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The theory of one-nucleon removal in the stripping reaction(inelastic breakup) on a light target is extended
to cover two-dimensional momentum distributions of the reaction residues with the use of realistic profile
functions for the core-target and nucleon-target interactions. Examples of the calculated projected parallel- and
transverse momentum distributions are given. The transverse momentum distributions, projections on a Car-
tesian axis perpendicular to the beam direction, show an interesting intermingling of the stripping reaction with
elastic scattering of the reaction residue on the target. We also obtain doubly differential distributions of the
cross section on the parallel- and transverse-momentum variables. The distributions depend strongly on the
value of the magnetic quantum numberm. They will be of importance for evaluating acceptance corrections in
experiments, and they lead to alignment with the possibility of anisotropic emission of subsequent gamma rays,
an interesting spectroscopic tool. Experimental data for proton stripping of8B agree with our calculations.
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I. INTRODUCTION

Single-nucleon knockout reactions with heavy ions, at in-
termediate energies and in inverse kinematics, have become
a specific and quantitative tool for studying single-particle
occupancies and correlation effects in the nuclear shell
model; see the recent review[1]. The high sensitivity of the
method has allowed measurements on rare radioactive spe-
cies available in intensities of less than one atom per second
for the incident beam. The experiments observe reactions in
which fast, massA, projectiles with laboratory momentum
kA=PA/" collide peripherally with a light nuclear target,
typically 9Be, producing residues with masssA−1d, in the
following referred to as the corescd of the assumed two-
body system of core plus nucleon. In the laboratory system
the momentum transferred to the core is

kc,lab =
A − 1

A
kA − kA−1. s1d

The final state of the target and that of the struck nucleon are
not observed, but instead the energy of the final state of the
residue can be identified by measuring coincidences with
decay gamma rays emitted in flight. Referred to as the
center-of-mass system of the projectile, the transferred mo-
mentum iskc. In the sudden approximation and for the strip-
ping reaction, defined below, this must equal the momentum
of the struck nucleon before the collision. The measured par-
tial cross sections to individual final levels provide spectro-
scopic factors for the individual angular-momentum compo-
nents j . In complete analogy to the use of angular
distributions in transfer reactions, the orbital angular mo-
mentuml is in the knockout reactions revealed by the distri-
butions of the quantitykc. These distributions are the subject
of the present paper.

The early interest in momentum distributions came from
studies of nuclear halo states, for which the narrow momen-
tum distributions in a qualitative way revealed the large spa-
tial extension of the halo wave function. It was pointed out
by Bertulani and McVoy[2] that the longitudinal component
of the momentum(taken along the beam orz direction) gave
the most accurate information on the intrinsic properties of
the halo and that it was insensitive to details of the collision
and the size of the target. In contrast to this, the transverse
distributions of the core are significantly broadened by dif-
fractive effects and by Coulomb scattering. For experiments
that observe the nucleon produced in elastic breakup, the
transverse momentum is entirely dominated by diffractive
effects, as illustrated[3] by the angular distribution of the
neutrons from the reaction9Bes11Be,10Be+ndX. In this case,
the width of the transverse momentum distribution reflects
essentially the size of the target. Experiments and theory for
reactions of neutron halos have been reviewed in Ref.[4]. It
was found that to understand the measured longitudinal mo-
mentum distributions it is necessary to take into account that
a heavy-ion knockout reaction, being surface dominated, can
only sample the external part of the nucleon wave function.
The magnitude of the reaction cross section is determined by
the part of the wave function that is accessed, and the shape
of the momentum distribution reflects the momentum content
in this part. Calculations[4–6] based on a sharp-surface
strong-absorption(“black-disk”) model could account for the
observed longitudinal momentum distributions and also, ap-
proximately, for the absolute cross sections. This approach is
confirmed in the, more accurate, present work, which ex-
tends the theory to include the general dependence of the
differential cross section on the momentum vector.

It is essential to note that the cross section for the produc-
tion of a given final state of the residue has two contribu-
tions. The most important of the two, commonly referred to
as stripping or inelastic breakup, represents all events in
which the removed nucleon reacts with and excites the target
from its ground state. The second component, called diffrac-*Electronic address: hansen@nscl.msu.edu

PHYSICAL REVIEW C 70, 034609(2004)

0556-2813/2004/70(3)/034609(13)/$22.50 ©2004 The American Physical Society70 034609-1



tive or elastic breakup, represents the dissociation of the
nucleon from the residue through their two-body interactions
with the target, each being at most elastically scattered.
These events result in the ejected nucleon being present in
the forward beam with essentially beam velocity, and the
target remaining in its ground state. These processes lead to
different final states, they are incoherent, and their cross sec-
tions must be added in measurements where only the residue
is observed. General expressions for the total and differential
cross sections for the two components have been given by
Hencken, Bertsch, and Esbensen[7].

In a subsequent development, the knockout method was
extended to nonhalo states[8–14]. For these, involving more
deeply bound nucleons, the one-nucleon stripping cross sec-
tions are much smaller than the free-nucleon reaction cross
section on the same target; a ratio that gives a measure of
how much the nucleon wave function is “shielded” from the
target by the bulk of the core. This required a more elaborate
theoretical treatment based on the elasticS matricesSc and
Sn [15,16] of the core and nucleon. For a general review of
applications of this technique see Ref.[1], which shows that
very accurate theoretical single-particle cross sections are
obtained in this way. However, the longitudinal momentum
distributions have continued being calculated in the black-
disk approximation. This simplification has been permissible
because the assumed sharp surface of the target generates
only transverse momentum components, which are inte-
grated out in the final result.

In the present paper we treat the three-dimensional mo-
mentum distribution of the core in stripping reactions at the
same level of approximation as the single-particle cross sec-
tions in Tostevin’s calculations[9,10]. UsingSmatrices from
this work, we obtain identical single-particle cross sections
after integration over momentum and summation over theml
substates. The results(i) test the reliability of the previously
used sharp-surface approximation, and(ii ) demonstrate that
the transverse momentum distributions are quantitatively and
even qualitatively different from the parallel momentum dis-
tributions, and(iii ) can serve to extract angular-momentum
information from the angular distributions of the residues.
Finally, (iv) the results are of importance for calculating ac-
ceptance corrections in experiments, and we evaluate the
correlations between longitudinal and transverse compo-
nents. After a presentation of the main features of the theo-
retical calculations, we give examples of the distributions
obtained for different values of the nucleon separation en-
ergy Sn and the orbital angular momentuml. Some essential
numerical details are presented in the Appendix.

II. CALCULATION OF THE DIFFERENTIAL
STRIPPING CROSS SECTION

In this section we summarize the equations used in the
calculation of stripping cross sections. The numerical calcu-
lations were done by using a Gaussian expansion method
which is described in the Appendix. We also show the equa-
tions used for the elastic scattering cross section, which will
be important to interpret the numerical results obtained for
the stripping cross sections, discussed in Sec. III.

Following Ref.[7], the cross section for the stripping re-
action sc+nd+A→c+X, wherec corresponds to a specified
final state of the core, is given by

dsstr

d3kc
=

1

s2pd3

1

2l + 1o
m
E d2bnf1 − uSnsbndu2g

3UE d3re−ikc·rScsbcdclmsr dU2

, s2d

and wherer ;sr ,z,fd=Rn−Rc, so that

bc = ur − bnu = Îr2 + bn
2 − 2rbn cossf − fnd

= Îr2 sin2 u + bn
2 − 2r sin ubn cossf − fnd

s3d

with the symbolsbc and bn denoting two-dimensional vec-
tors, which are the respective transverse components ofRc
and Rn (see Fig. 1). Sc sSnd are theS matrices for the core
1target and the neutron(or proton)+target scattering.

The single-particle bound state wave functions for the
subsystemsc+nd, i.e., clmsr d, in Eq. (2) are specified by
clmsr d=RlsrdYlmsr̂ d, whereRlsrd is the radial wave function.
It is not necessary to specify the total single-particle angular
momentumj , since the assumed interaction is spin indepen-
dent, and the depth of the single-particle potential well is
adjusted to reproduce the effective nucleon binding energy.

The cross sections for the longitudinal momentum distri-
butions are obtained by integrating Eq.(2) over the trans-
verse component ofkc, i.e., overkc

', and using

E d2kc
' expf− ikc·sr − r8dg = s2pd2dsr − r8d. s4d

One gets

dsstr

dkz
=

1

2p

1

2l + 1o
m
E

0

`

d2bnf1 − uSnsbndu2gE
0

`

d2ruScsbndu2

3 UE
−`

`

dz expf− ikzzgclmsr dU2

, s5d

wherekz represents the longitudinal component ofkc.
For the transverse momentum distribution in cylindrical

coordinatesk'=Îkx
2+ky

2, one uses in Eq.(2)

FIG. 1. Coordinates used in text.
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E
−`

`

dkz expf− ikzsz− z8dg = 2pdsz− z8d, s6d

and the result is

dsstr

d2k'

=
1

2p

1

2l + 1
E

0

`

d2bnf1 − uSnsbndu2g

3 o
m,p
E

−`

`

dzUE d2r exps− ikc
' · rdScsbndclmsr dU2

.

s7d

Sometimes it is convenient to describe the transverse mo-
mentum distributions in terms of the projection onto one of
the Cartesian components of the transverse momentum. This
can be obtained directly from Eq.(7), i.e.,

dsstr

dky
=E dkx

dsstr

d2k'

skx,kyd. s8d

The total stripping cross section can be obtained by inte-
grating either Eq.(5) or Eq. (7). For example, from Eq.(5),
using Eq.(6), one obtains

sstr =
2p

2l + 1
E

0

`

dbnbnf1 − uSnsbndu2g

3E d3r uScsÎr2 sin2 u + bn
2 − 2r sin u bn cosfdu2

3o
m

uclmsr du2, s9d

which is the same as Eq.(12) of Ref. [7].
In Appendix A we show how the integrals in Eqs.(5) and

(7) can be evaluated numerically with use of Gaussian ex-
pansions of the core/nucleon1targetS matrices.

The S matrices have been obtained using the eikonal ap-
proximation for the wave functions. In this approximation
the outgoing wave of a fragment, with wave numberk, is
given by

kr uCk
s+dl = expHik · r +

i

"v
E

z

`

dz8Uoptsr8dJ . s10d

The overlap of the incoming and outgoing wave function
becomes

kCk
s−duCk8

s+dl = Ssbdexpsiq · r d, s11d

where q=k8−k is the momentum transfer andSsbd is the
scattering matrix given by

Ssbd = expfixsbdg, with xsbd = −
1

"v
E

−`

`

dzUoptsrd,

s12d

and Uoptsr d is the appropriate optical potential for the core
+target and the neutron(or proton)+target scattering. In Eq.
(12) xsbd is the eikonal phase, andr =Îb2+z2, whereb is
often interpreted as the impact parameter. This interpretation

arises from a comparison of the results obtained with eikonal
wave functions with those obtained with classical particles
colliding at a given impact parameterb [17]. Nonetheless,
the eikonal wave function is a quantum scattering state andb
is the transverse coordinate associated to it. Thus wave-
mechanical effects, like smearing and interference, are ac-
counted for properly.

In the optical limit of the Glauber theory, the eikonal
phase is obtained from the nuclear ground state densities and
the nucleon-nucleon cross sections by the relation[17]

xsbd =E
0

`

dq q rpsqdrtsqdfNNsqdJ0sqbd, s13d

whereJ0 is the Bessel function of order zero,rp,tsqd is the
Fourier transform of the nuclear densities of the projectile
and target, andfNNsqd is the high-energy nucleon-nucleon
scattering amplitude at forward angles, which can be param-
etrized by[18]

fNNsqd =
kNN

4p
sNNsi + aNNdexps− bNNq2d. s14d

In this equationsNN, aNN, andbNN are parameters which
fit the high-energy nucleon-nucleon scattering at forward
angles. In Eq.(13) the quantitiesrpsqd and rtsqd are calcu-
lated from the radial density distributions, usually[1] taken
to be of Gaussian shapes for light nuclei, and of Fermi
shapes for heavier nuclei with parameters taken from experi-
ment. For cases where more accuracy is needed, it is possible
to take the density distributions from Hartree-Fock calcula-
tions, as has been done in some recent work. This demon-
strates that the theoretical uncertainty on the integral single-
particle cross section(i.e., for a spectroscopic factor of unity)
is of the order of 5% for a halo state[19] and 15% for a very
deeply boundl =2 state sSn=22 MeVd [20]. The precise
choice of input parameters influences the absolute spectro-
scopic factors, which have been the subject of many previous
papers[1,8,11–14,19,20] to which we refer for numerical
details. However, it means little for the shapes of the mo-
mentum distributions which are the focus of the present
work, and it will not be discussed further here.

For the Coulomb part of the optical potential the integral
in Eq. (12) diverges. One solves this by usingx=xN+xC,
wherexN is given by Eq.(12) without the Coulomb potential
and writing the Coulomb eikonal phase,xC as

xCsbd = 2h lnskbd, s15d

whereh=ZpZte
2/"v, Zp, andZt are the charges of projectile

and target, respectively,v is their relative velocity,k their
wave number in the center of mass system. Equation(15)
reproduces the exact Coulomb scattering amplitude when
used in the calculation of the elastic scattering with the ei-
konal approximation[17] :
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fCsud =
ZpZte

2

2mv2 sin2su/2d
exph− ih lnfsin2su/2dg + ip + 2if0j,

s16d

where f0=argGs1+ih /2d. This is convenient for the nu-
merical calculations since, as shown below, the elastic scat-
tering amplitude can be written with the separate contribu-
tion of the Coulomb scattering amplitude included. Then, the
remaining integral[the second term on the right-hand side of
Eq. (21) below] converges rapidly for the scattering at for-
ward angles.

Although the Coulomb phase in Eq.(15) diverges atb
=0, this does not pose a real problem, since the strong ab-
sorption suppresses the scattering at small impact param-
eters. It is also easy to correct this expression to account for
the finite charge distribution of the nucleus. For example,
assuming a uniform charge distribution with radiusR the
Coulomb phase becomes

xCsbd = 2hHQsb − Rdlnskbd + QsR− bdFlnskRd

+ lns1 +Î1 − b2/R2d− Î1 − b2/R2

−
1

3
s1 − b2/R2d3/2GJ , s17d

whereQ is the step function. This expression is finite forb
=0, contrary to Eq.(15). If one assumes a Gaussian distri-
bution of charge with radiusR, appropriate for light nuclei,
the Coulomb phase becomes

xCsbd = 2hFlnskbd +
1

2
E1sb2/R2dG , s18d

where the error functionE1 is defined as

E1sxd =E
x

` e−t

t
dt. s19d

This phase also converges asb→0. In Eq. (17) R=Rp+Rt,
while in Eq. (18) R=ÎRp

2+Rt
2, whereRp and Rt are the re-

spective projectile and target radius. The cost of using the
expressions(17) and(18) is that the Coulomb scattering am-
plitude becomes more complicated than Eq.(16). Moreover,
we have numerically attested that the elastic and inelastic
scattering cross sections change very little by using Eqs.(17)
and (18), instead of Eq.(15).

In calculations involving stripping, the final state Cou-
lomb interaction between the core and the target is taken into
account by using the eikonal-Coulomb phase shift of Eq.
(15) in the calculation ofSc. However, in the calculation of
diffraction dissociation bothSc and Sn are calculated using
the eikonal-Coulomb phase shift of Eq.(15).

The calculation of elastic scattering amplitudes using ei-
konal wave functions, Eq.(10), is very simple. They are
given by [17]

felsud = ikE
0

`

db b J0sqbdh1 − expfixsbdgj, s20d

whereq=2k sinsu /2d, andu is the scattering angle. The elas-
tic scattering cross section isdsel/dV= ufelsudu2. For numeri-
cal purposes, it is convenient to make use of the analytical
formula, Eq. (16), for the Coulomb scattering amplitude.
Thus if one adds and subtracts the Coulomb amplitude,fCsud
in Eq. (20), one gets

felsud = fCsud + ikE
0

`

db b J0sqbdexpfixCsbdg

3h1 − expfixNsbdgj. s21d

The advantage of using this formula is that the term 1
−expfixNsbdg becomes zero for impact parameters larger
than the sum of the nuclear radii(grazing impact parameter).
Thus the integral needs to be performed only within a small
range. In this formula,xC is given by Eq.(15) and fCsud is
given by Eq.(16), with

f0 = − hC + o
j=0

` S h

j + 1
− arctan

h

j + 1
D , s22d

whereC=0.577 215 6. . . is Euler’s constant.
The elastic cross section can be expressed in terms of the

transverse momentum by using the relationshipsdV
.d2k' /k2, and k'.q=2k sinsu /2d, valid for high-energy
collisions.

III. EXAMPLES OF MOMENTUM DISTRIBUTIONS

We explore the consequences of the expressions devel-
oped in Sec. II by calculating momentum distributions for
selected cases. The longitudinal momentum distributions,
corresponding to a projection on the beamsPzd axis, turn out
to be very close to those obtained in the simpler black-disk
approximation[4–6]. For this reason, a comparison with the
numerous experimental data available is hardly necessary,
but some references are given. A general discussion of lon-
gitudinal momentum distributions can be found in Ref.[1].
For the distribution projected to an axis perpendicular to the
beam axis, the situation is different. We find in all cases an
interesting intermingling of momentum components arising
from stripping of the nucleon and from elastic scattering of
the core fragment on the target. The latter mechanism is dif-
fractive for light targets and Coulomb dominated for heavy
targets. There is very little useful experimental evidence on
the transverse momentum distributions, as only the observa-
tion of coincident gamma rays can separate out the differen-
tial cross sections to individual final levels.(Even for halo
nuclei, such as11Be and15C, 20–30% of the inclusive cross
section goes to excited levels with differentl values.)

We have chosen to represent the momentum distributions
graphically in the following way. Projections onto a single
Cartesian coordinate are shown for one half axis only(thePz
distribution is symmetric in the eikonal approximation). For
cases where the magnetic quantum numberm differs from
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zero, we have weighted the differential cross section with the
multiplicity of 2, so that the sum over allm components
gives the total cross section. The spatial momentum distribu-
tion does not depend on the azimuthal angle. It is therefore
convenient to present it as a two-dimensional function of the
parallel and the transverse momentum with the definition

d2sstr

dk'dkz
= 2pk'

d3sstr

d2k'dkz
, s23d

which normalizes to the total cross section when the integra-
tion is extended over the negativekz axis.

A. Longitudinal momentum distributions

The deuteron was the first halo system to be studied. Ser-
ber [21] calculated the momentum spectrum of neutrons
from deuteron breakup on a light target in an approximation
that amounts to replacing the coreS matrix Scsbcd in Eq. (2)
by unity. This leads to the expression

dsstr

d3kc
=

1

s2pd3

1

2l + 1
spTo

m
UE d3re−ikc.rclmsr dU2

, s24d

wherespT is the proton-target reaction cross section, so that
the stripping cross section(the term coined by Serber, see his
comment in Ref.[22]) is that of a free proton, and the mo-
mentum distribution is the Fourier transform of the bound-
state wave function. This is an excellent approximation for
the deuteron, and it served later to explain qualitatively why
early studies of stripping reactions of halo nuclei observed
narrow transverse and longitudinal momentum distributions
[23,24].

However, the transparent-core limit is never a good ap-
proximation for reactions of nuclei heavier than the deuteron.
It overestimates the stripping cross section by a factor 2 for a
pronounced halo system such as11Be, and by up to a factor
of 25 for deeply bound nucleons. The momentum distribu-
tions are also modified in a significant way by the absorption
given by the coreS matrix Scsbcd as shown by the examples
of the l =0 11Be neutron halo and thel =1 8B proton halo
shown in Figs. 2 and 3. The underlying reason is that the
knockout reaction of a heavy ion on an absorptive target,
such as9Be, is surface dominated and samples only the mo-
mentum components there and in the tail of the wave func-
tion. The case of11Be in Fig. 2 is a good demonstration of
this: The-high momentum components(the “shoulder”) seen
in the Scsbcd=1 approximation arise from the inner lobe in
the wave function of the seconds state and vanish almost
completely in the knockout reaction, which cannot “see” the
interior of the projectile.

In the case of thel =1 knockout on8B, shown in Fig. 3,
both m components are much narrower than in the
transparent-core approximation, and them=0 state is sup-
pressed relative to them±1 states. A simple geometrical ar-
gument[6] accounts for this: Projected onto thesx,yd plane,
the two lobes ofm=0 wave function are oriented along thez
axis and shielded by the core from interacting(alone) with
the target.

The sharp-cutoff model[3,5,6] has been a useful tool for
discussing parallel-momentum distributions. In this approxi-

mation theS matricesScsbcd and Snsbnd (see Fig. 1) are re-
placed by step functions with radii chosen to approximate the
free core-target and nucleon-target cross sections by means
of two parameters, a target radius and a minimum-impact
parameter. In the following we have scaled the latter by a
factor of typically 0.95 to get agreement with the, more ac-

FIG. 2. Longitudinal momentum distribution for the residue in
the 9Bes10Be,10BegsdX reaction at 60 MeV/nucleon as studied in
the experiment of Aumannet al. [12]. The dashed curve is the cross
section calculated in the transparent limit, re-scaled by a factor of
0.535. It has a high-energy component arising from the inner lobe
of the wave function. The full drawn curve is the result of the
present work. The black-disk calculation(not shown) is essentially
indistinguishable from this, except for the high-momentum tail. The
dot-dashed curve shows that the weak shoulder is not present with
an assumed nodeless 0s wave function with the same binding en-
ergy s0.504 keVd.

FIG. 3. Longitudinal momentum distribution for the residue in
the 12Bes8B,7BegsdX reaction at 76 MeV/nucleon as studied in the
experiment of Enderset al. [14]. The proton binding energy for this
proton halo state is 0.137 MeV. The dashed curves are the cross
sections calculated in the transparent limit, re-scaled by a factor of
0.35. The narrower full drawn curves are the results of the present
work. The thin curves show individualm= ±1 components with the
sums given as thick lines. The black-disk calculation(not shown)
gives very similar results. Figure 4 of Ref.[1] compares a similar
(black-disk) calculation with experimental data.
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curate, total cross sections. This adjustment has essentially
no influence on the calculated shapes. For the two halo cases
discussed in Figs. 2 and 3 there is essentially no difference
from the more exact calculation. The same is true for the
deeply bounds state shown later, in Fig. 7.

The case of a deeply bound state withl =2 is shown in
Fig. 4. The reaction 9Be(34Ar , 33Ars3/2+d) at
68.2 MeV/nucleon has a separation energy of 18.42 MeV
and has been studied experimentally by Gadeet al. [25]. The
solid curves are exact calculations and the dashed curves are
obtained with the sharp-cutoff approximation. In this case
there is a noticeable difference between the two approxima-
tions.

Finally, we draw attention to an interesting effect that
clearly is outside the scope of the present paper. The experi-
ment on34Ar [25] shows an excess of intensity at the low-
energy side of thel =0 and l =2 momentum distributions.
This cannot be accounted for in the eikonal approximation as
presented here, since it does not contain multistep time de-
pendence, does not conserve energy, and yields symmetric
line shapes. A similar low-momentum tail was observed in
the l =0 momentum distributions from neutron knockout on
the 11Be and15C halo states[26]. In this case, it was inter-
preted as arising from the diffractive reaction channel and
could be quantitatively accounted for in a coupled-channels
calculation. However, diffraction dissociation is a small con-
tribution to the cross section in the case of34Ar and is hardly
the explanation here. We have no explanation for this asym-
metry, which has been seen also in other cases, and which
remains an interesting problem for future investigations.

B. Transverse momentum distributions

Transverse momentum distributions depend more strongly
on the details of the nucleus-nucleus interaction than do the
longitudinal momentum distributions[2]. The nuclear size,
the diffuseness of the nuclear matter distribution, and the
core-target Coulomb repulsion all contribute to the trans-

verse momentum distributions. At large impact parameters
the Coulomb force still has a strong influence, especially for
heavy targets, which for halo systems make Coulomb disso-
ciation the dominant breakup channel.

In Fig. 5 we compare the longitudinal and transverse mo-
mentum distributions for the reaction9Bes11Be,10Bed at
60 MeV/nucleon. The transverse momentum distributions
(solid curve) has for small momenta the same shape as the
longitudinal one(dashed), but is lower in intensity by about
10%. The missing cross section shows up as a broad distri-
bution with an oscillatory pattern, which we interpret as elas-
tic scattering of the core fragment simultaneously with the
stripping of the neutron. We demonstrate this by calculating
the core-target elastic cross section, which shows a similar
pattern with the minima characteristic of Fraunhofer scatter-
ing. The minima are not in the same place, however, because
of the condition that the neutron be absorbed in the stripping
reaction. A similar broad component appears in the trans-
verse momentum distribution of the core fragment in
coupled-channels calculations[26].

For the case of11Be, bound by 0.504 MeV, the large size
of the halo allows most absorption processes to occur with-
out simultaneous elastic scattering of the core. For more
bound states the two mechanisms become increasingly inter-
mingled. Already in the stripping of the halo neutron of15C,
bound by 1.218 MeV, the tail from core scattering is much
stronger, as seen in Fig. 6, and for thel =0 neutron knockout
from 34Ar, bound by 17.06 MeV, the two mechanisms are no
longer distinguishable, as seen in Fig. 7. The case of knock-
out of a deeply boundl =2 neutron, also from34Ar, is shown
in Fig. 8, which again shows a transverse momentum distri-
bution that is broader than the longitudinal distribution
shown in Fig. 8. Note the different momentum dependence
of the individualm components, which can easily be under-
stood from geometrical properties of the spherical harmonics
[6].

The longitudinal momentum distributions are not affected
by elastic scattering of the core fragment. The basic reason

FIG. 4. Longitudinal momentum distributions for the reaction
9Be(34Ar , 33Ars3/2+d) at 68.2 MeV/nucleon. Thisl =2 neutron-
removal reaction leads to a final 3/2+ level bound by 18.42 MeV.
The solid curves represent the exact calculations and the dashed
curves the sharp-cutoff approximation.

FIG. 5. Transverse momentum distribution(full drawn) for the
reaction9Bes11Be,10Begsd at 60 MeV/nucleon. The corresponding
longitudinal momentum distribution(dashed) is shown for compari-
son. The dot-dashed curve is the calculated elastic cross section for
the core.
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for this is that the forces acting on the core fragment are
along thez direction and reverse sign at the origin of thez
axis, thus leading to a null effect provided the angular de-
flection of the core fragment is small. For the same reason,
the longitudinal momentum distributions are also relatively
insensitive to Coulomb effects.

We now examine how the Coulomb force affects the
transverse momentum distributions. In the case of a neutron
halo, it pushes the core away from the target along the trans-
verse direction. The resulting distributions for the case of a
light target are here illustrated by carbonsZ=6d on beryllium
sZ=4d, shown in Fig. 6. The effect is small and would hardly
be measurable. We note, however, that leaving out the Cou-

lomb interaction gives a broader momentum distribution,
suggestive of an interference effect. There is an interesting
way to explore this.

It is well known that the higher order Coulomb effects,
e.g., to second order in perturbation theory, carry information
on the absolute sign of the charge of the particles. In atomic
physics this is often referred to as the Andersen-Barkas ef-
fect, which reflects contributions of odd powers in the pro-
jectile charge on stopping powers and ionization probabili-
ties. In nuclear physics this idea has been explored in the
study of dynamical effects in Coulomb dissociation[27]. We
have carried out calculations reversing the sign of the target’s
charge but keeping all nuclear interactions constant. Figure 6
shows that a hypothetical core-target Coulomb attraction, as
could be expected, gives an even broader distribution. The
reason for this is that the elastic scattering at large transverse
momenta is dominated by the far-side scattering contribu-
tion, in which the nuclei pass by close to each other. For a
negatively charged target both nuclear and Coulomb forces
interfere constructively, leading to larger deflection angles.

The Coulomb effect becomes important for heavier tar-
gets. To illustrate this, we compare in Fig. 9 the transverse
momentum distributions for thes11Be,10Bed reaction on sili-
con(upper panel) and on lead(lower panel) targets. One sees
that the momentum distributions are somewhat distorted by
the Coulomb field for a silicon target, while for a lead target
the effect is huge and the outcome is completely dominated
by Coulomb repulsion. The transverse momentum transfer to
the core fragments after the stripping can be roughly esti-
mated by the relationDPc=2ZcZTe2/bv, whereb is the im-
pact parameter andv is the projectile velocity. For the reac-
tion on a lead target, the minimum impact parameter isb
.10 fm, and withv.0.4c, we obtainDPc.220 MeV/c.
This agrees well with the upper limit of the calculated dis-
tribution; the broad peak(lower panel of Fig. 9) is approxi-
mately one-half of that value.

Finally, we remind the reader that the present paper is an
analysis of the stripping reaction, also called inelastic

FIG. 6. Transverse momentum distribution(full drawn) for the
reaction 9Bes15C,14Cgsd at 103 MeV/nucleon. The parallel-
momentum distribution(dashed) has been studied experimentally
[19,26]. The influence of the Coulomb interaction is small, but vis-
ible with the log scale, for this target-core combination. The curves
labeled “no Coulomb9 and “s−Zd” represent a calculation with the
target charge set to zero and to −4, respectively.

FIG. 7. Transverse momentum distribution(full drawn) for the
l =0 knockout reaction9Bes34Ar , 33Ars1/2+dd at 68 MeV/nucleon
and with a neutron separation energy of 17.06 MeV[25]. The cor-
responding longitudinal momentum distribution(dashed) is essen-
tially indistinguishable from the calculation in the black-disk ap-
proximation(dot dashed).

FIG. 8. Transverse momentum distribution(full drawn) for the
l =2 knockout reaction9Bes34Ar , 33Ard at 68 MeV/nucleon, corre-
sponding to the 3/2+ excited level in the core with an effective
neutron separation energy of 18.43 MeV. The longitudinal momen-
tum distribution(dashed) is shown for comparison.
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breakup. For experiments that only observe the core frag-
ment, there is also an incoherent contribution from elastic
breakup, which is given by the coherent sum of the contri-
butions from diffraction dissociation and Coulomb dissocia-
tion. The latter becomes dominant for the reaction of11Be
[3] on lead and will lead to momentum distributions that, in
principle, are different from those shown in Fig. 9.

IV. CALCULATION OF THE DOUBLE-DIFFERENTIAL
STRIPPING CROSS SECTION AND COMPARISONS

WITH EXPERIMENT

A. Alignment of the reaction residues

Except for the special case in which the wave function
factorizes in Cartesian coordinates, the longitudinal and
transverse momentum components will be coupled. This is
of primary importance for the analysis of experiments in
which the detection system limits the acceptance of events to
a certain volume in momentum space, a problem that until
now has been treated in simple approximations. The selec-
tion in sPz,P'd space may also in special cases provide an
additional spectroscopic tool. In order to illustrate the phe-
nomenon, we plot in Fig. 10 the double differential cross
sectiond2s /dPzdP' for the reaction of a deeply boundl
=2 state calculated from Eq.(23). The momentum distribu-
tions for thel =0 and the threel =2 states are shown sepa-
rately. For the casel =2, the distributions for the threem
states are peaked in different regions of thePz-P' plane. The
maps of Fig. 10 are clearly necessary input to an accurate
calculation of the experimental acceptance.

We have already pointed out that the reactions favor the
formation of residues in states with the maximum absolute
value of the magnetic quantum numberm= ± l (with the
quantization axis taken to be the beam direction). This (pos-
sible) alignment effect implies a(possible) anisotropic emis-
sion (in the center-of-mass system) of gamma rays emitted
after the reaction. This is a tool for identifying multipolarities
of the gamma transitions and spin sequences in the product
nucleus. The fact that for different values ofm, the main
contributing cross sections are located in different areas of
the sPz,P'd map suggests that the alignment effect can be
enhanced by making cuts in the momentum components. A
theoretical example of such an application has been given in
Fig. 12 of Ref.[1], which shows the calculated angular dis-

FIG. 9. Transverse momentum distributions of10Be fragments
for the reactions11Be,10Bed at 80 MeV/nucleon. The solid(dotted)
curves include(do not include) the core-target Coulomb interaction.
The upper panel(a) is for Si targets, while the lower panel(b) is for
Pb targets. Changing the sign of the charge of the target yields the
dashed curves.

FIG. 10. Contour plots for the
l =0,2 knockout reactions
9Bes34Ar , 33ArdX at 68.2 MeV/
nucleon. The contour lines are
equidistant. The projections on
one Cartesian coordinate axis
were illustrated in Figs. 4, 7, and
8. The absolute values of
d2s /dkzdk' [in fm2/ sMeV/cd2]
are given by the numbers in the
contour plots, which are to be
multiplied by the factors shown in
each panel.
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tributions for two different spin sequences. For the example
given in Fig. 11, them=2 fraction in the reaction residues is
(“set 1”) 58% as compared with 40% for a population with
statistical weights. Selecting reactions withPz values be-
tween −50 and 50 MeV/c (“set 2”) increases them=2 frac-
tion to 85% and reduces the count rate to one-half, corre-
sponding to a net gain in sensitivity. Limiting in addition the
values ofP' to values between 85 and 165 MeV/c gives
only a marginal improvement: Them=2 fraction increases to
88% but at the cost of reducing the intensity by another
factor of one-half.

As an example of a possible application of the alignment
effect, we show in Fig. 11 angular distributions of gamma
rays in the center-of-mass system calculated from the expres-
sions given by Yamazaki[28]. The example is for an as-
sumed 3/2+ to 1/2+ cascade as in33Ar and for various as-
sumed multipoles and mixing ratios. The alignment
parameters correspond to set 2, which gives results that are
already approaching purem= ±2 alignment. Without the cut
on Pz the anisotropy would be only half as big.

B. Comparisons with experiment

The present work deals with an extension of a theory
[9,10] that has been tested in numerous experiments. As in-
dicated in Sec. III A the longitudinal momentum distributions
are well in hand, both experimentally and theoretically.
There is little reason to doubt that the same is the case for the
transverse-momentum distributions calculated here. How-
ever, there are few good data sets to compare with. Essen-
tially all measured transverse distributions that we are aware
of are superpositions of contributions from severall values
(see the large set of inclusive momentum spectra reported by
Sauvanet al. [29]). For these, coincidence measurements
with gamma rays would be required to provide detailed test
of our calculations. However, the proton knockout on8B is
an exception to this.

For 8B, the inclusive transverse-momentum distribution in
the knockout of the halo proton has been measured in the

experiment by Kelleyet al. [30]. In spite of the absence of
gamma-ray coincidence data, this is a favorable case because
the ground-state cross section dominates and because the ap-
proximately 15% branch to the excited level also hasl =1
and has an almost identical shape. Figure 12 shows that our
calculation is in excellent agreement with the data, which it
reproduces over two orders of magnitude in cross section.
There are several measurements of the longitudinal-
momentum distribution for8B proton knockout; Fig. 4 of
Ref. [1] presents a comparison of high-energy data with a
black-disk calculation, essentially indistinguishable from
Fig. 3 of the present work.

Our second comparison with experimental data illustrates
how the calculations in the present work may be applied
toward clarifying a much more complicated issue. The reac-
tions and structure of the two-neutron halo nucleus11Li have
attracted much interest. It is a Borromean system in the sense
that although the three-body system, consisting of9Li and
two neutrons, forms a bound state, none of the possible two-
body subsystems have bound states. Hence the stability of
11Li is brought about by the interplay of the core-neutron and
the neutron-neutron interactions, which must lead to a
strongly correlated wave function with the two neutrons spa-
tially close together. Barrancoet al. [31] found that attempts
to understand11Li via breakup reactions are made difficult
by important final-state interactions, so that the primary
mechanism is removal of a single neutron followed by the
decay in flight of the unstable10Li. The slow neutron emerg-
ing from this decay carries no direct information on the11Li

FIG. 11. Gamma-ray angular distributions for a 3/2+ to 1/2+

transition with alignment parameters corresponding to set 2(in the
text) obtained by a central cut on the parallel momentum. Calcula-
tions are shown for the multipolaritiesE2, M1, and for mixed tran-
sitions withE2/M1 amplitudes of ±1.0.

FIG. 12. Inclusive transverse-momentum distribution for the
residue in the 9Bes8Be,7BegsdX reaction measured at
41 MeV/nucleon[30]. The theoretical calculation(full drawn) is
based on the same parameter set as Fig. 3, and the only adjustable
parameter is the(arbitrary) scale. The binding energy for this proton
halo state is 0.137 MeV. The dot-dashed and dashed curves are the
individual contributions of the7Be ground state and first-excited
state, respectively. The angular resolution in the experiment broad-
ens the data by approximately 4%. This has not been included in the
theoretical curves.
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structure; its energy spectrum reflects properties of both the
initial and final state.

Simonet al. [32] showed that this problem can be circum-
vented by reconstructing the momentum vector of the10Li
intermediate from the observed momenta of9Li and a neu-
tron following a reaction on a carbon target. In an experi-
ment at 287 MeV/nucleon they obtained the best resolution
for the projected transverse-momentum component and ar-
rived at the spectrum shown in Fig. 13. The momentum reso-
lution (full width at half maximum) was approximately
55 MeV/c [33]. Their analysis was based on a simplified
model using analytical approximations to the momentum dis-
tributions and found the spectrum to require ans1s1/2d2 com-
ponent ofs45±10d%, the rest beings0p1/2d2. They obtained
further confirmation of this interpretation by measuring the
angular distribution of the neutron relative to a quantization
axis taken along the recoil direction of the10Li composite.
This distribution showed the forward-backward asymmetry
characteristic of interference between final states of opposite
parity.

For the calculation here we approximate the11Li ground
state by an inert9Li core coupled to a neutron pair in a
mixture of s1s1/2d2, s0p1/2d2, ands0d5/2d2 states. We assume a
two-body model, thus neglecting interference effects, and ad-
just the single-particle wave functions to reproduce the ef-
fective neutron separation energies. The two-neutron separa-
tion energy is 0.3 MeV and to this comes the average
excitation energies of the three states in10Li. From the sys-
tematics in Fig. 6 of[34] augmented with data for the 0d5/2
neutron states in neighboring nuclei we estimate10Li average
excitation energies to 0.2, 0.5, and 1.5 MeV for the three
single-particle states, respectively. In the spirit of the sudden
approximation, we take these to be the center of gravity for
the multiplets formed by the coupling to the9Li spin and
arrive at effective neutron-separation energies of 0.5, 0.8,
and 1.8 MeV, still in the same order, which determine the

relative core-particle wave functions of the system10Li+ n.
The sudden approximation suggests that the same wave
functions should be used for calculating theS matrices(pro-
file functions) for 10Li treating it as a neutron+9Li composite
as described in Ref.[9]. The three spectroscopic factors are
then obtained from an adjustment to the differential cross
section of Fig. 13.

The calculated transverse-momentum distributions for the
assumed three components were folded with the experimen-
tal resolution. The sum of the resulting distributions,
weighted with the unknown spectroscopic factors, were ad-
justed in ax2 analysis to the experimental result as shown in
Fig. 13. Per degree of freedom, the goodness of the fit[35] is
x2/n=1.38 for absolute spectroscopic factors of 0.98(6)
s1s1/2d, 1.91(16) s0p1/2d, and 0.12(10) s0d5/2d. In view of the
many approximations made in this analysis, it is probably
satisfactory that the sum of the spectroscopic factors is 3.0,
where the sum-rule value is 2. Re-normalized to the sum, the
relative contributions are 33(2)%, 64(5)%, and 4(3)% in ap-
proximate agreement with the analysis of Simonet al. [32]
cited above, who obtained 45% for the 1s1/2 state. The errors
cited do not include systematic contributions arising from the
theory or contained in the experimental data. It is interesting
to compare with the neighboring nucleus12Be [11], also with
eight neutrons, for which the 0d5/2 contribution to the one-
neutron knockout reaction appears to be much larger, of the
order of 50%.

V. CONCLUDING REMARKS

The present work has extended the theory of one-nucleon
stripping reactions (inelastic breakup) to cover two-
dimensional momentum distributions of the reaction residue
with the use of realistic profile functions for the core-target
and nucleon-target interactions. The parallel-momentum dis-
tributions, projections on the beam directionPz, are not ap-
preciably different from those obtained in the “black-disk”
approximation used in earlier work. On the other hand, the
projections on the transverse direction, here referred to asPy,
are very different from the projections onPz. For halo sys-
tems they show a weak component, which represents an ad-
ditional mechanism in which the residue has scattered elas-
tically on the target. For more strongly bound systems the
two processes, stripping and elastic scattering, become in-
separable, and the distributions onPy are broader than those
on Pz.

The doubly differential distribution of the cross section on
the parallel- and transverse-momentum variablessPz,P'd
has for a given angular momentuml ù1 a characteristic be-
havior for the different components of the magnetic quantum
numberm. This will be of importance for evaluating accep-
tance corrections in experiments. Them dependence of the
cross sections leads to alignment of the residues and conse-
quently to anisotropic emission of subsequent gamma rays.
This effect can be exploited for identifying spin sequences
and gamma-ray multipolarities as illustrated in the example
in Fig. 11. A measurement of the transverse momentum dis-
tribution in stripping of8B on a light target is in excellent
agreement with our calculation, which reproduces the experi-

FIG. 13. Inclusive transverse-momentum distribution for the
residue in the inclusive12Cs11Li , 10Li dX reaction measured at
287 MeV/nucleon[32]. The theoretical result(full drawn curve) is
the adjusted sum of three angular-momentum components as de-
scribed in the text.
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mental result accurately over two orders of magnitude in
cross section. We have also attempted a more tenuous appli-
cation of the theory to the complex case of neutron knockout
on the two-neutron halo nucleus11Li.
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APPENDIX: GAUSSIAN EXPANSION METHOD FOR
STRIPPING REACTIONS

Using the explicit form of the spherical harmonics

Ylmsr̂ d = s− 1dmÎ2l + 1

4p
Îsl − md!

sl + md!
Plmscosudeimf

= ClmPlmscosudeimf sA1d

and

kc · r = k'r sin u cossfk − fd + kzr cosu. sA2d

Part of the integral in Eq.(2) is

Flmsk',kz,bnd

=E d3re−ikc·rScsbcdclmsr d = ClmE drr2 sin u du df

3 exph− ifk'r sin u cossfk − fd + kzr cosugj

3ScsÎr2 sin2 u + bn
2 − 2r sin ubn cossf − fndd

3 RlsrdPlmscosudeimf. sA3d

To simplify the calculations we can expressScsbcd as an ex-
pansion in terms of integrable functions. TheS matrices can
be well described by the expansion

Scsbcd = o
j

N

a j expf− bc
2/b j

2g, with b j =
RL

j
. sA4d

Good fits for realisticS matrices were obtained withN=20,
i.e., with 20 complex coefficientsa j andRL=10–20 fm, de-
pending on the size of the system. Since the real part of the
S matrices has the usual behavior ofScsbcd,0 for bc!R,
andScsbcd,1 for bc@R, whereR is a generic nuclear size,
one of the coefficients of the expansion in Eq.(A4) is a j
=1, andb j =`, which we take as thej =0 term in the expan-
sion.

We now use the sum(A4) and the equation

exps− iz cosfd = o
p=−`

`

ipJpszdeipf, sA5d

valid for any complexz, in Eq. (A3).
The integration in Eq.(A3) will then involve functions of

the form

Flm,jsk',kz,bnd = Clma jE dr r dz dfRlsrdPlmscosud

3expf− sr − bnd2/b j
2geimf

3exph− ik'r cossfk − fdjexpf− ikzzg,

sA6d

wherer ;sr ,zd, cosu=z/ r =z/Îr2+z2. Then

Flm,jsk',kz,bnd = Clma j expf− bn
2/b j

2gE dr r expf− r2/b j
2g

3E dz expf− ikzzgRlsrdPlmscosud

3E dfeimf exph− ik'r cossfk − fdj

3expF2rbn

b j
2 cossf − fndG . sA7d

Using the expansion(A5), we can write

exph− ik'r cossfk − fdjexpF2rbn

b j
2 cossf − fndG

= o
p,p8

ip+p8Jpsk'rdJp8Si
2rbn

b j
2 Dexpfipsfk − fdg

3expfip8sf − fndg. sA8d

Since

E dfeimfe−ipfeip8f = 2pdm−p,p8,

then

E dfeimf exph− ik'r cossfk − fdjexpF2rbn

b j
2 cossf − fndG

sA9d

=2pim expf− imfngo
p

Jpsk'rdJm−pSi
2rbn

b j
2 D

3expfipsfk + fndg. sA10d

Thus

Flm,jsk',kz,bnd

= 2pClmima j expf− imfngexpf− bn
2/b j

2g

3o
p

expfipsfk + fndgE
0

`

dr rJpsk'rd

3expf− r2/b j
2gJm−pSi

2rbn

b j
2 DE

−`

`

dz

3expf− ikzzgRlsrdPlmscosud. sA11d
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Upon squaring Eq.(A11), inserting in Eq.(2), and inte-
grating overfk and fn, we can useedfeipfe−ip8f=2pdp,p8
and we get

dsstr

k'dk'dkz
=

2p

2l + 1
E

0

`

dbnbnf1 − uSnsbndu2g

3o
m,p

Clm
2 uAlmpsk',kz,bndu2, sA12d

where

Almpsk',kz,bnd = o
j=0

N

a j expf− bn
2/b j

2gE
0

`

dr rJpsk'rd

3expf− r2/b j
2gJm−pSi

2rbn

b j
2 D

3E
−`

`

dz expf− ikzzgRlsrdPlmscosud.

sA13d

Since

Iasxd = i−aJasixd,

whereIasxd is the modified Bessel function, one gets

Almpsk',kz,bnd = o
j

a j expf− bn
2/b j

2gE
0

`

dr rJpsk'rd

3expf− r2/b j
2gIm−pS2rbn

b j
2 DE

−`

`

dz

3expf− ikzzgRlsrdPlmscosud, sA14d

where an irrelevant phaseim−p was dropped off, as only the
absolute value ofAlmp enters Eq.(12).

The first term of the Eq.(A14), with b j =` anda j =1 can
be calculated usingIas0d=da.

Using the integral

E
0

`

dk'k'Jpsk'rdJpsk'r8d =
1

r
dsr − r8d, sA15d

in Eq. (A12) one gets for thelongitudinal momentum distri-
bution

dsstr

dkz
=

2p

2l + 1
E

0

`

dbnbnf1 − uSnsbndu2g

3o
m,p

Clm
2 E

0

`

dr ruBlmpskz,bn,rdu2, sA16d

where

Blmpskz,bn,rd = o
j

a j expf− bn
2/b j

2gexpf− r2/b j
2g

3 Im−pS2rbn

b j
2 DE

−`

`

dz

3expf− ikzzgRlsrdPlmscosud. sA17d

Using the integral of Eq.(6) in Eq. (A12) one gets for the
transverse momentum distribution

dsstr

d2k'

=
2p

2l + 1
E

0

`

dbnbnf1 − uSnsbndu2go
m,p

Clm
2

3E−`
` dzuDlmpsk',bn,zdu2, sA18d

where

Dlmpsk',bn,zd = o
j=0

N

a j expf− bn
2/b j

2gE
0

`

dr rJpsk'rd

3expf− r2/b j
2gIm−pS2rbn

b j
2 DRlsrdPlmscosud.

sA19d

The formulas above are also useful to check the quality of
the Gaussian fit, Eq.(A4), to obtain the momentum distribu-
tions. One can compare the direct numerical integrations us-
ing Eq. (A16) with

dsstr

dkz
=

1

2l + 1
E

0

`

dbnbnf1 − uSnsbndu2go
m
E

0

`

dr rE
0

2p

df

3 UE
−`

`

dz expf− ikzzgclmsr dU2

uScsbcdu2

=
1

2l + 1
E

0

`

dbnbnf1 − uSnsbndu2go
m

Clm
2 E

0

`

dr r

3 uZlmskz,rdu2Ssbn,rd, sA20d

where

Zlmskz,rd =E
−`

`

dz expf− ikzzgRlsrdPlmscosud,

Ssbn,rd =E
0

2p

dfuScsÎr2 + bn
2 − 2rbn cosfdu2,

sA21d

which is the same as Eq.(5).
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