic field of the projectilef1g.

In the case of relativistic heavy ion collisions pure Cou-
lomb excitation may be distinguished from the nuclear reac-
tions by demanding extreme forward scattering or avoiding
the collisions in which violent reactions take place[2]. The
Coulomb excitation of relativistic heavy ions is thus charac-
terized by straight-line trajectories with impact parameterb
larger than the sum of the radii of the two colliding nuclei. A
detailed calculation of relativistic electromagnetic excitation
on this basis was performed by Winther and Alder[9]. As in
the nonrelativistic case, they showed how one can separate
the contributions of the several electricsEld and magnetic
sMld multipolarities to the excitation. Later it was shown
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that a quantum theory for relativistic Coulomb excitation
leads to minor modifications of the semiclassical results[10].
In Ref. [11] the connection between the semiclassical and
quantum results was fully clarified. More recently, a coupled-
channels description of relativistic Coulomb excitation was
developed[12].

The semiclassical theory of Coulomb excitation for low-
energy collisions accounts for the Rutherford bending of the
trajectory, but relativistic retardation effects are neglected,
while in the theory of relativistic Coulomb excitation recoil
effects on the trajectory are neglected(one assumes straight-
line motion), but retardation is handled correctly. In fact, the
onset of retardation brings new important effects such as the
steady increase of the excitation cross sections with increas-
ing bombarding energy. In a heavy ion collision around
100 MeV/nucleon the Lorentz factorg is about 1.1. Since
this factor enters in the excitation cross sections in many
ways, as in the adiabacity parameter, Eq.(2), one expects
that some sizables10% –20%d modification of the theory of
nonrelativistic Coulomb excitation would occur. Also, recoil
corrections are not negligible, and the relativistic calcula-
tions based on a straight-line parametrization of the trajec-
tory are not completely appropriate to describe the excitation
probabilities and cross sections.

These questions are very relevant, as Coulomb excitation
has proven to be a very useful tool in the investigation of
rare isotopes in radioactive beam facilities[7]. Thus, it is
appropriate to investigate the effects of retardation and recoil
corrections in Coulomb excitation at intermediate and high
energies. In this paper we will assess these problems by us-
ing the semiclassical approach of Ref.[13]. As we shall
show in the following sections, both retardation and recoil
effects must be included for bombarding energies in the
range 30–200 MeV per nucleon.

This can be accomplished in a straightforward way in the
semiclassical approach with a relativistic trajectory, appro-
priate for heavy ion collisions, and the full expansion of the
electromagnetic propagator[13]. In most situations, the Cou-
lomb excitation is a one-step process, which can be well
described in first-order perturbation theory. Exceptions occur
for very loosely bound nuclei, for example, the excitation of
11Li [4] or 8B [3,8], in which case the electromagnetic tran-
sition matrix elements are very large due to the small binding
and consequently large overlap with the continuum wave
functions. Another exception is the excitation of multiple gi-
ant resonances, due to the strong collective response of
heavy nuclei to the short electromagnetic pulse delivered in
heavy ion collisions at relativistic energies[5,6].

II. COULOMB EXCITATION FROM LOW
TO HIGH ENERGIES

In the semiclassical theory of Coulomb excitation the nu-
clei are assumed to follow classical trajectories and the ex-
citation probabilities are calculated in time-dependent pertur-
bation theory. At low energies one uses Rutherford
trajectories[1] while at relativistic energies one uses straight
lines for the relative motion[9,10]. In intermediate energy
collisions, where one wants to account for recoil and retar-

dation simultaneously, one should solve the general classical
problem of the motion of two relativistic charged particles. A
detailed study of these effects has been done in Refs.[13,14].
In Ref. [14] it was shown that the Rutherford trajectory is
modified as the retardation due to the relativistic effects
starts to set in. This already occurs for energies as low as
10 MeV/nucleon. It was also shown that if we use the scat-
tering plane perpendicular to thez axis, we may write the
new Coulomb trajectory parametrized by

x = afcoshw + eg, y = aÎe2 − 1sinhw, z= 0, s4d

t =
a

v
fw + e sinh wg,

where e=1/sinsQ/2d, with Q being the deflection angle.
The impact parameter is related to the deflection angle by
b=a cotsQ/2d. The only difference from Eq.s4d and the
usual parametrization of the Rutherford trajectory at
nonrelativistic energies is the replacement of thehalf-
distance of closest approach in a head-on collision a0
=ZPZTe

2/m0v2 by a=a0/g. This simple modification agrees
very well with numerical calculations based on the Darwin
Lagrangian and the next order correction to the relativistic
interaction of two chargesf14g.

Retardation also affects the dynamics of the Coulomb ex-
citation mechanism and needs to be included in collisions
with energies around 100 MeV/nucleon and higher. A de-
tailed account of this has been given in Ref.[13]. The end
result is that the amplitude for Coulomb excitation of a target
from the initial stateuil to the final stateufl by a projectile
with chargeZP moving along a modified Rutherford trajec-
tory is given by

afi =
ZPe

i" o
lm

4p

2l + 1
s− 1dm hSsEl, mdM f isEl, − md

+ SsMl, mdM f isMl, − mdj, s5d

whereM f ispl, md are the matrix elements for electromag-
netic transitions, defined as

M f isEl, md =
s2l + 1d !!

kl+1csl + 1d E j f isr d · ¹

3 L h jlskrd Ylmsq, fdj d3r , s6d

whereL=−ir 3¹ and

M f isMl, md = −
is2l + 1d !!

klcsl + 1d E j f isr d

·L h jlskrd Ylmsq, fdj d3r , s7d

with v defined as the excitation frequency"v=Ef −Ei and
k=v/c. Using the Wigner-Eckart theorem

M f ispl, − md = s− 1dI f−MfS I f l I i

− Mf m Mi
DkI fiMspldiI il,

s8d

the geometric coefficients can be factorized in Eq.s5d.
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The orbital integralsSspl, md are given by[after perform-
ing a translation of the integrand byw→w+isp/2d]

SsEl, md =
Clm

val IsEl, md, s9d

SsMl, md = −
Cl+1,m

lcal fs2l + 1d/s2l + 3dg1/2fsl + 1d2 − m2g1/2

3cotsq/2dIsMl, md,

with

Clm = 5Î2l + 1

4p

Îsl − md ! sl + md !

sl − md ! ! sl + md !!
s− 1dsl+md/2 for l + m = even

0 for l + m = odd,

s10d

and f15g

IsEl, md = − iSvz

c
Dl+1 1

ls2l − 1d !!
e−pz/2E

−`

`

dw e−ze cosh weizw
se + i sinh w − Îe2 − 1coshwdm

sie sinh w + 1dm−1

3Fsl + 1dhl − zhl+1 −
v
c

ez coshwhlG s11d

and

IsMl, md =
isvz/cdl+1

s2l − 1d !!
e−pz/2 E

−`

`

dw e−ze cosh weizw

3
se + i sinh w − Îe2 − 1 coshwdm

sie sinh w + 1dm hlszd.

s12d

In the above equations, all the first-order Hankel functions
hl are functions of

z=
v
c

z sie sinh w + 1d, s13d

with

z =
va

v
=

vao

gv
. s14d

The square modulus of Eq.(5) gives the probability of
exciting the target from the initial stateuIiMil to the final state
uI fMfl in a collision with the center of mass scattering angle
q. If the orientation of the initial state is not specified, the
cross section for exciting the nuclear state of spinI f is

dsi→f =
a2e4

4

1

2I i + 1 o
Mi,Mf

uafiu2dV, s15d

where a2e4dV/4 is the elasticsRutherfordd cross section.
Using the Wigner-Eckart theorem, Eq.s8d, and the or-
thogonality properties of the Clebsch-Gordan coefficients,
gives

dsi→f

dV
=

4p2ZP
2e2

"2 a2e4 o
plm

Bspl, I i → I fd
s2l + 1d3 uSspl, mdu2,

s16d

wherep=E or M stands for the electric or magnetic mul-
tipolarity, and

Bspl, I i → I fd =
1

2I i + 1 o
Mi,Mf

UMspl, mdU2

=
1

2I i + 1
ukI fiMspldiI ilu2 s17d

is the reduced transition probability.

III. RELATIVISTIC AND NONRELATIVISTIC LIMITS

The nonrelativistic limit is readily obtained by usingv/c
→0 in the expressions in Sec. II. In this case,z→0 in Eq.
(13), and

hl → − is2l − 1d ! !
1

zl+1

sl + 1dhl − zhl+1 −
v
c

ez coshwhl → ils2l − 1d ! !
1

zl+1 ,

s18d

which yields
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IsEl, md = e−pz/2E
−`

`

dw e−ze cosh w+izw

3
se + i sinh w − Îe2 − 1coshwdm

sie sinh w + 1dl+m , s19d

IsMl, md = IsEl + 1,md. s20d

These are indeed the orbital integrals for nonrelativistic
Coulomb excitation, as defined in Eq.(II-E.49) of Ref. [16].

In the relativistic limit, v/c→1,z→0 in Eq. (14), and e
.b/a→`. However, the combination

jsbd = ze =
v f ib

gv
s21d

can remain finite.
The results for the orbital integrals can be expressed in

closed analytical forms. First we translate back the inte-
grands in Eqs.(11) and (12) by −isp/2d to get

IsEl, md = − iSvz

c
Dl+1

e
1

ls2l − 1d !!

3E
−`

`

dw eij sinh w
s1 + i sinh wdm

scoshwdm−1

3Fsl + 1d hl − zhl+1 + i
v
c

j sinh whlG s22d

and

IsMl, md =
isvz/cdl+1

s2l − 1d !!
E

−`

`

dw hlszd eij sinh w

3
s1 + i sinh wdm

scoshwdm , s23d

where nowz=sv/cdj coshw, and we took the limitz→0
and e→`. For the lowest multipolarities these integrals
can be obtained in terms of modified Bessel functions by
assuming the long-wavelength approximation,jsRd!1,
valid for almost all cases of practical interest. In this case,
we can also use the approximation of Eqs.s18d. From Eq.
s4d, in the relativistic limit,sinh w=vt/b and r =b coshw.
Thus, the integrals can be rewritten as

IsEl, md = val e−pz/2E
−`

`

dt eijvt/b sb + ivtdm

sb2 + v2t2dsl+m+1d/2

3F1 − i
vt

lb

v
c

jG , s24d

IsMl, md = val+1e−pz/2 E
−`

`

dt eijvt/b sb + ivtdm

sb2 + v2t2dsl+m+2d/2 .

s25d

These integrals can be calculated analytically[17] to give

IsEl, md = Fsl, m, jd −
v

lc
j
dFsl, m, jd

dj
,

s26d

IsMl, md = Fsl + 1,m, jd,

where

Fsl, m, jd = 2s− 1dsl+md/2Sa

b
jDl

o
n=−l

l
1

2ns− 1dn−m

3
Pl−n

sn−m,n+mds0d

Pl
s−m,mds0d

Knsjd. s27d

In this equationPn
sa,bd are the Jacobi polynomials and

Knsxd are modified Bessel functions. Sincel+m=even
soddd for electric smagneticd excitations, we only need to
calculate the integrals form= ±1 for theE1 multipolarity,
m=0, ±2 for the E2 multipolarity, andm=0 for the M1
multipolarity, respectively.

To leading order inj,

IsE1, ± 1d =
2a

b
Isjd, IsM1, 0d = IsE2, 0d

=
2a2

b2 Isjd, IsE2, ± 2d =
2a2

3b2Isjd,

Isjd = jK1sjd = H1 for j & 1

0 for j * 1.
s28d

When inserted in Eqs.(9) and(16) the above results yield
the correct relativistic Coulomb excitation cross sections[9]
in the long-wavelength approximation. Thus, we have shown
explicitly that Eqs.(4)–(16) reproduce the nonrelativistic and
relativistic Coulomb excitation expressions, as proved nu-
merically in Ref.[13]. We can now analyze the intermediate
energy regionsElab,100 MeV/nucleond, where most experi-
ments with radioactive beams are being performed.

IV. g-RAY ANGULAR DISTRIBUTIONS

As for the nonrelativistic case[16,18], the angular distri-
butions of g rays following the excitation depend on the
frame of reference considered. It is often more convenient to
express the angular distribution of theg rays in a coordinate
system with thez axis in the direction of the incident beam.
This amounts in doing a transformation of the excitation am-
plitudes by means of the rotation functionsDm8m

j . The final
result is identical to Eqs.(II.A.66) and (III.A.77) of Ref.
[16], with the nonrelativistic orbital integrals replaced by
Eqs. (11) and (12), respectively. The angular distribution of
the g rays emitted into solid angleVg, as a function of the
scattering angle of the projectilesQ, Fd, is given by

WsVgd = o
kk

akk
l sQ, F, zdAk

sldYkksVgd. s29d

In our notation, thez axis corresponds to the beam axis,
and akk

l sQ, F, zd are given by
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akk
l sQ, F, zd = bkk

l /b00
l , s30d

where, for electric excitationsf16g,

bkk
ElsQ, F, zd = −

2

Î2k + 1
Sl l k

1 − 1 0
D−1

3 o
mm8k8

s− 1dmSl l k

m − m8 k8
D

3YlmSp

2
, 0DYlm8Sp

2
, 0D

3IsEl, mdIsEl, m8dDk8k
k Sp

2
+

Q

2
,

p

2
, FD .

s31d

In Eq. s29d the coefficientsAk
sld are given by

Ak
sld = Fksl, I i, I fdo

ll8

Fksl, l8, Ig, I fdDlDl8, s32d

where uDlu2 is the intensitysin sec−1d of the 2l-pole radia-
tion in theg transition from the excited stateg to the state
f. Explicitly, the l-pole conversion coefficientDl is given
by

Dpl = F 8psl + 1d
lfs2l + 1d !! g2

1

"
Sv

c
D2l+1G1/2

3s2I f + 1d−1/2kI fi issldMspldiIgl , s33d

with ssld= l for electric sp=Ed and ssld= l +1 for magnetic
sp=Md transitions. The productDlDl8 is always real since
s−1dssld=sthe parityd. The coefficients Fksl, l8, Ig, I fd are
geometrical factors defined by

Fksl, l8, Ig, I fd = s− 1dI f+Ig−1Îs2l + 1ds2l8 + 1ds2I f + 1ds2k + 1d

3 S l l 8 k

1 − 1 0
DH l l 8 k

I f I f Ig
J s34d

and

Fksl, I i, I fd = Fksl, l, I i, I fd. s35d

The normalization of the coefficientsakk
l sQ, F, zd is such

that a00
l sQ, F, zd=1. Only terms with evenk occur in Eq.

(29).
The total angular distribution of theg rays, which inte-

grates over all scattering angles of the projectile, is given by

Wsugd = o
k

ak
lszdAk

sldPkscosugd, s36d

where thez axis corresponds to the beam axis and the
statistical tensors are given by

ak
lszd = bk

l/b0
l, s37d

wheresfor electric excitationsd f16g,

bk
Elszd = −

2

Î2k + 1
Sl l k

1 − 1 0
D−1

o
mm8k

s− 1dmSl l k

m − m8 k
D

3 YlmSp

2
, 0DYlm8Sp

2
, 0D

3E
e0

`

deeIsEl, mdIsEl, m8d

3YkkSp

2
,

p

2
+ sin−1s1/edD . s38d

e0 is the minimum value of the eccentricity, associated
with the maximum scattering angleQ0 by e0

=1/sinsQ0/2d. One can show that the coefficientsbk
El are

real, even if the orbital integrals are not. Their imaginary
parts cancel out in the sum overmm8.

For M1 excitations

bk
M1 = −

8

Î2k + 1
S1 1 k

1 − 1 0
D−1S1 1 k

0 0 0
DFY20Sp

2
, 0DG2

3 E
e0

`

deese2 − 1dIsM1, 0dIsM1, 0d

3Yk0Sp

2
,

p

2
+ sin−1s1/edD . s39d

The normalization of the coefficientsak
lszd is such that

a0
lszd=1. Again, only terms with evenak

lszd occur in Eq.(36).
In the case ofM1 excitations Eq.(39) contains onlyk

=m=m8=0 and one getsa2
M1szd=1, independent ofz. Since

for smallz the magnitude ofak
lszd decreases appreciably with

k we will only consider g ray emission after excitation
through electric multipoles, in particular, the dependence of
a2

E1 anda2
E2 on z. This dependence is very weak at energies

Elab*100 MeV/nucleon. In that case, one can use the ap-
proximate relations, Eq.(28), for excitation energies such
that j!1. This condition is met for reactions with neutron-
rich or proton-rich nuclei where the excitation energies in-
volved are of the order ofEx,1 MeV. It is then straightfor-
ward to show that

a2
E1 = 1, a2

E2 = − 2, and a4
E2 = − 0.25. s40d

We thus come to the important conclusion that in high-
energy collisions and low excitation energies,Ex,1 MeV,
the angular distribution ofg rays from decays after Coulomb
excitation does not depend on the parametersz or j.

Although the cross sections forM1 andE2 excitations do
not contain interference terms, theg decay of the excited
state can contain an interference term with mixedE2+M1
multipolarities. The angular distribution of theg rays from
the deexcitation of these states is given by[16]

WE2,M1sugd = 2ÎsM1ÎsE2o
k

ak
E2,M1szdFks1, 2,I i, I fd

3o
ll8

DlDl8Fksl, l8, Ig, I fdPkscosugd, s41d

where sM1 ssE2d is the total magnetic dipoleselectric
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quadrupoled excitation cross section and where the sign of
the square root is the same as the sign of the reduced
matrix elementki iMsM1d i fl ski iMsE2d i fld. These latter
are the same as those occurring in the radiative decayf
→ i. The ak

E2,M1 coefficients in Eq.s41d are given by

ak
E2,M1 = bk

E2,M1/Îb0
E2Îb0

M1, s42d

wherebk
l is given by Eq.s38d and

bk
E2,M1 = −

4

Î2k + 1
S2 1 k

1 − 1 0
D−1

3o
m

s− 1dmS2 1 k

m 0 m
DY2mSp

2
, 0DY20Sp

2
, 0D

3Ee0

` deeÎe2 − 1IsE2, mdIsM1, 0d

3YkmSp

2
,

p

2
+ sin−1s1/edD . s43d

Using the relations in Eq.(28) and performing the sum-
mation above it is straightforward to show that forjsRd!1

ak
E2,M1 = 0 for anyk.

Thus, in high-energy collisions, there is no interference
term from mixedE2-M1 excitations in the angular distri-
bution of emittedg rays.

The form of the expressions for the angular distribution
used here has followed that of Chap. 11 of Ref.[16]. Experi-
menters usually find it more convenient to write the angular
distribution in a slightly different form which separates the
statistical tensors that describe the orientation of the state due
to the excitation process from the geometrical factors asso-
ciated with theg-ray decay and gives the geometrical factors
the same form as occurs in the formulation ofg-g correla-
tions (cf. Ref. [16], p. 311; see also Refs.[19,20]). The gen-
eral expression for theg-ray decay into solid angleVg after
projectile scattering to the anglesQ, Fd, where the transition
takes place between the Coulomb excited statef and a lower
stateg [see Eq.(29)] becomes

WsVgd = o
kk

akk
l sQ, F, zdAksdgll 8IgI fdQksEgdYkksVgd,

s44d

where theAksdgll 8IgI fd coefficients are related to the so-
calledF coefficient fEq. s34dg for the g-ray transition be-
tween the statesI f and Ig with mixed multipolaritiesl and
l8 and mixing ratiodg f16,21g by the expression

Aksdgll 8I fIgd = fFksllI fIgd + 2dgFksll 8I fIgd

+ dg
2Fksl8l8I fIgdg/s1 + dg

2d. s45d

Note that fork=0 we haveA0=F0=1, and due to the nor-
malization used, the matrix elements, Eq.s33d, are not
needed. In most situations one is interested in the possible
mixing of E2 and M1 multipolarities in the decay off
→g. Thus, one only needs theE2/M1 mixing ratio. The
quantity QksEgd is the solid-angle attenuation coefficient

which takes account of the finite solid-angle opening of
the g-ray detectorf22g. It follows that

akk
l sQ, F, zd = akk

l sQ, F, zdFksllI iI fd. s46d

In the case where the particle scatters into an annular
counter about the beam direction(i.e., the z axis), or for
angular distributions where the scattered particle is not de-
tected at all[Eq. (36)], only k=0 terms survive. Usually the
coefficients are normalized so that

Wsugd = 1 + o
k=2,4

Bk
lszdAksdgll 8IgI fdQksEgdPkscosugd.

s47d

The alignment of the initial state is now specified by the
statistical tensorBk

l which is related to the statistical ten-
sors introduced above by

Bk
l = Î2k + 1 ak0

l /a00
l , s48d

when the particle is detected in an annular counter, and

Bk
l = ak

lszdFksllI iI fd, s49d

when the particle is not detected at allsor detected in such
a way as to include all kinematically allowed scattering
anglesd.

V. NUMERICAL RESULTS

In Table I we show the numerical results for the orbital
integral IsE2,md for a deflection angle of 10° and form
=2, 0, −2. The calculations have been done using the code
COULINT [23]. The results forg=1 agree within 1/1000 with
the numerical values obtained in Ref.[24], also reprinted in
Table II.12 of Ref.[16]. One observes that the results of the
integrals forg=1.1, corresponding to a laboratory energy of
about 100 MeV/nucleon, differ substantially from the results
for g=1 (nonrelativistic), specially for large values ofz. For
a fixed scattering anglez increases with the excitation en-
ergy. Thus, one expects that the relativistic corrections are
greater as the excitation energy increases.

For g=1 the imaginary part of the orbital integrals van-
ishes. But asz and g increase the imaginary part becomes
important. This is shown in Fig. 1 where the ratio of the
imaginary to real parts of the orbital integralIsE2, 2d is
shown forz=0.1 (dashed curve) andz=1 (solid curve) as a
function of g.

Except for the very low energies such thata0 attains a
large value, and for the very large excitation energies"v, the
parameterz is much smaller than unity. Also, at intermediate
energies the scattering angle is limited to very forward scat-
tering. It is useful to compare the orbital integrals with their
limiting expressions given by Eq.(28), i.e., the relativistic
limit to leading order inj. This is shown in Fig. 2 where the
real (solid lines) and imaginary parts(long-dashed lines) of
the orbital integralIsE1, 1d are compared to the approxima-
tion of Eq. (28) (dashed line) for g=1.1 sElab
.100 MeV/nucleond. Figure 2(b) shows the same results,
but for the orbital integralIsE2, 2d. The comparison is made
in terms of the variablej=ez which is the appropriate vari-
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able for high-energy collisions. Only forj!1 do the expres-
sions in the relativistic limit reproduce the correct behavior
of the orbital integrals. Although the imaginary parts of the
orbital integrals are small, the real parts show substantial
deviations from the approximations of Eq.(28) at intermedi-
ate energiessElab.100 MeV/nucleond.

We now apply the formalism to specific cases. We study
the effects of relativistic corrections in the collision of the
radioactive nuclei38,40,42S and44,46Ar on gold targets. These
reactions have been studied atElab,40 MeV/nucleon at the
MSU facility [25]. In the following calculations, the condi-
tions may be such that there will be contributions from
nuclear excitation, but these will be neglected as we are only
interested in the relativistic effects in Coulomb excitation at
intermediate energy collisions. In Table II we show the Cou-

lomb excitation cross sections of the first excited state in
each nucleus as a function of the bombarding energy per
nucleon. The cross sections are given in millibarns. The
numbers inside parentheses and brackets were obtained with
pure nonrelativistic and relativistic calculations, respectively.
The minimum impact parameter is chosen so that the dis-
tance of closest approach corresponds to the sum of the
nuclear radii in a collision following a Rutherford trajectory.
One observes that at 10 MeV/nucleon the relativistic correc-
tions are important only at the level of 1%. At
500 MeV/nucleon, the correct treatment of the recoil correc-

TABLE I. The classical orbital integrals forE2 Coulomb excitation. The table lists the values of the classical orbital integralsIsE2,md for
a deflection angle of 10° and form=2, 0, −2. These entries are given in the form of a number followed by the power of ten by which it should
be multiplied. The value outside(inside) the brackets are forg=1 sg=1.1d.

z l, m=2, 2 l, m=2, 0 l, m=2, −2

0.0 5.064s−3df5.052s−3dg 1.332s−2df1.332s−2dg 5.064s−3df5.073s−3dg
0.1 8.675s−4df1.105s−3dg 6.505s−3df7.621s−3dg 1.195s−2df1.205s−2dg
0.2 1.895s−4df2.897s−4dg 2.280s−3df3.276s−3dg 7.765s−3df9.487s−3dg
0.3 4.425s−5df7.849s−5dg 7.311s−4df1.296s−3dg 2.245s−3df5.470s−3dg
0.4 1.069s−5df2.122s−5dg 2.245s−4df4.920s−4dg 1.468s−3df2.728s−3dg
0.5 2.637s−6df5.599s−6dg 6.716s−5df1.821s−4dg 5.442s−4df1.251s−3dg
0.6 6.598s−7df1.402s−6dg 1.975s−5df6.627s−5dg 1.908s−4df5.431s−4dg
0.7 1.668s−7df3.169s−7dg 5.739s−6df2.383s−5dg 6.438s−5df2.268s−4dg
0.8 4.250s−8df5.580s−8dg 1.652s−6df8.492s−6dg 2.110s−5df9.201s−5dg
0.9 1.090s−8df1.906s−9dg 4.724s−7df3.004s−6dg 6.765s−6df3.650s−5dg
1.0 2.807s−9df−5.003s−9dg 1.343s−7df1.057s−6dg 2.131s−6df1.422s−5dg
1.2 1.886s−10df−1.845s−9dg 1.071s−8df1.291s−7dg 2.031s−7df2.074s−6dg
1.4 1.282s−11df−3.551s−10dg 8.426s−10df1.556s−8dg 1.858s−8df2.902s−7dg
1.6 8.788s−13df−5.699s−11dg 6.566s−11df1.857s−9dg 1.651s−9df3.941s−8dg
1.8 6.068s−14df−8.381s−12dg 5.078s−12df2.200s−10dg 1.433s−10df5.227s−9dg
2.0 4.213s−15df−1.170s−12dg 3.904s−13df2.591s−11dg 1.222s−11df6.809s−10dg
4.0 1.294s−26df−1.211s−21dg 2.362s−24df1.111s−20dg 1.464s−22df5.663s−19dg

1 2 3 4 5 6
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FIG. 1. The ratio of the imaginary to real parts of the orbital
integral IsE2, 2d is shown for§=0.1 (dashed curve) andz=1 (solid
curve) as a function ofg.

FIG. 2. Upper figure: Real(solid lines) and imaginary part
(long-dashed lines) of the orbital integralIsE1, 1d for g=1.1 sElab

.100 MeV/nucleond. The approximation of Eq.(28) is shown by
the dashed line. Lower figure: Same plot, but for the orbital integral
IsE2, 2d.
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tions [included in Eqs.(11) and(12)] is relevant on the level
of 1%. Thus the nonrelativistic treatment of Coulomb exci-
tation [16] can be safely used for energies below about
10 MeV/nucleon and the relativistic treatment with a
straight-line trajectory [9] is adequate above about
500 MeV/nucleon. However at energies around
50–100 MeV/nucleon, accelerator energies common to most
radioactive beam facilities(MSU, RIKEN, GSI, GANIL), it
is very important to use a correct treatment of recoil and
relativistic effects, both kinematically and dynamically. At
these energies, the corrections can add up to 50%. These
effects were also shown in Ref.[13] for the case of excitation
of giant resonances in collisions at intermediate energies. As
shown here, they are also relevant for the low-lying excited
states.

As another example, we calculate the Coulomb excitation
cross sections of11Be projectiles on lead targets.11Be is a
one-neutron halo nucleus with one excited bound state(1

2
− at

320 keV). Its 1
2

+ ground state is strongly coupled to the ex-
cited state with the strongestE1 transition observed between
bound nuclear states. TheBsE1d value for this transition is
0.116e2 fm2 [25]. The one-neutron separation energy is only
506 keV and the coupling to the continuum has to be in-
cluded in an accurate calculation. However, the influence of
higher-order effects in the Coulomb excitation of the excited
state in intermediate energy collisions was shown in Refs.
[27–29] to be less than 7%. We thus neglect these effects
here.

In Ref. [9] a recoil correction for the theory of relativistic
Coulomb excitation was proposed. It was shown that one can
use the equations for relativistic Coulomb excitation and ob-
tain reasonable results for collisions at low energies if one
replaces the impact parameterb by

b8 = b +
p

2
a. s50d

The advantage of this approximation is that one can use
the analytical formulas for relativistic Coulomb excitation
fe.g., Eqs.s26d and s27dg and easily include the recoil
correction Eq.s50d. We define the percent deviation

Di =
ssexact− sid

sexact
, s51d

wheresi is the cross section obtained with the relativistic
si =Rd, nonrelativisticsi =NRd, and si =RRd with the rela-

tivistic equations for Coulomb excitation, Eq.s26d, but
with the recoil correction, Eq.s50d, respectively. Figure 3
is a plot of Eq.s51d for the excitation of the0.89 MeV
state in40S+197Au collisions as a function of the bombard-
ing energy. One observes that the largest discrepancy is
obtained by using the nonrelativistic equationssNRd for
the Coulomb excitation cross sections at high energies.
The relativistic analytical equationssRd also do not do a
good job at low energies, as expected. But the relativistic
equations with the recoil correction of Eq.s50d improve
considerably the agreement with the exact calculation. At
10 MeV/nucleon thedeviation from the exact calculation
amounts to 6% for the case shown in Fig. 3. However, the
deviation of the RR treatment tends to increase for cases
where higher nuclear excitation energies are involved
f13g. The cross section for the excitation of low-energy
states is mainly due to collisions with large impact param-
eters for which recoil corrections are not relevant. For
high-lying states, e.g., giant resonances, only the smaller
impact parameters are effective in the excitation process.
Therefore, in this situation, the correct treatment of recoil
effects is more relevant.

For 11Be projectiles on lead targets at 50 MeV/nucleon
the Coulomb excitation cross sections of the excited state in

TABLE II. Coulomb excitation cross sections of the first excited state in38,40,42S and 44,46Ar projectiles at 10, 50, 100, and
500 MeV/nucleon incident on gold targets. The numbers inside parenthesis and brackets were obtained with pure nonrelativistic and
straight-line relativistic calculations, respectively. The numbers at the center are obtained with the full integration of Eqs.(11) and (12).

Nucleus Ex BsE2d 10 MeV/nucleon 50 MeV/nucleon 100 MeV/nucleon 500 MeV/nucleon
(MeV) se2fm4d sC (mb) sC (mb) sC (mb) sC (mb)

38S 1.29 235 (492) 500 [651] (80.9) 91.7 [117] (40.5) 50.1 [57.1] (9.8) 16.2 [16.3]
40S 0.89 334 (877) 883 [1015] (145.3) 162 [183] (76.1) 85.5 [93.4] (9.5) 20.9 [21.]
42S 0.89 397 (903) 908 [1235] (142.7) 158 [175] (65.1) 80.1 [89.4] (9.9) 23.2 [23.4]

44Ar 1.14 345 (747) 752 [985] (133) 141 [164] (63.3) 71.7 [80.5] (8.6) 17.5 [17.6]
46Ar 1.55 196 (404) 408 [521] (65.8) 74.4 [88.5] (30.2) 37.4 [41.7] (5.72) 10.8 [11]
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FIG. 3. Equation(51) for the excitation of the 0.89 MeV state in
40S+197Au collisions as a function of the bombarding energy. The
solid line corresponds to the use of the nonrelativistic integrals, Eq.
(19), compared to the exact calculation using Eq.(11). The same is
plotted for the other two cases:(R) with the relativistic equation
(26) and (RR) with the relativistic equation(26) using the recoil
correction, Eq.(50).
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11Be are given by 311 mb, 305 mb, and 398 mb for nonrel-
ativistic, exact, and relativistic calculations, respectively. At
100 MeV/nucleon the same calculations lead to 159 mb,
185 mb, and 225 mb, respectively. Thus, the same trend as in
the results of Table II is also observed forE1 excitations of
low-lying states.

Experiments of Coulomb excitation of11Be projectiles
have been performed at GANILs43 MeV/nucleond [30], at
RIKEN s64 MeV/nucleond [31], and at MSU(57–60 MeV/
nucleon) [32]. The extracted values ofBsE1d,0.05e2 fm2 in
the GANIL experiment is in disagreement with the lifetime
experiment of Ref.[26] and could not be explained by
higher-order effects in Coulomb excitation at intermediate
energy collisions[27–29]. However, the deduced values of
BsE1d,0.1 e2 fm2 in the RIKEN and MSU experiments are
in good agreement with the lifetime measurement[26] and
with the theoretical cross sections of Coulomb excitation.

We now study the effects of retardation in the angular
distributions ofg-ray decaying from Coulomb excited states.
We first test the range of validity of the approximation in Eq.
(40). For this purpose we artificially vary the energy of the
first excited 2+ state in38S. This would simulate what hap-
pens in the case of a nucleus with very low-lying excited
states, or very high bombarding energies. As we see from
Fig. 4, the statistical tensorsBk

sE2d asymptotically attain the
valuesB2

sE2d=1.19 andB4
sE2d=0.267 according to the limits in

Eq. (40) and the definition ofBk
l in Eq. (40), since F2

=−0.5976 and F4=−1.0690. The convergence to these
asymptotic values increases with the bombarding energies, as
expected from the conditions which lead to validity of
Exb/g"c!1, for the lowest impact parametersb, which are
the most relevant for the Coulomb excitation process. At
1 GeV/nucleon this condition is easily met for states of the
order of 1 MeV.

Finally, we show in Table III the statistical tensorsBk
E2 in

Eq. (47) for 38S projectiles at 100 MeV/nucleon incident on

gold targets and scattering to all kinematically allowed
angles with closest approach distance larger than the sum of
the nuclear radii. NR(R) denotes the nonrelativistic(relativ-
istic) values. We notice that the statistical tensors are not as
much influenced by the retardation and recoil corrections as
in the case of the cross sections. The reason is that the sta-
tistical tensors involve ratios of the integral of the orbital
integrals. These ratios tend to wash out the corrections in the
orbital integrals due to relativistic effects. On the other hand,
for scattering to a specific angle the corrections can be larger
becauseakk in Eq. (44) are determined largely by geometry
and hence they can be sensitive to both relativistic distortions
of the orbit and recoil effects causing non-straight-line
trajectories.

VI. CONCLUSIONS

We have extended the study of Ref.[13] to include retar-
dation effects in the Coulomb excitation of low-lying states
in collisions of rare isotopes at intermediate energiessElab
,100 MeV/nucleond. In particular, we have studied the ef-
fects of retardation and recoil in the orbital integrals entering
the calculation of Coulomb excitation amplitudes. We have
shown that the nonrelativistic and relativistic theories of
Coulomb excitation are reproduced in the appropriate energy
regime. We have also shown that at intermediate-energies
corrections to the low- or high-energy theories of Coulomb
excitation are as large as 20%.

We have studied the excitation of the first excited states in
11Be, 38,40,42S, and44,46Ar projectiles incident on gold and
lead targets. It is clear from the results that retardation cor-
rections are of the order of 10% –20% at bombarding ener-
gies around 50–100 MeV/nucleon. Therefore, they must be
accounted for in order to correctly analyze the cross sections
and angular distributions of decayingg rays in experiments
at radioactive beam facilities running at intermediate
energies.

Another important consequence of our study is that retar-
dation effects must also be included in calculations of higher-
order effects(e.g., coupled-channels calculations), common
in the Coulomb breakup of halo nuclei[4]. Work in this
direction is in progress.
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FIG. 4. Statistical tensorsB2
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TABLE III. Statistical coefficients entering Eq.(47) for 38S pro-
jectiles at 100 MeV/nucleon incident on gold targets.

NR Exact R

B2
E2 0.95 1.03 1.11

B4
E2 0.183 0.192 0.207
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