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Momentum distributions in stripping reactions of radioactive projectiles at intermediate energies
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The theory of one-nucleon removal in the stripping reactinalastic breakupon a light target is extended
to cover two-dimensional momentum distributions of the reaction residues with the use of realistic profile
functions for the core-target and nucleon-target interactions. Examples of the calculated projected parallel- and
transverse momentum distributions are given. The transverse momentum distributions, projections on a Car-
tesian axis perpendicular to the beam direction, show an interesting intermingling of the stripping reaction with
elastic scattering of the reaction residue on the target. We also obtain doubly differential distributions of the
cross section on the parallel- and transverse-momentum variables. The distributions depend strongly on the
value of the magnetic quantum numimrThey will be of importance for evaluating acceptance corrections in
experiments, and they lead to alignment with the possibility of anisotropic emission of subsequent gamma rays,
an interesting spectroscopic tool. Experimental data for proton strippifi§ efyree with our calculations.
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[. INTRODUCTION The early interest in momentum distributions came from
. . . . . studies of nuclear halo states, for which the narrow momen-

Smg_le-nucleon_ knocko_ut reactions with h_eavy lons, at iN+, 1 gistributions in a qualitative way revealed the large spa-
termed!a}te energies E.md. In inverse klnem_at|cs,. have be.conﬂ%l extension of the halo wave function. It was pointed out
a specific and quantitative tool for studying single-particle y Bertulani and McVoy2] that the longitudinal component

occupancies and correlation effects in the nuclear she f the momentungtaken along the beam ardirectior) gave
model; see the recent revieid]. The high sensitivity of the the most accurate information on the intrinsic properties of

method has allowed measurements on rare radioactive Spye pajg ang that it was insensitive to details of the collision

cles avgiila_ble in intensities of Ies; than one atom per geco%d the size of the target. In contrast to this, the transverse
forr].tr;]e flnct|dent t;:am. Th?_lexper;rr?(lantt)s otiserve reactltons '"Bistributions of the core are significantly broadened by dif-
w lc ast, mass;, projecties with laboratory momentum ¢, e effects and by Coulomb scattering. For experiments
kATPA/ﬁQCOH'de pen_pherall_y with a light ”“C'eaf target, that observe the nucleon produced in elastic breakup, the
;yﬁlca_lly Bef, prc(;ducmg rES|dues W'tp E‘as's_ 1, |r(; the transverse momentum is entirely dominated by diffractive
ollowing referred to as the coréc) of the assumed tWo-  gacts as illustrated3] by the angular distribution of the
body system of core plus nucleon. In the laboratory system,q.irons from the reactiolBe(*'Be ,1°Be +n)X. In this case
the momentum transferred to the core is the width of the transverse momentum distribution reflects
essentially the size of the target. Experiments and theory for
(1) reactions of neutron halos have been reviewed in Réf.It
was found that to understand the measured longitudinal mo-

mentum distributions it is necessary to take into account that

The final state of the target and that of the struck nucleon arg heavy-ion knockout reaction, being surface dominated, can
not_observed, bu_t mst_e_ad the energy Qf the f'na_‘l state of t_h8nly sample the external part of the nucleon wave function.

residue can be |dent|f|eq by measuring coincidences W'tH'he magnitude of the reaction cross section is determined by
decay gamma rays emitted in flight. Referred to as th(?he part of the wave function that is accessed, and the shape

center-of.-mass system of the prOJ?Ct'IFT" the transferred MOt the momentum distribution reflects the momentum content
mentum isk.. In the sudden approximation and for the strip-

. tion. defined below. thi " | th ; in this part. Calculationg4—6] based on a sharp-surface
ping reaction, detined below, this must equal the momen ungtrong-absorptiOI(l“bIack-disk') model could account for the
qf the struck n_ucleon I_aef_or_e the (.:O”'S'O”' The m_easured Pal5hserved longitudinal momentum distributions and also, ap-
tial cross sections to individual final levels provide spectro-

. L proximately, for the absolute cross sections. This approach is
scopm_factors for the individual angular-momentum COMPO~nirmed in the, more accurate, present work, which ex-
nents j. In complete analogy to the use of angular

AN . h : tends the theory to include the general dependence of the
distributions in transfer reactions, the orbital angular mo-

> . _differential cross section on the momentum vector.
mentuml is in the knockout reactions revealed by the distri-

buti fth it Th distributi h bi It is essential to note that the cross section for the produc-
utions of the quantitk.. These distributions are the subject i, of 5 given final state of the residue has two contribu-
of the present paper.

tions. The most important of the two, commonly referred to

as stripping or inelastic breakup, represents all events in
which the removed nucleon reacts with and excites the target
*Electronic address: hansen@nscl.msu.edu from its ground state. The second component, called diffrac-

A-1
Kejab = TkA —Ka-1-
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tive or elastic breakup, represents the dissociation of the
nucleon from the residue through their two-body interactions
with the target, each being at most elastically scattered.
These events result in the ejected nucleon being present in
the forward beam with essentially beam velocity, and the
target remaining in its ground state. These processes lead to
different final states, they are incoherent, and their cross sec-
tions must be added in measurements where only the residue
is observed. General expressions for the total and differential
cross sections for the two components have been given by I
Hencken, Bertsch, and Esbend@h . .

In a subsequent development, the knockout method was FIG. 1. Coordinates used in text.
extended to nonhalo statg-14]. For these, involving more
deeply bound nucleons, the one-nucleon stripping cross sec- Following Ref.[7], the cross section for the stripping re-
tions are much smaller than the free-nucleon reaction crosaction (c+n)+A— c+X, wherec corresponds to a specified
section on the same target; a ratio that gives a measure @hal state of the core, is given by
how much the nucleon wave function is “shielded” from the

target by the bulk of the core. This required a more elaborate dog, 1 1 D f 625 (1 ~|S(b,) ]
theoretical treatment based on the elaStimatricesS. and Bk, (2m)32 + 1< n Shlbn
S, [15,164 of the core and nucleon. For a general review of )
applications of this technique see REf], which shows that ik
very accurate theoretical single-particle cross sections are X f dre™ < Sy (bg) Yin(r) | 2
obtained in this way. However, the longitudinal momentum
distributions have continued being calculated in the blackand wherer =(p,z, »)=R,—R., so that
disk approximation. This simplification has been permissible ’
because the assumed sharp surface of the target generatesb, = |p - b,| = Vp?+ b% - 2pb, cog¢ - ¢,,)
only transverse momentum components, which are inte- o 5 -
grated out in the final result. =\r? sin’ 6+ by, - 2r sin 6b, cosé — ¢y)
In the present paper we treat the three-dimensional mo- 3)

mentum distribution of the core in stripping reactions at the

same level of approximation as the single-particle cross sedvith the symbolsb. andb,, denoting two-dimensional vec-
tions in Tostevin's calculation®,10]. UsingSmatrices from  tors, which are the respective transverse componentof
this work, we obtain identical single-particle cross section®andR;, (see Fig. 1 & (S, are theS matrices for the core
after integration over momentum and summation ovemthe +target and the neutrofor proton+target scattering.
substates. The resul(® test the reliability of the previously ~ The single-particle bound state wave functions for the
used sharp-surface approximation, giigl demonstrate that subsystem(c+n), i.e., #in(r), in Eq. (2) are specified by
the transverse momentum distributions are quantitatively anghm(r)=R(r)Y;(f), whereR((r) is the radial wave function.
even qualitatively different from the parallel momentum dis-It is not necessary to specify the total single-particle angular
tributions, and(iii) can serve to extract angular-momentummomentumj, since the assumed interaction is spin indepen-
information from the angular distributions of the residues.dent, and the depth of the single-particle potential well is
Finally, (iv) the results are of importance for calculating ac-adjusted to reproduce the effective nucleon binding energy.
ceptance corrections in experiments, and we evaluate the The cross sections for the longitudinal momentum distri-
correlations between longitudinal and transverse compobutions are obtained by integrating E@) over the trans-
nents. After a presentation of the main features of the theoverse component €, i.e., overk., and using

retical calculations, we give examples of the distributions

obtained for different values of the nucleon separation en- N : N ,

ergy $, and the orbital angular momentumSome essential f dks exl-ike-(p-p)]=2m*3p-p"). (4
numerical details are presented in the Appendix.

One gets
Il. CALCULATION OF THE DIFFERENTIAL dog, 1 1 - (7 ,
STRIPPING CROSS SECTION = ——> J d*b.[1 - |S,(by)] ]J d°p|S(by)|
dk, 2m20+1< ), o

In this section we summarize the equations used in the
calculation of stripping cross sections. The numerical calcu- %
lations were done by using a Gaussian expansion method
which is described in the Appendix. We also show the equa-
tions used for the elastic scattering cross section, which wilvherek;, represents the longitudinal componentkgf
be important to interpret the numerical results obtained for For the transverse momentum distribution in cylindrical
the stripping cross sections, discussed in Sec. Ill. coordinateskiz\s’k)zﬁkﬁ, one uses in Eq2)

2

, ©)

fw dz exd = ik,z]¢im(r)
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* arises from a comparison of the results obtained with eikonal
J dk, exfg-ik(z-2Z')]=2md(z-7'), (6)  wave functions with those obtained with classical particles
— colliding at a given impact parametér[17]. Nonetheless,
and the result is the eikonal wave function is a quantum scattering stateband

is the transverse coordinate associated to it. Thus wave-
mechanical effects, like smearing and interference, are ac-
counted for properly.
5 In the optical limit of the Glauber theory, the eikonal

2 il phase is obtained from the nuclear ground state densities and
Jd p exp(=ike - p)S(bo) Yim(r)| - the nucleon-nucleon cross sections by the relatiofi

)

Sometir_nes it i§ convenient to describg thg transverse mo- x(b)= f dq d pp(a@)p(@) Faun(@Jo(ab), (13)
mentum distributions in terms of the projection onto one of 0

the Cartesian components of the transverse momentum. This

can be obtained directly from E7), i.e.,

dog, 1 1 fx ) )
s — - 1-
el LR DCNG

x> | dz
mp -

where J; is the Bessel function of order zerp,(q) is the
dogy _ dUstr(k k) ® Fourier transform of the nuclear densities of the projectile
d?k, Y and target, andyn(q) is the high-energy nucleon-nucleon

dk, dks
o ] ) . scattering amplitude at forward angles, which can be param-
The total stripping cross section can be obtained by integtyized by[18]

grating either Eq(5) or Eq. (7). For example, from EqQ5),
using Eq.(6), one obtains

o I(NN .
27 fan(@) = ——onn(i + e eXp(— ?). (14)
Ostr= 2l + 1J dbnbn[l _|Sﬁ(bn)|2] NN A7 NN NN F( A
0
In this equationoyy, ann, and By are parameters which
fit the high-energy nucleon-nucleon scattering at forward
angles. In Eq(13) the quantitiesp,(q) and pi(q) are calcu-

lated from the radial density distributions, usudlly taken

X f d¥r|Sy(\r? sir? 9+ b2 - 2r sin 6 b, cos ¢)|2

X2 im(P)P, (9 to be of Gaussian shapes for light nuclei, and of Fermi
m shapes for heavier nuclei with parameters taken from experi-
which is the same as E@l2) of Ref. [7]. ment. For cases where more accuracy is needed, it is possible

In Appendix A we show how the integrals in EqS) and  to take the density distributions from Hartree-Fock calcula-
(7) can be evaluated numerically with use of Gaussian extions, as has been done in some recent work. This demon-
pansions of the core/nuclesmargetS matrices. strates that the theoretical uncertainty on the integral single-

The S matrices have been obtained using the eikonal apparticle cross sectiofi.e., for a spectroscopic factor of unjty
proximation for the wave functions. In this approximation is of the order of 5% for a halo staf&9] and 15% for a very
the outgoing wave of a fragment, with wave numlkeris  deeply boundl=2 state (§,=22 MeV) [20]. The precise
given by choice of input parameters influences the absolute spectro-

o scopic factors, which have been the subject of many previous
(N — L , / papers[1,8,11-14,19,2pto which we refer for numerical
= exp{lk r hv fz Az Uopdr )}' (10 details. However, it means little for the shapes of the mo-
] ] . _mentum distributions which are the focus of the present
The overlap of the incoming and outgoing wave functionyork, and it will not be discussed further here.
becomes For the Coulomb part of the optical potential the integral
1\ : in Eq. (12) diverges. One solves this by using xn*xc:
(ry )Wk’ )=Sibjexpliq -r), (1D whereyy is given by Eq(12) without the Coulomb potential
where g=k’ -k is the momentum transfer arb) is the ~and writing the Coulomb eikonal phasg; as
scattering matrix given by

, _ 1( xc(b) =27 In(kb), (15
Sb) = exdix(b)], with x(b) =~ %J dzUsp(r),

where »=Z,7,€*/ v, Z,, andZ, are the charges of projectile
(12 P o . ; : ;
_ . _ _ and target, respectively, is their relative velocityk their
and U,(r) is the appropriate optical potential for the core wave number in the center of mass system. Equatici
+target and the neutrofor proton+target scattering. In Eq. reproduces the exact Coulomb scattering amplitude when
(12) x(b) is the eikonal phase, ant=\b?+2%, whereb is  used in the calculation of the elastic scattering with the ei-
often interpreted as the impact parameter. This interpretatiokonal approximatiorf17] :
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Z,2,€

fel0) =5 7 sire(ar2)

exp— i In[SinP(0/2)] + i + 2i ¢y}, fal(0) = ikJoc db b }(gb){1 - exfix(b)]}, (20
0

(16) whereq=2k sin(6/2), and @ is the scattering angle. The elas-

tic scattering cross section @,/ dQ2=|f(6)|?. For numeri-

: . . . cal purposes, it is convenient to make use of the analytical
merical calculations since, as shown below, the elastic Sca&)rmula Eq.(16), for the Coulomb scattering amplitude

tering amplitude can be written with the separate contribu : :
tion of the Coulomb scattering amplitude included. Then, the‘rhus it one adds and subtracts the Coulomb amplitéie)

remaining integrajthe second term on the right-hand side of " Eq. (20), one gets

where ¢o=argI'(1+i»n/2). This is convenient for the nu-

Eq. (21) below] converges rapidly for the scattering at for- *

ward angles. fei(0) = fc(6) + ikJ db b J(gbexfixc(b)]
Although the Coulomb phase in E@L5) diverges atb 0

=0, this does not pose a real problem, since the strong ab- x{1 - exgixn(b) ]} (21

sorption suppresses the scattering at small impact param- _ ) _
eters. It is also easy to correct this expression to account for 1€ advantage of using this formula is that the term 1
the finite charge distribution of the nucleus. For example~&Hixn(b)] becomes zero for impact parameters larger

assuming a uniform charge distribution with radiRsthe  than the sum of the nuclear radgrazing impact parameter
Coulomb phase becomes Thus the integral needs to be performed only within a small

range. In this formulayc is given by Eq.(15) and f(6) is
given by Eq.(16), with
xc(b) =27 O(b-R)In(kb) + ®(R- b)[ln(kR)

7 7
, , =—7C+ >, (— - arctan_—) , (22)
+In(1 +V1 -b¥R?)- V1 - bR? Po=71C jo\jt+1 j+1
whereC=0.577 215 6... is Euler’s constant.

The elastic cross section can be expressed in terms of the
transverse  momentum by using the relationshigQ
where® is the step function. This expression is finite for  =d,/k? and k, ~q=2k sin(6/2), valid for high-energy
=0, contrary to Eq(15). If one assumes a Gaussian distri- collisions.
bution of charge with radiu®, appropriate for light nuclei,
the Coulomb phase becomes

— é(l — b2/R2)3’2} } ’ (17)

IIl. EXAMPLES OF MOMENTUM DISTRIBUTIONS

_ 1 2/52 We explore the consequences of the expressions devel-
Xe(b) —Zn[ln(kb) +oRb7R )}’ (18) oped in Sec. Il by calculating momentum distributions for
selected cases. The longitudinal momentum distributions,
where the error functiol; is defined as corresponding to a projection on the beéry) axis, turn out
to be very close to those obtained in the simpler black-disk
® ot approximation4—6]. For this reason, a comparison with the
Ei(x) = f —dt. (19 numerous experimental data available is hardly necessary,
x t but some references are given. A general discussion of lon-
gitudinal momentum distributions can be found in Réf.
This phase also converges las-0. In Eq.(17) R=R,+R,, For the distribution projected to an axis perpendicular to the
while in Eg. (18) R= \s'R‘23+ Rf whereR; andR; are the re- beam axis, the situation is different. We find in all cases an
spective projectile and target radius. The cost of using thénteresting intermingling of momentum components arising
expressiongl7) and(18) is that the Coulomb scattering am- from stripping of the nucleon and from elastic scattering of
plitude becomes more complicated than Ekf). Moreover, the core fragment on the target. The latter mechanism is dif-
we have numerically attested that the elastic and inelastitractive for light targets and Coulomb dominated for heavy
scattering cross sections change very little by using B8.  targets. There is very little useful experimental evidence on
and(18), instead of Eq(15). the transverse momentum distributions, as only the observa-
In calculations involving stripping, the final state Cou- tion of coincident gamma rays can separate out the differen-
lomb interaction between the core and the target is taken intdal cross sections to individual final level@&Even for halo
account by using the eikonal-Coulomb phase shift of Eqnuclei, such as'Be and'*C, 20—30% of the inclusive cross
(15) in the calculation ofS.. However, in the calculation of section goes to excited levels with differdntalues)
diffraction dissociation botls. and S, are calculated using We have chosen to represent the momentum distributions
the eikonal-Coulomb phase shift of Ed.5). graphically in the following way. Projections onto a single
The calculation of elastic scattering amplitudes using ei-Cartesian coordinate are shown for one half axis @ttig P,
konal wave functions, Eq¢10), is very simple. They are distribution is symmetric in the eikonal approximatjofor
given by[17] cases where the magnetic quantum nunbediffers from

034609-4



MOMENTUM DISTRIBUTIONS IN STRIPPING..

PHYSICAL REVIEW C 70, 034609(2004)

zero, we have weighted the differential cross section with the ' ) ' ) '
multiplicity of 2, so that the sum over alh components 1071 9Be(''Be,'0Be )X _
gives the total cross section. The spatial momentum distribu- & 60 MeV/nucleon
tion does not depend on the azimuthal angle. It is therefore 3
convenient to present it as a two-dimensional function of the 075 2 1
parallel and the transverse momentum with the definition £19°7 \"-----
do. str d30’str S
— =27k, , (23 8
dk, dk, d%k , dk, §10'3' \\ ]
which normalizes to the total cross section when the integra- \\
tion is extended over the negatikgaxis. © \ N
10'4- PZ (I'I,/= 0,0)\ 1
A. Longitudinal momentum distributions : : N :
0 100 200 300

Parallel Momentum P, [MeV/c]

f d3re e s (r)

X
76.4 MeV/nucleon, /=11

MeV/c)]
rd

$0.04- N .
total

0.024 \ N E

Cross Section [fm

o
o
o

120

160

4 80
Parallel Momentu

m [MeV/c]

FIG. 3. Longitudinal momentum distribution for the residue in
the *Be(*B, "Be,¢)X reaction at 76 MeV/nucleon as studied in the
experiment of Enderst al. [14]. The proton binding energy for this
proton halo state is 0.137 MeV. The dashed curves are the cross
sections calculated in the transparent limit, re-scaled by a factor of
0.35. The narrower full drawn curves are the results of the present

ber [21] calculated the momentum spectrum of neutrons
by unity. This leads to the expression the experiment of Aumanet al.[12]. The dashed curve is the cross
of the wave function. The full drawn curve is the result of the
the stripping cross sectidthe term coined by Serber, see his dot-dashed curve shows that the weak shoulder is not present with
state wave function. This is an excellent approximation for
narrow transverse and longitudinal momentum distribution ee core-target and nucleon-target cross sections by means
proximation for reactions of nuclei heavier than the deuteron, o of typically 0.95 to get agreement with the, more ac-
of 25 for deeply bound nucleons. The momentum distribu- N\ I12C(SB,.7Be
of the I=0 'Be neutron halo and the=1 ®B proton halo
such as’Be, is surface dominated and samples only the mo-
this: The-high momentum componergtee “shoulder) seen
completely in the knockout reaction, which cannot “see” the
both m components are much narrower than in the
gument[6] accounts for this: Projected onto tfey) plane,
work. The thin curves show individuah=+1 components with the
the target. sums given as thick lines. The black-disk calculat{ont shown

The deuteron was the first halo system to be studied. Ser-
from deuteron breakup on a light targe_t in an qpproximation FIG. 2. Longitudinal momentum distribution for the residue in
that amounts to replacing the cdgamatrix S.(b.) in Eq. (2) the QBe(lOBelIOBegS)X reaction at 60 MeV/nucleon as studied in
do, 1 1 2 section calculated in the transparent limit, re-scaled by a factor of
Str . .. .
= , (24 0.535. It has a high-energy component arising from the inner lobe
Pr, ~ 2m32+ 1("”2m 29 grengioy zomp g
. . . resent work. The black-disk calculatiomot shown is essentially
WhereUpT is the proton-target reaction cross section, so tha|Ei1distinguishable from this, except for the high-momentum tail. The
comment i_n Ref[_ZZ])_ is that of a free proton, and the mo- an assumed nodeless Wave function with the same binding en-
mentum distribution is the Fourier transform of the bound—ergy (0.504 keV.
the deuteron, and it served later to explain qualitatively why,ation theS matricesS.(b,) and S,(b,) (see Fig. 1 are re-
early studies of stripping reactions of halo nuclei observeiﬂaced by step functions with radii chosen to approximate the
r
[23,24. . of two parameters, a target radius and a minimum-impact
However, the transparent-core limit is never a good apy,rameter. In the following we have scaled the latter by a
It overestimates the stripping cross section by a factor 2 for a
pronounced halo system such’@Be, and by up to a factor 0.06 — ,
tions are also modified in a significant way by the absorption
given by the cores matrix S.(b,) as shown by the examples
shown in Figs. 2 and 3. The underlying reason is that the
knockout reaction of a heavy ion on an absorptive target,
mentum components there and in the tail of the wave func-
tion. The case of'Be in Fig. 2 is a good demonstration of
in the S.(b.)=1 approximation arise from the inner lobe in
the wave function of the secorglstate and vanish almost
interior of the projectile.
In the case of thé=1 knockout on’B, shown in Fig. 3,
transparent-core approximation, and tme0 state is sup-
pressed relative to the+1 states. A simple geometrical ar-
the two lobes om=0 wave function are oriented along the
axis and shielded by the core from interacti@aone with
The sharp-cutoff mod€l3,5,6 has been a useful tool for gives very similar results. Figure 4 of Rgl] compares a similar
discussing parallel-momentum distributions. In this approxi{black-disk calculation with experimental data.
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——— ; . . 0
- ~ 4 10 T T T T T T
0008 N 9Be(34Ar,33Ar )X N 9Be(1'Be.19Be X ]

o 68.2 MeV/nucleon _ \, e(1'Be,1'Be )
3 Parallel-momentum, L=2 1 T 4 \ 60 MeV/nucleon
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FIG. 4. Longitudinal momentum distributions for the reaction

%Be(**Ar,**Ar(3/2") at 68.2 MeV/nucleon. Thid=2 neutron- FIG. 5. Transverse momentum distributi¢fall drawn) for the

removal reaction leads to a final 37&vel bound by 18.42 MeV. reactiongBe(llBe,loBegS) at 60 MeV/nucleon. The corresponding

The solid curves represent the exact calculations and the dashéshgitudinal momentum distributiofdashedlis shown for compari-

curves the sharp-cutoff approximation. son. The dot-dashed curve is the calculated elastic cross section for
the core.

curate, total cross sections. This adjustment has essentiakl)érse momentum distributions. At large impact parameters
no mfluenc_e on the calculated sha_pes. For _the two hf'ilo CaS@e Coulomb force still has a strong influence, especially for
discussed in Figs. 2 and 3 thgre is essentlally no d|fferencpleéwy targets, which for halo systems make Coulomb disso-
from the more exact calculatlon.. Th(_e same is true for thesiation the dominant breakup channel.
deeply bounds state shown later, in Fig. 7. , In Fig. 5 we compare the longitudinal and transverse mo-
~The case of a deeply.boungd Stite V\ggfhz is shown in mentum distributions for the reactiofBe(*'Be,'°Be) at
Fig. 4. The reaction “Be(*Ar,™Ar(3/2%)) at 0 MeV/nucleon. The transverse momentum distributions
68.2 MeV/nucleon has a separation energy of 18.42 Me\{solid curvg has for small momenta the same shape as the
and has been studied experimentally by Gedal.[25]. The  longitudinal one(dashedi but is lower in intensity by about
solid curves are exact calculations and the dashed curves at@%. The missing cross section shows up as a broad distri-
obtained with the sharp-cutoff approximation. In this casebution with an oscillatory pattern, which we interpret as elas-
there is a noticeable difference between the two approximaic scattering of the core fragment simultaneously with the
tions. stripping of the neutron. We demonstrate this by calculating
Finally, we draw attention to an interesting effect thatthe core-target elastic cross section, which shows a similar
C|ear|y is outside the scope of the present paper. The expem)attel’n with the minima characteristic of Fraunhofer scatter-
ment on®*Ar [25] shows an excess of intensity at the low- iNg. The minima are not in the same place, however, because
energy side of thd=0 and|=2 momentum distributions. ©f the condition that the neutron be absorbed in the stripping
This cannot be accounted for in the eikonal approximation ageaction. A similar broad component appears in the trans-
presented here, since it does not contain multistep time déerse momentum distribution of the core fragment in
pendence, does not conserve energy, and yields symmet§@upled-channels calculatiof26].
line shapes. A similar low-momentum tail was observed in For the case of'Be, bound by 0.504 MeV, the large size
the |=0 momentum distributions from neutron knockout on of the halo allows most absorption processes to occur with-
the 1'Be and®°C halo stateg26]. In this case, it was inter- Out simultaneous elastic scattering of the core. For more
preted as arising from the diffractive reaction channel andound states the two mechanisms become increasingly inter-
could be quantitatively accounted for in a coupled-channelgingled. Already in the stripping of the halo neutron'a€,
calculation. However, diffraction dissociation is a small con-bound by 1.218 MeV, the tail from core scattering is much
tribution to the cross section in the case®¥r and is hardly ~ stronger, as seen in Fig. 6, and for {0 neutron knockout
the explanation here. We have no explanation for this asymfrom **Ar, bound by 17.06 MeV, the two mechanisms are no
metry, which has been seen also in other cases, and whidanger distinguishable, as seen in Fig. 7. The case of knock-

remains an interesting problem for future investigations. ~ out of a deeply bount=2 neutron, also fromi*Ar, is shown
in Fig. 8, which again shows a transverse momentum distri-

bution that is broader than the longitudinal distribution

shown in Fig. 8. Note the different momentum dependence
Transverse momentum distributions depend more stronglgf the individualm components, which can easily be under-

on the details of the nucleus-nucleus interaction than do thstood from geometrical properties of the spherical harmonics

longitudinal momentum distributiong]. The nuclear size, [6].

the diffuseness of the nuclear matter distribution, and the The longitudinal momentum distributions are not affected

core-target Coulomb repulsion all contribute to the trans-hy elastic scattering of the core fragment. The basic reason

B. Transverse momentum distributions
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1] T v T T T ] T T T T g T T T
10T 9Be(15C,14C,,)X _00031 9Be(34Ar,33Ar )X
) \ / ] ) =~ 68.2 MeV/nucleon
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1074
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0 100 200 300 Momentum [MeV/c]
Momentum [MeV/c]
o FIG. 8. Transverse momentum distributidfoll drawn) for the
FIG. 6. Transverse momentum distributifll drawn) for the | =2 knockout reactioiBe(**Ar, 33Ar) at 68 MeV/nucleon, corre-
; 9p (15~ 14 ’ '
reaction “Be("C,"'CyJ at 103 MeV/nucleon. The parallel- sponding to the 3/2excited level in the core with an effective

momentum distributior(dashegl has been studied experimentally neytron separation energy of 18.43 MeV. The longitudinal momen-
[19,26. The influence of the Coulomb interaction is small, but vis- y;m distribution(dashedl is shown for comparison.

ible with the log scale, for this target-core combination. The curves
labeled “no Coulomband “(=Z)” represent a calculation with the

target charge set to zero and to —4, respectively. lomb interaction gives a broader momentum distribution,

suggestive of an interference effect. There is an interesting
.. . way to explore this.
for this is that the forces acting on the core fragment are It is well known that the higher order Coulomb effects,

:l)zggtmjesz g;ﬁﬁ?oqoagdn[ﬁv g;fzects'grgvﬁéézetﬁgg;ﬂ OJI;'e de e.g., to second order in perturbation theory, carry information
! 9 . P 9 on the absolute sign of the charge of the particles. In atomic
flection of the core fragment is small. For the same reaso

o R . rbhysics this is often referred to as the Andersen-Barkas ef-
the longitudinal momentum distributions are also relatlvelyfect which reflects contributions of odd powers in the pro-
insensitive to Coulomb effects. !

. jectile charge on stopping powers and ionization probabili-
\We now examine how the Coulomb force affects theties. In nuclear physics this idea has been explored in the

transverse momentum distributions. In the case of a neutrogutudy of dynamical effects in Coulomb dissociati@7]. We
ng’elt d?rlé?:?iii tr‘]l'%gorr:sﬁ\l,tvi% f(;?srgiLhuii(t)anrgigfltzggcgfetgnsﬁave carried out_calculations re_versing_ the sign of the t_arget’s
light target are here illustrated by carbete6) on beryllium acharge but keeping all .nuclear interactions constant. Fl_gure 6
L . shows that a hypothetical core-target Coulomb attraction, as
(Z=4), shown in Fig. 6. The effect is small anq would hardly could be expected, gives an even broader distribution. The
be measurable. We note, however, that leaving out the Couygason for this is that the elastic scattering at large transverse
momenta is dominated by the far-side scattering contribu-
tion, in which the nuclei pass by close to each other. For a

0.008 y T

v T
-\\\ 62'—”29&9:{;?‘:,3;?:;‘; )E(o ] negatively charged target both nuclear and Coulomb forces
. u , L=

interfere constructively, leading to larger deflection angles.
The Coulomb effect becomes important for heavier tar-
gets. To illustrate this, we compare in Fig. 9 the transverse
momentum distributions for thé'Be ,'%Be) reaction on sili-
con(upper paneland on leadlower pane) targets. One sees
that the momentum distributions are somewhat distorted by
the Coulomb field for a silicon target, while for a lead target
the effect is huge and the outcome is completely dominated
by Coulomb repulsion. The transverse momentum transfer to
the core fragments after the stripping can be roughly esti-
0.000 . r AR y mated by the relatiodP,=2Z.Z:€*/bv, whereb is the im-
0 100 200 ; PR ; _
[Momentum [MeVic] pact parameter ang is the prqpcﬂle vglocﬂy. For the reac
tion on a lead target, the minimum impact parameteb is
FIG. 7. Transverse momentum distributifnll drawn) for the ~ =10 fm, and withv =0.4c, we obtainAP.=220 MeV/c.
I=0 knockout reactior’Be(>*Ar,33Ar(1/2%)) at 68 MeV/nucleon  This agrees well with the upper limit of the calculated dis-
and with a neutron separation energy of 17.06 M&8]. The cor-  tribution; the broad peakower panel of Fig. 9is approxi-
responding longitudinal momentum distributicashedl is essen- mately one-half of that value.
tially indistinguishable from the calculation in the black-disk ap-  Finally, we remind the reader that the present paper is an
proximation(dot dashey analysis of the stripping reaction, also called inelastic

2
[fm?/(MeV/c)]
o
b

0.004+

0.002+

Cross Section
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0.4 . . . IV. CALCULATION OF THE DOUBLE-DIFFERENTIAL
-------- no Coulomb 1 STRIPPING CROSS SECTION AND COMPARISONS
with Coulomb . WITH EXPERIMENT

0.3}

A. Alignment of the reaction residues

Except for the special case in which the wave function
@ factorizes in Cartesian coordinates, the longitudinal and
1 transverse momentum components will be coupled. This is
of primary importance for the analysis of experiments in
which the detection system limits the acceptance of events to
a certain volume in momentum space, a problem that until
now has been treated in simple approximations. The selec-
tion in (P,,P,) space may also in special cases provide an
additional spectroscopic tool. In order to illustrate the phe-
| nomenon, we plot in Fig. 10 the double differential cross
0.2F b ] sectiond?c/dP,dP, for the reaction of a deeply bound
: ®) =2 state calculated from E@23). The momentum distribu-
T, tions for thel=0 and the threé=2 states are shown sepa-
00 100 200 300 rately. For the casé=2, the distributions for the threm
Py [MeV/c] states are peaked in different regions of ByeP | plane. The
maps of Fig. 10 are clearly necessary input to an accurate
FIG. 9. Transverse momentum distributions*8Be fragments ~ calculation of the experimental acceptance.
for the reactior(*'Be ,1°Be) at 80 MeV/nucleon. The soligHotted We have already pointed out that the reactions favor the
curves includgdo not includg the core-target Coulomb interaction. formation of residues in states with the maximum absolute
The upper pangl) is for Si targets, while the lower pang) is for ~ value of the magnetic quantum number=+l (with the
Pb targets. Changing the sign of the charge of the target yields thguantization axis taken to be the beam directidrhis (pos-
dashed curves. sible) alignment effect implies gpossiblg anisotropic emis-
sion (in the center-of-mass systgraf gamma rays emitted
after the reaction. This is a tool for identifying multipolarities
breakup. For experiments that only observe the core fragef the gamma transitions and spin sequences in the product
ment, there is also an incoherent contribution from elastiawucleus. The fact that for different values of the main
breakup, which is given by the coherent sum of the contricontributing cross sections are located in different areas of
butions from diffraction dissociation and Coulomb dissocia-the (P,,P,) map suggests that the alignment effect can be
tion. The latter becomes dominant for the reaction@e  enhanced by making cuts in the momentum components. A
[3] on lead and will lead to momentum distributions that, intheoretical example of such an application has been given in
principle, are different from those shown in Fig. 9. Fig. 12 of Ref.[1], which shows the calculated angular dis-

300 I=0
x10-6
200 4
19
\ 7
2

1
100 - 14 4
> 94

do/dpy [fm? / MeV/c]

200

o
i
T .
1

—x
Ea—y

do/dpy [fm2 / MeV/c]

FIG. 10. Contour plots for the
1=0,2 knockout reactions
°Be(**Ar,%%Ar)X at 68.2 MeV/
nucleon. The contour lines are
equidistant. The projections on
one Cartesian coordinate axis
were illustrated in Figs. 4, 7, and
8. The absolute values of
d?o/dkdk, [in fm2/(MeV/c)?]
are given by the numbers in the
contour plots, which are to be
multiplied by the factors shown in
each panel.

/

R MeVi]

P [MeVic]

P, [MeVi/c] P, MeVic]
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T T T T T = T T
9Be(8B,7Be )X

1. ] 41 MeV/nucleon
) 200 1
wn
8
& 100 1
;0 § ]
. 8 50 ]

005 0 05 1 20
cos 0
10 4
FIG. 11. Gamma-ray angular distributions for a 3/ 1/2 ]
transition with alignment parameters corresponding to s@b the 5]

text) obtained by a central cut on the parallel momentum. Calcula-
tions are shown for the multipolaritig2, M1, and for mixed tran-
sitions withE2/M1 amplitudes of £1.0.

-200 -100 0 100
Py [MeV/c]

o ] ) FIG. 12. Inclusive transverse-momentum distribution for the
tributions for two different spin sequences. For the examplgesique in  the 956(859175%5))( reaction measured at

given in Fig. 11, then=2 fraction in the reaction residues is 41 MeV/nucleon[30]. The theoretical calculatioffull drawn) is

(“set 1) 58% as compared with 40% for a population with based on the same parameter set as Fig. 3, and the only adjustable
statistical weights. Selecting reactions wiky values be-  parameter is théarbitrary) scale. The binding energy for this proton
tween -50 and 50 MeW (“set 27) increases then=2 frac-  halo state is 0.137 MeV. The dot-dashed and dashed curves are the
tion to 85% and reduces the count rate to one-half, correindividual contributions of th€Be ground state and first-excited
sponding to a net gain in sensitivity. Limiting in addition the state, respectively. The angular resolution in the experiment broad-
values of P, to values between 85 and 165 Me&}/gives ens the data by approximately 4%. This has not been included in the
only a marginal improvement: The=2 fraction increases to theoretical curves.

88% but at the cost of reducing the intensity by another ) )
factor of one-half. experiment by Kelleyet al. [30]. In spite of the absence of

As an example of a possible application of the alignmen@@mma-ray coincidence da’ga, this i; a favorable case because
effect, we show in Fig. 11 angular distributions of gammathe ground-state cross section domlr_1ates and because the ap-
rays in the center-of-mass system calculated from the expreBroximately 15% branch to the excited level also had
sions given by Yamazaki2g]. The example is for an as- and ha; an.al_most identical shape. Flggre 12 shows th_at our
sumed 3/2 to 1/2 cascade as ifPAr and for various as- calculation is in excellent agreement with the data, which it
sumed multipoles and mixing ratios. The a"gnmentreproduces over two orders of magnitude in cross section.

parameters correspond to set 2, which gives results that arg'eré are several measurements of the longitudinal-
already approaching pure= +2 alignment. Without the cut momentum distribution fofB proton knockout; Fig. 4 of

on P, the anisotropy would be only half as big. Ref. [1] presents a comparison of high-energy data with a
black-disk calculation, essentially indistinguishable from

Fig. 3 of the present work.
Our second comparison with experimental data illustrates
The present work deals with an extension of a theoryhow the calculations in the present work may be applied
[9,1Q that has been tested in numerous experiments. As irtoward clarifying a much more complicated issue. The reac-
dicated in Sec. Il A the longitudinal momentum distributions tions and structure of the two-neutron halo nucl&s$ have
are well in hand, both experimentally and theoretically.attracted much interest. It is a Borromean system in the sense
There is little reason to doubt that the same is the case for thiaat although the three-body system, consistinglofand
transverse-momentum distributions calculated here. Howtwo neutrons, forms a bound state, none of the possible two-
ever, there are few good data sets to compare with. Essebody subsystems have bound states. Hence the stability of
tially all measured transverse distributions that we are awaré'Li is brought about by the interplay of the core-neutron and
of are superpositions of contributions from sevdrablues the neutron-neutron interactions, which must lead to a
(see the large set of inclusive momentum spectra reported kstrongly correlated wave function with the two neutrons spa-
Sauvanet al. [29]). For these, coincidence measurementgially close together. Barrancet al. [31] found that attempts
with gamma rays would be required to provide detailed testo understandLi via breakup reactions are made difficult
of our calculations. However, the proton knockout®his by important final-state interactions, so that the primary
an exception to this. mechanism is removal of a single neutron followed by the
For®B, the inclusive transverse-momentum distribution indecay in flight of the unstabfLi. The slow neutron emerg-
the knockout of the halo proton has been measured in thiag from this decay carries no direct information on tfiei

B. Comparisons with experiment
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10 —————— relative core-particle wave functions of the syst&ti+ n.
The sudden approximation suggests that the same wave
functions should be used for calculating tBenatrices(pro-
file functiong for *Li treating it as a neutron®.i composite

T 100 A ;

§ 10 as described in Ref9]. The three spectroscopic factors are
§ then obtained from an adjustment to the differential cross
< section of Fig. 13.

'g 10-1 - The calculated transverse-momentum distributions for the
= assumed three components were folded with the experimen-
g tal resolution. The sum of the resulting distributions,
B 2 weighted with the unknown spectroscopic factors, were ad-
S 10

justed in ay? analysis to the experimental result as shown in
Fig. 13. Per degree of freedom, the goodness of tH8%jtis
x>/ v=1.38 for absolute spectroscopic factors of Q88

K .
, .
4 " . s\

-300 200 -100 O 100 200 300 (15172), 1.91(16) (Opy;), and 0.1210) (0dsyp). In view of the
many approximations made in this analysis, it is probably
py [MeVic] satisfactory that the sum of the spectroscopic factors is 3.0,

) o where the sum-rule value is 2. Re-normalized to the sum, the
l_:IG. .13. Inchsnve _trarzlsvlelrs.e-lrglqmentum _dlstrlbutlon for the q)ative contributions are 33)%, 645)%, and 43)% in ap-
residue in the inclusivet’C(*Li, _Ll)x reaction measureo! at proximate agreement with the analysis of Simeiral. [32]
e e ot o121, e above, o obaine 45% or i state. The etos
Lo Gited do not include systematic contributions arising from the
scribed in the text. - - . L .
theory or contained in the experimental data. It is interesting
structure: its energy spectrum reflects properties of both tht9 compare with the neighboring nucletf8e [11], also with
initial and final state. eight neutrons, for which thedg,, contribution to the one-
Simonet al.[32] showed that this problem can be circum- neutron knockout reaction appears to be much larger, of the
vented by reconstructing the momentum vector of the  order of 50%.
intermediate from the observed momenta’of and a neu-
tron following a reaction on a carbon target. In an experi-
ment at 287 MeV/nucleon they obtained the best resolution
for the projected transverse-momentum component and ar- The present work has extended the theory of one-nucleon
rived at the spectrum shown in Fig. 13. The momentum resostripping reactions (inelastic breakup to cover two-
lution (full width at half maximum was approximately dimensional momentum distributions of the reaction residue
55 MeV/c [33]. Their analysis was based on a simplified with the use of realistic profile functions for the core-target
model using analytical approximations to the momentum disand nucleon-target interactions. The parallel-momentum dis-
tributions and found the spectrum to require(as;»)? com-  tributions, projections on the beam directiBy are not ap-
ponent of(45+10%, the rest beingOp,,,)>. They obtained preciably different from those obtained in the “black-disk”
further confirmation of this interpretation by measuring theapproximation used in earlier work. On the other hand, the
angular distribution of the neutron relative to a quantizationprojections on the transverse direction, here referred & as
axis taken along the recoil direction of th&.i composite.  are very different from the projections d#. For halo sys-
This distribution showed the forward-backward asymmetrytems they show a weak component, which represents an ad-
characteristic of interference between final states of oppositditional mechanism in which the residue has scattered elas-
parity. tically on the target. For more strongly bound systems the
For the calculation here we approximate i ground  two processes, stripping and elastic scattering, become in-
state by an inerfLi core coupled to a neutron pair in a separable, and the distributions Bpare broader than those
mixture of (1s,/,)?, (0py,2)2, and(0ds,,)? states. We assume a on P,.
two-body model, thus neglecting interference effects, and ad- The doubly differential distribution of the cross section on
just the single-particle wave functions to reproduce the efthe parallel- and transverse-momentum varialiles P, )
fective neutron separation energies. The two-neutron separhas for a given angular momenture 1 a characteristic be-
tion energy is 0.3 MeV and to this comes the averagehavior for the different components of the magnetic quantum
excitation energies of the three statesni. From the sys- numberm. This will be of importance for evaluating accep-
tematics in Fig. 6 of34] augmented with data for thedf),  tance corrections in experiments. Thedependence of the
neutron states in neighboring nuclei we estintdté average  cross sections leads to alignment of the residues and conse-
excitation energies to 0.2, 0.5, and 1.5 MeV for the threequently to anisotropic emission of subsequent gamma rays.
single-particle states, respectively. In the spirit of the suddehis effect can be exploited for identifying spin sequences
approximation, we take these to be the center of gravity foend gamma-ray multipolarities as illustrated in the example
the multiplets formed by the coupling to tHe&i spin and  in Fig. 11. A measurement of the transverse momentum dis-
arrive at effective neutron-separation energies of 0.5, 0.&ribution in stripping of®B on a light target is in excellent
and 1.8 MeV, still in the same order, which determine theagreement with our calculation, which reproduces the experi-

V. CONCLUDING REMARKS
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mental result accurately over two orders of magnitude in
cross section. We have also attempted a more tenuous appli- Fim j(K..Kzbn) = Cima; | dp p dz dpR(r)Piy(cos 6)
cation of the theory to the complex case of neutron knockout

on the two-neutron halo nucledd.i.
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APPENDIX: GAUSSIAN EXPANSION METHOD FOR
STRIPPING REACTIONS

Using the explicit form of the spherical harmonics

21+1 | —m)! )
Yim(F) = (= D)™/ 4; \/%Pm(cos@)ém"S

= C;Pim(cos 0)ém?

(A1)
and
ke r =k, r sin 8 cod¢,— ¢) + kg cosé.
Part of the integral in Eq2) is
Fim(K Kz, 0p)

(A2)

=f d3re ke S.(be) th(r) = CmJ drr? sin 6 d6 d¢

X expg{—i[k,r sin 6 coq ¢y — ¢) + k,r cos 6]}
X S(Vr? sir? 0+ b2 - 2r sin 6b, cog ¢ — ¢))
X R(r)P;y(cos §)em?. (A3)

To simplify the calculations we can expreSgh,) as an ex-
pansion in terms of integrable functions. T&enatrices can
be well described by the expansion

N
S(b) = > o exp—bZ/B7],  with ;= %. (A4)
j

Good fits for realisticS matrices were obtained witR=20,
i.e., with 20 complex coefficients; andR =10-20 fm, de-

pending on the size of the system. Since the real part of the

S matrices has the usual behavior &{b.) ~0 for b, <R,

Fim,j(K_ Kz bn) = Cimarj expl = bﬁ/sz]f dp p exd~ p? 7]
X f dz exd - ik,z]R/(r)P,,(cos 6)

X J dgpe™ exp(~ ik  p cod ¢y~ ¢)}

andS.(b,) ~ 1 for b,>R, whereR is a generic nuclear size, Thus

one of the coefficients of the expansion in E44) is q;

=1, andg;=c, which we take as thg=0 term in the expan-

sion.
We now use the surfA4) and the equation

oo

exp(-iz cos¢) = 2, iPI(2)€P?,
pme

(A5)

valid for any complexz, in Eq. (A3).
The integration in Eq(A3) will then involve functions of
the form

xexp[ 20 zb Dcod - dm)} . (A7)
B
Using the expansiofA5), we can write
2pb,
expl- ik, p cos( by~ ¢)}exp{% cos(¢p - ¢n)]
i
sptp’ . 2pby, .
=2 iPP Jp(klp)ap(u—z)exp[npwk— )]
p.p’ Bi
xexdip' (¢ = ¢n)]. (A8)
Since
J dpeme POP P = 25, 0
then
- , 2pb,
f dgpe™ exp{—ik  p cos ¢y - d>)}e><p[ & cog¢ - ¢n):|
i
(A9)
=27i™ exf - im¢,] >, Jp(klp)pr<i2”—t2)”>
p Bi
xexfip(éy+ ¢n)]. (A10)
]——lm,j(kL!kZ! bn)
= 2mCii My exi{ - ime,lexd - b/ 57]
xS exip(dit ]| o pisp)
p 0
X exd - pZ/BjZ]Jm_p(i ZpEn)f dz
B /)
Xexd - ik,z]R(r)Pim(cos 6). (A11)
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Upon squaring Eq(Al1l), inserting in Eq.(2), and inte-
grating overdy and ¢,,, we can use/dpeP?e P ¢=274,
and we get

dO-StI‘ 2

k. dk, dk, 20+ 1[0

X 2 C|2m|~’4lmp(kL ) kzv bn)
m,p

dbyby[1 ~[Si(by) ]

2
’

(A12)
where

N o0
AmpK 1k bo) = 2 o exp— by 57] f dp pJy(k,p)
j=0 0

xexy - pZ/sz]Jm_p<i 2; 5“)
j

where
xf dz exd - ik,z]R(r)Pym(cos 6).

(A13)
Since
I (x)=i7%J,(ix),

wherel ,(x) is the modified Bessel function, one gets

PHYSICAL REVIEW C70, 034609(2004)

Bimp(kz b p) = 2 oy exid - b/ B lexd - p?1 B
J

2pb\ [
X |m_p< Z;)f dz
J —0oC

xexd - ikz]R(r)P,(cosf). (Al7)

Using the integral of Eq(6) in Eq.(A12) one gets for the
transverse momentum distribution

dog, 2w
dk, 21+1

f dbb,[1 -[S,(b)P1X CZ,
0 mp

X f 2,44 Dimp(k, b 22, (A18)

N

Dimp(K,,bn2) = 2 @) exi - by 7] f dp pIp(k,.p)
j=0 0

2pb,
xXexd - PZ/BJ'Z:“ m—p( ’82n
]

)Rl(r)Pm(cos 0).

(A19)

The formulas above are also useful to check the quality of

Aimp(K 1k, 00) = > o exf - b/ 57] f dp pJy(k,p)
j 0

the Gaussian fit, EqA4), to obtain the momentum distribu-
tions. One can compare the direct numerical integrations us-

ing Eq.(A16) with

X ex ~ pzlﬂjz]|m_p< 2;5”” dz
-

dk,
xexd - ik,z]R/(r)P,,(cos 6),

(A14)

where an irrelevant phas& P was dropped off, as only the
absolute value o4, enters Eq(12).

The first term of the Eq(A14), with g;=> andq;=1 can
be calculated using,(0)=4,,.

Using the integral

I

in Eqg. (A12) one gets for thdongitudinal momentum distri-

bution
dog, 27 fw
dk, 21+1J,

XE Clsz dp p|BImp(k21 bn.P)|2, (A16)
m,p 0

1
dk, k, Jp(k p)dp(k, p) ==d(p=p'), (ALD)
p where

dbyby[1 ~[Sy(by)[*]

where

dO'str _

o0 2m
f dppf d¢
0 0

L
o | a1 -ls S

0 m
) 2
X f dzexd - ikzgim(r) | |S(be)]?
—2| +1 o dbnbn[l |Sn(bn)| ]Em CImJ‘0 dp p

X |Zlm(kzap)|28(bmp)a (A20)
Zim(Kzp) = f dz exd - ik z]R (r)Piy(cos 6),
2 /
S(byp) = f de|S(\p? + b2~ 20, cos )2,
0
(A21)

which is the same as E¢).
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