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Nuclear structure of 7Be, 8B, and 7,8Li is studied within the ab initio no-core shell model (NCSM). Starting
from high-precision nucleon-nucleon (NN) interactions, wave functions of 7Be and 8B bound states are obtained
in basis spaces up to 10h̄� and used to calculate channel cluster form factors (overlap integrals) of the 8B ground
state with 7Be+p. Due to the use of the harmonic oscillator (HO) basis, the overlap integrals have incorrect
asymptotic properties. We fix this problem in two alternative ways. First, by a Woods-Saxon potential solution
fit to the interior of the NCSM overlap integrals. Second, by a direct matching with the Whittaker function. The
corrected overlap integrals are then used for the 7Be( p,γ )8B S-factor calculation. We study the convergence of
the S factor with respect to the NCSM HO frequency and the model space size. Our S factor results agree with
recent direct measurement data. We also test the spectroscopic factors and the corrected overlap integrals from the
NCSM in describing the momentum distributions in knockout reactions with 8B projectiles. A good agreement
with the available experimental data is also found, attesting to the overall consistency of the calculations.
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I. INTRODUCTION

The 7Be( p,γ )8B capture reaction serves as an important
input for understanding the solar neutrino flux [1]. Recent
experiments determined the neutrino flux emitted from 8B
with a precision of 9% [2]. On the other hand, theoretical
predictions have uncertainties of the order of 20% [3,4].
The theoretical neutrino flux depends on the 7Be( p,γ )8B S
factor that needs to be known with high precision. Many
experimental and theoretical investigations were devoted
to this reaction. Experiments were performed using direct
measurement techniques with proton beam and 7Be targets
[5–7] as well as indirect methods when a 8B beam breaks
up into 7Be and proton in the Coulomb field of a heavy
target [8–10]. Theoretical calculations needed to extrapolate
the measured S factor to the astrophysically relevant Gamow
energy were performed with several methods: the R-matrix
parametrization [11], the potential model [12–14], and the
microscopic cluster models [15–17].

In this work, we present the first calculation of the
7Be( p,γ )8B S factor starting from the ab initio wave functions
of 8B and 7Be. In general, the aim of ab initio approaches
is to predict correctly absolute cross sections (S factors), not
just relative cross sections. We apply the ab initio no-core
shell model (NCSM) [18,19]. In this method, one considers
nucleons interacting by high-precision nucleon-nucleon (NN)
potentials. There are no adjustable or fitted parameters. Within
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the NCSM, we study the binding energies and other nuclear
structure properties of 7Be, 8B, and 7,8Li, and calculate
overlap integrals for the 8B and 7Be bound states. Because
of the use of the harmonic-oscillator (HO) basis, we have
to correct the asymptotic behavior of the NCSM overlap
integrals. This is done in two alternative ways. First, by
fitting Woods-Saxon (WS) potential solutions to the interior
part of the NCSM overlap integrals under the constraint that
the experimental 7Be+p threshold is reproduced. Second,
by a direct matching of the NCSM overlap integrals and
the Whittaker function. The corrected overlap integrals are
then utilized to calculate the 7Be( p,γ )8B S factor as well as
momentum distributions in stripping reactions. We pay special
attention to the convergence of the S factor with respect to the
NCSM model space size and the HO frequency.

Some of the results presented in this paper were published in
a letter [20]. Here we discuss our complete results with details
of the 7Be, 7,8Li, and 8B nuclear structure. We give technical
details as well as a thorough discussion of our results, their
dependence on the basis and the HO frequency including their
sensitivity to the choice of the NN potential.

In Sec. II, we present the NCSM results for 7Be, 8B,
and 7,8Li energies, ground-state radii, and electromagnetic
moments and transitions. The calculation of cluster form
factors and the correction of their asymptotics is described
in Sec. III. A test of the corrected NCSM overlaps and
spectroscopic factors for the momentum distributions in
the stripping reaction (7Be+p)+A→7Be+X is discussed in
Sec. IV. The S factor calculation with sensitivity and conver-
gence studies is presented in Sec. V. Conclusions are drawn
in Sec. VI.
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II. NUCLEAR STRUCTURE OF 7Be, 7Li, 8B, AND 8Li

A. ab initio no-core shell model

In the NCSM, we consider a system of A pointlike
nonrelativistic nucleons that interact by realistic two- or
two- plus three-nucleon interactions. The calculations are
performed using a finite HO basis. Because we aim to describe
loosely bound states, it is desirable to include as many terms
as possible in the expansion of the total wave function. By
restricting our study to two-nucleon (NN) interactions, even
though the NCSM allows for the inclusion of three-body
forces [21], we are able to maximize the model space and
to better observe the convergence of our results. The NCSM
theory was outlined in many papers. Here, we only briefly
review the main points for the case when the Hamiltonian is
restricted to just a two-nucleon interaction.

We start from the intrinsic two-body Hamiltonian for the
A-nucleon system HA = Trel + V , where Trel is the relative
kinetic energy and V is the sum of two-body nuclear and
Coulomb interactions. Since we solve the many-body problem
in a finite HO basis space, it is necessary that we derive
a model-space dependent effective Hamiltonian. For this
purpose, we perform a unitary transformation [18,19,22,23]
of the Hamiltonian, which accommodates the short-range
correlations. In general, the transformed Hamiltonian is an
A-body operator. Our simplest, yet nontrivial, approximation is
to develop a two-particle cluster effective Hamiltonian, while
the next improvement is to include three-particle clusters,
and so on. The effective interaction is then obtained from
the decoupling condition between the model space and the
excluded space for the two-nucleon transformed Hamiltonian.
Details of the procedure are described in Refs. [18,19]. The
resulting two-body effective Hamiltonian depends on the nu-
cleon number A, the HO frequency �, and Nmax, the maximum
many-body HO excitation energy defining the model space. It
follows that the effective interaction approaches the starting
bare interaction for Nmax → ∞. Our effective interaction is
translationally invariant. A significant consequence of this fact
is the factorization of our wave functions into a product of a
center-of-mass 3

2h̄� component times an internal component.
Our most significant approximation here is the use of the

two-body cluster approximation to the effective many-body
Hamiltonian. Our method is not variational, so higher order
terms may contribute with either sign to total binding. Hence,
evaluating the dependence on the basis-space parameters help
calibrate our convergence.

Once the effective interaction is derived, we diagonalize the
effective Hamiltonian in a Slater determinant HO basis that
spans a complete Nmaxh̄� space. This is a highly non-trivial
problem because of the very large dimensions we encounter.
To solve this problem, we have used a specialized version of
the shell model code Antoine [24,25], recently adapted to the
NCSM [26,27]. This code works in the M scheme for basis
states and uses the Lanczos algorithm for diagonalization. Its
basic idea is to write the basis states as a product of two Slater
determinants, a proton one and a neutron one. Matrix elements
of operators are calculated for each separate subspace (one
body for the proton-neutron, two body for the proton-proton
and neutron-neutron). The performance of the code is best

when the ratio between the number of proton plus neutron
Slater determinants and the dimension of the matrix is the least.
It happens when the number of proton Slater determinants
is equal to the number of neutron Slater determinants. The
number of iterations needed to converge the first eigenstates is
significantly reduced by the implementation of a sophisticated
strategy for selecting the pivot vectors. The difficulty of the
no-core calculations (in which all nucleons are active) is that
the number of shells and, consequently, the number of matrix
elements that are precalculated become very large. One has to
handle a huge number of operators. This is the reason why it
has been necessary to write a specialized version of the code.

A recent development of the NCSM is the ability to further
process the wave functions, resulting from the shell model
calculation, to obtain channel cluster form factors [28] and,
consequently, the spectroscopic factors.

B. Nucleon-nucleon interactions

Two different, high-precision (i.e., such that provide a
perfect fit to two-nucleon data) NN interactions have been used
in this study: the CD-Bonn 2000 [29] and the INOY (inside
nonlocal outside Yukawa) [30,31] potentials.

The CD-Bonn 2000 potential [29] as well as its earlier
version [32] is a charge-dependent NN interaction based on
one-boson exchange. It is described in terms of covariant
Feynman amplitudes, which are nonlocal. Consequently, the
off-shell behavior of the CD-Bonn interaction differs from
local potentials which leads to larger binding energies in
nuclear few-body systems.

A new type of interaction, which respects the local behavior
of traditional NN interactions at longer ranges but exhibits
a nonlocality at shorter distances, was recently proposed by
Doleschall et al. [30,31]. The authors explore the extent to
which effects of multinucleon forces can be absorbed by
nonlocal terms in the NN interaction. Their goal was to
investigate if it is possible to introduce nonlocality in the
NN interaction so that it correctly describes the three-nucleon
bound states 3H and 3He, while still reproducing NN scattering
data with high precision. The so-called IS version of this
interaction, introduced in Ref. [30], contains short-range
nonlocal potentials in 1S0 and 3S1-3D1 partial waves, while
higher partial waves are taken from Argonne v18. In this
study, we are using the IS-M version, which includes nonlocal
potentials in the P and D waves also [31]. It is important to note
that for this particular version, the on-shell properties of the
triplet P-wave interactions were modified in order to improve
the description of 3N analyzing powers. The 3P0 interaction
was adjusted to become less attractive, the 3P1 became more
repulsive, and the 3P2 more attractive. Unfortunately, this gave
a slightly worse fit to the Nijmegen 3P phase shifts.

C. 7Be and 7Li

Our calculations for both A = 7 and A = 8 nuclei were
performed in model spaces up to 10h̄� for a wide range of
HO frequencies. We then selected the optimal HO frequency
corresponding to the ground-state energy minimum in the
10h̄� space and performed a 12h̄� calculation to obtain the
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FIG. 1. (Color online) HO frequency dependence of the 7Be ground-state energy for model spaces from 0h̄� to 12h̄� obtained using the
CD-Bonn 2000 NN potential. Inset demonstrates how the values at the minima of each curve converge with increasing Nmax.

ground-state energy and the point-nucleon root-mean-square
(rms) radii. The overlap integrals as well as other observables,
however, were calculated using only wave functions from up
to 10h̄� spaces.

The 7Be ground-state energy dependence on the HO fre-
quency for different model spaces is shown in Figs. 1 and 2 for
the CD-Bonn 2000 and the INOY NN potentials, respectively.
We observe a quite different convergence trend for the two
potentials. For the INOY, the convergence is very uniform
with respect to the HO frequency with substantial changes with
Nmax. The convergence with increasing Nmax is evident as also
seen in the inset of Fig. 2. It is straightforward to extrapolate

that the converged INOY ground-state energy will slightly
overbind 7Be. The ground-state energy convergence for the
CD-Bonn is quite different, with a stronger dependence on
the frequency, with minima shifting to smaller frequency with
basis size increase, and with an overall weaker dependence
on Nmax. Contrary to the INOY, the CD-Bonn underbinds
7Be by more than 3 MeV, which is typical for the standard
high-precision NN potentials.

From these results, we selected the optimal frequency
h̄� = 12 MeV for the CD-Bonn 2000 and h̄� = 16 MeV
for the INOY potential. Corresponding spectra obtained using
these frequencies are then shown in Figs. 3 and 4. The energies,

FIG. 2. (Color online) Same as in Fig.1, but using the INOY NN potential.
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TABLE I. 7Be and 7Li ground- and excited-state energies (in
MeV) obtained using the CD-Bonn 2000 and INOY NN potentials.
The HO frequency of h̄� = 12(16) MeV was used in the CD-
Bonn 2000 (INOY) NN potential calculation. Ground- and excited-
state energies were obtained in the 12h̄� and 10h̄� model space,
respectively. Experimental values are from Ref. [33].

7Be

Expt. CD-Bonn 2000 INOY

|Egs( 3
2

− 1
2 )| 37.6004(5) 33.881 37.161

Ex( 3
2

−
1

1
2 ) 0.0 0.0 0.0

Ex( 1
2

−
1

1
2 ) 0.429 0.278 0.501

Ex( 7
2

−
1

1
2 ) 4.57(5) 5.494 5.278

Ex( 5
2

−
1

1
2 ) 6.73(10) 6.999 7.660

Ex( 5
2

−
2

1
2 ) 7.21(6) 8.247 8.648

Ex( 7
2

−
2

1
2 ) 9.27(10) 10.687 11.331

Ex( 3
2

−
2

1
2 ) 9.9 9.493 10.887

Ex( 1
2

−
2

1
2 ) 10.120 11.583

Ex( 3
2

−
1

3
2 ) 11.01(3) 11.717 12.607

7Li
Expt. CD-Bonn 2000 INOY

|Egs( 3
2

− 1
2 )| 39.245 35.524 38.892

Ex( 3
2

−
1

1
2 ) 0.0 0.0 0.0

Ex( 1
2

−
1

1
2 ) 0.478 0.285 0.513

Ex( 7
2

−
1

1
2 ) 4.65 5.585 5.353

Ex( 5
2

−
1

1
2 ) 6.60 7.079 7.741

Ex( 5
2

−
2

1
2 ) 7.45 8.522 8.902

Ex( 3
2

−
2

1
2 ) 8.75 9.849 11.267

Ex( 1
2

−
2

1
2 ) 9.09 10.458 11.931

Ex( 7
2

−
2

1
2 ) 9.57 11.033 11.691

Ex( 3
2

−
1

3
2 ) 11.24 11.974 12.826

radii, and electromagnetic observables are summarized in
Tables I and II, where we also include the 7Li results. We
obtain the same level ordering for 7Be and 7Li which is
also the same for both NN potentials with the exception
of a reversal of the 7/2−

2 and 1/2−
2 levels. Our CD-Bonn

ordering is in agreement with experiment for the 9 lowest
levels in 7Li. In 7Be, the experimental 7/2−

2 and 3/2−
2 levels

are reversed compared to our results and the situation in 7Li.
Our calculated spectra show a good convergence with the basis
size enlargement as well as good stability with respect to the
frequency change. An interesting feature is a different level
spacing of the 7/2−

1 , 5/2−
1 , and 5/2−

2 levels for the CD-Bonn
and INOY calculations. The INOY results are similar to
those obtained when a three-body interaction is included in
the Hamiltonian [21]. This is not surprising, as discussed in
Sec. II B.

Concerning the magnetic moments and M1 transitions,
we can see very little dependence of the calculated values
on the HO frequency or the basis size. Also, the two

TABLE II. 7Be and 7Li point-proton rms radii (in fm), ground-
state quadrupole (in e fm2) and magnetic (in µN ) moments and
M1 transitions (in µ2

N ) obtained within the NCSM for different HO
frequencies (given in MeV) and model spaces for the CD-Bonn 2000
and INOY NN potentials. Experimental values are from Ref. [33].

7Be
CD-Bonn 2000

h̄� Nmax rp Q µ B(M1; 1
2

− → 3
2

−
)

12 6 2.311 −4.755 −1.150 3.192
12 8 2.324 −4.975 −1.151 3.145
12 10 2.342 −5.153 −1.141 3.114
12 12 2.365
11 6 2.377 −5.029 −1.150 3.203
11 8 2.377 −5.186 −1.151 3.162
11 10 2.383 −5.354 −1.155 3.125

Expt. 2.36(2) −1.398(15) 3.71(48)

INOY
h̄� Nmax rp Q µ B(M1; 1

2

− → 3
2

−
)

16 6 2.114 −3.946 −1.161 3.158
16 8 2.149 −4.212 −1.157 3.119
16 10 2.181 −4.459 −1.151 3.092
16 12 2.214
14 6 2.190 −4.245 −1.162 3.180
14 8 2.209 −4.454 −1.158 3.139
14 10 2.227 −4.654 −1.155 3.108

Expt. 2.36(2) −1.398(15) 3.71(48)

7Li
CD-Bonn 2000

h̄� Nmax rp Q µ B(M1; 1
2

− → 3
2

−
)

12 6 2.149 −2.717 +3.027 4.256
12 8 2.156 −2.866 +3.020 4.188
12 10 2.168 −3.001 +3.011 4.132
12 12 2.188 −3.130

Expt. 2.27(2) −4.06(8) +3.256 4.92(25)

INOY
h̄� Nmax rp Q µ B(M1; 1

2

− → 3
2

−
)

16 6 1.963 −2.334 +3.039 4.192
16 8 1.990 −2.500 +3.029 4.136
16 10 2.015 −2.648 +3.021 4.098
16 12 2.042 −2.788

Expt. 2.27(2) −4.06(8) +3.256 4.92(25)

NN potentials give very similar results, which are in a
reasonable agreement with experiment. Concerning the radii
and quadrupole moments, the calculated values in general
increase with increasing basis size and decreasing frequency.
This is in part a consequence of the incorrect asymptotics
of the HO basis. The fastest convergence for the radii and
quadrupole moment occurs at a smaller HO frequency. In the
CD-Bonn calculations for h̄� = 11 and 12 MeV, the radii
are close to experimental values. The quadrupole moments
are still underestimated. For the INOY potential, we observe
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TABLE III. Same as Table I, but for 8B and 8Li ground- and
excited-state energies (in MeV). Experimental values are from
Ref. [34].

8B

Expt. CD-Bonn 2000 INOY

|Egs(2+1)| 37.7378(11) 32.284 36.148
Ex(2+

1 1) 0.0 0.0 0.0
Ex(1+

1 1) 0.774(6) 0.804 1.199
Ex(3+

1 1) 2.32(20) 2.977 2.854
Ex(0+

1 1) 2.229 3.853
Ex(1+

2 1) 2.988 4.540
Ex(2+

2 1) 3.824 4.897
Ex(1+

3 1) 4.827 6.459
Ex(2+

3 1) 5.175 5.908
Ex(4+

1 1) 6.482 7.138
Ex(3+

2 1) 7.325 8.572
Ex(0+

1 2) 10.619(9) 10.782 11.926

8Li
Expt. CD-Bonn 2000 INOY

|Egs(2+1)| 41.277 35.820 39.938
Ex(2+

1 1) 0.0 0.0 0.0
Ex(1+

1 1) 0.981 0.855 1.264
Ex(3+

1 1) 2.255(3) 3.019 2.871
Ex(0+

1 1) 2.480 4.225
Ex(1+

2 1) 3.21 3.247 4.903
Ex(2+

2 1) 3.977 5.114
Ex(1+

3 1) 5.023 6.758
Ex(2+

3 1) 5.290 6.071
Ex(4+

1 1) 6.53(20) 6.691 7.398
Ex(3+

2 1) 7.570 8.915
Ex(0+

1 2) 10.822 10.898 12.049

underestimation of both radii and quadrupole moments.
This is not unexpected as the INOY NN potential also
underpredicts the 4He radius.

D. 8B and 8Li

Our 8B and 8Li ground-state and excited-state energy
results are listed in Table III. The basis size dependence of
the 8B spectra calculated using the CD-Bonn NN potential
and the optimal HO frequency of h̄� = 12 MeV is shown
in Fig. 5. Similar conclusions can be drawn as for the A = 7
nuclei concerning convergence. The ground-state energy
dependence on the basis size and the HO frequency is similar
to that observed for the A = 7 nuclei. The INOY NN potential
gives binding energy close to the experimental one, and a
small overbinding is expected based on extrapolation of our
Nmax dependence. The CD-Bonn underbinds both 8B and 8Li
by about 5 MeV. We note that the A = 8 nuclei, with emphasis
on 8Be, were also investigated within the NCSM in Ref. [26].
The present 8B and 8Li CD-Bonn binding energy results are
basically identical to those of Ref. [26] with small differences
due to the use of different versions [29] vs [32], of the CD-Bonn
NN potential. It is interesting to note that both employed
NN potentials predict 8B unbound, contrary to experiment.
The problem is less severe for the INOY NN potential.
This suggests that a three-nucleon interaction is essential to
reproduce the experimental threshold. This may appear as a
problem in view of the present application to 7Be( p,γ )8B
reaction. However, since our basis has incorrect asymptotics
in the first place, we make use of only the interior part of our
ab initio wave functions that are presumably unaffected by
the wrong threshold placements. This is discussed in the next
section.

Concerning the ground-state energy systematics of the A =
7 and A = 8 nuclei, we note that recent Green’s function Monte
Carlo (GFMC) calculations for 7Li and 8Li using the Argonne
potentials [35] found qualitatively similar differences between
the calculated and experimental values as we observe here.

Concerning the excitation energies, a noticeable difference
between the CD-Bonn and INOY predictions for the low-
lying levels is a reversed order of the 0+

1 and 3+
1 states.

We note, however, that the 0+
1 state has not been observed

experimentally.

Exp 10hΩ 8hΩ 6hΩ 4hΩ 2hΩ 0hΩ
0

1

2

3

4

5

6

7

8

9

10

11

12

13

3/2−1/2−

7/2−

5/2−5/2−

7/2−
3/2−

3/2− 3/2

3/2−
1/2−

7/2−5/2−
5/2−3/2−
1/2−

7/2−

3/2− 3/2

E
 (

M
eV

)

7Be

CD–Bonn 2000
hΩ =12 MeV

FIG. 3. (Color online) Basis size dependence
of the 7Be excitation spectrum in the range 0h̄�

to 10h̄� obtained using the CD-Bonn 2000 NN
potential and HO frequency h̄� = 12 MeV.
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TABLE IV. Same as Table II, but for 8B and 8Li. Experimental values are from Ref. [34].

8B
CD-Bonn 2000

h̄� Nmax rp Q µ B(M1; 1+ → 2+)

12 6 2.436 +5.218 +1.463 3.498
12 8 2.463 +5.420 +1.455 3.506
12 10 2.487 +5.636 +1.455 3.490
12 12 2.520
11 6 2.514 +5.525 +1.515 3.491
11 8 2.528 +5.696 +1.501 3.495
11 10 2.542 +5.871 +1.496 3.539

Expt. 2.45(5) (+)6.83(21) 1.0355(3) 9.1(4.5)

INOY
h̄� Nmax rp Q µ B(M1; 1+ → 2+)

16 6 2.199 +4.049 +1.192 3.669
16 8 2.241 +4.306 +1.207 3.669
16 10 2.277 +4.580 +1.227 3.649
16 12 2.317
15 6 2.241 +4.242 +1.238 3.681
15 8 2.276 +4.468 +1.244 3.684
15 10 2.305 +4.710 +1.257 3.667
14 6 2.291 +4.467 +1.288 3.696
14 8 2.318 +4.660 +1.286 3.702
14 10 2.340 +4.867 +1.291 3.688

Expt. 2.45(5) (+)6.83(21) 1.0355(3) 9.1(4.5)

8Li
CD-Bonn 2000

h̄� Nmax rp Q µ B(M1; 1+ → 2+)

12 6 2.139 +2.588 +1.238 4.454
12 8 2.139 +2.690 +1.243 4.428
12 10 2.145 +2.784 +1.241 4.393
12 12 2.161

Expt. 2.26(2) +3.27(6) +1.654 5.01(1.61)

INOY
h̄� Nmax rp Q µ B(M1; 1+ → 2+)

16 6 1.938 +2.279 +1.469 4.635
16 8 1.956 +2.377 +1.456 4.610
16 10 1.972 +2.477 +1.439 4.578
16 12 1.991

Expt. 2.26(2) +3.27(6) +1.654 5.01(1.61)

As seen from Table IV, the radii and quadrupole mo-
ments are substantially larger and closer to experiment in
our CD-Bonn calculations. Contrary to the 7Be-7Li case,
here we observe an interesting difference between the two
NN potentials for the magnetic moment prediction. The INOY
NN potential gives the magnetic moment of 8Li greater than
that of 8B in agreement with experiment, while the CD-Bonn
predicts the opposite. Interestingly, almost identical 8Li and 8B
magnetic moments as we obtained using the CD-Bonn were
reported in Ref. [17] calculated within a cluster model applied

to the 7Be( p,γ )8B reaction. Clearly, our results suggest that
the A = 8 magnetic moments are sensitive to the presence of a
three-nucleon interaction in the Hamiltonian (which is mocked
up to a certain degree by the INOY NN potential). As to the
B(M1;1+ → 2+) transition, both potentials give about the
same result which agrees with the 8Li experimental value but
is by almost a factor of 3 smaller than the experimental value
for 8B. We note the large experimental error bar of the latter. It
appears that the 8B experimental values are inconsistent with
both the analogous 8Li value and our calculations.
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Exp 10hΩ 8hΩ 6hΩ 4hΩ 2hΩ 0hΩ
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

3/2−1/2−

7/2−

5/2−5/2−

7/2−
3/2−

3/2− 3/2

3/2−1/2−

7/2−

5/2−
5/2−

3/2−

7/2−1/2−

3/2− 3/2

E
 (

M
eV

)

7Be

          INOY
hΩ =16 MeV

FIG. 4. (Color online) Same as in Fig. 3,
but using the INOY NN potential and h̄� =
16 MeV.

III. CLUSTER FORM FACTORS FROM ab initio WAVE
FUNCTIONS

A. Overlap functions and spectroscopic factors obtained in the
model space

Detailed knowledge of nuclear structure is important for the
description of low-energy nuclear reactions. As the first step in
the application of the NCSM to low-energy nuclear reactions,
one needs to understand the cluster structure of the eigenstates.
This is achieved by calculating the channel cluster form factors
(or overlap integrals, overlap functions). The formalism for
calculating the channel cluster form factors from the NCSM
wave functions was developed in Ref. [28]. Here, we just

briefly repeat and adapt a part of the formalism relevant to our
present application.

We consider a composite system of A nucleons, i.e., 8B,
a nucleon projectile, here a proton, and an A − 1-nucleon
target, i.e., 7Be. Both nuclei are assumed to be described by
eigenstates of the NCSM effective Hamiltonians expanded in
the HO basis with identical HO frequency and the same (for
the eigenstates of the same parity) or differing by one unit
of the HO excitation (for the eigenstates of opposite parity)
definitions of the model space. The target and the composite
system is assumed to be described by wave functions expanded
in Slater determinant single-particle HO basis (obtained from
a calculation using a shell model code like ANTOINE).

Exp 10hΩ 8hΩ 6hΩ 4hΩ 2hΩ 0hΩ
0

1

2

3

4

5

6

7

8

9

10

11

12

2+
1+

3+

0+ 2

2+
1+
0+
1+
3+
2+
1+

2+4+
3+

0+ 2

E
 (

M
eV

)

8B

CD–Bonn 2000
hΩ =12 MeV

FIG. 5. (Color online) Same as in Fig. 3, but
for the 8B excitation spectrum.
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Let us introduce a projectile-target wave function〈
�ξ 1 . . . �ξA−2r

′r̂
∣∣∣�(A−1,1)JM

(l 1
2 )j ;αI1

; δr

〉
=

∑
(jmI1M1|JM)

(
lml

1

2
ms |jm

)
δ(r − r ′)

rr ′

×Ylml
(r̂)χms

〈�ξ 1, . . . , �ξA−2|(A − 1)αI1M1〉, (1)

where 〈�ξ 1, . . . , �ξA−2|(A − 1)αI1M1〉 and χms
are the target

and the nucleon wave function, respectively. Here, l is the
channel relative orbital angular momentum, �ξ are the target
Jacobi coordinates, and �r = [ 1

A−1 (�r1 + �r2 + . . .+ �rA−1) − �rA]
describes the relative distance between the nucleon and the
center of mass of the target. The spin and isospin coordinates
were omitted for simplicity.

The channel cluster form factor is then defined by

gAλJ

(l 1
2 )j ;(A−1)αI1

(r) =
〈
AλJ

∣∣∣A�
(A−1,1)J
(l 1

2 )j ;αI1
; δr

〉
, (2)

with A the antisymmetrizer and |AλJ 〉 an eigenstate of the
A-nucleon composite system (here 8B). It can be calculated
from the NCSM eigenstates obtained in the Slater-determinant
basis from a reduced matrix element of the creation operator:〈

AλJ

∣∣∣A�
(A−1,1)J
(l 1

2 )j ;αI1
; δr

〉
=

∑
n

Rnl(r)
1

〈nl00l|00nll〉 1
A−1

1

Ĵ
( − 1)I1−J−j

×SD〈AλJ ||a†
nlj ||(A − 1)αI1〉SD. (3)

The subscript SD refers to the fact that these states were
obtained in the Slater determinant basis, i.e., by using a shell
model code, and, consequently, contain spurious center-of-
mass components. A general HO bracket, which value is
simply given by

〈nl00l|00nll〉 1
A−1

= ( − 1)l
(

A − 1

A

) 2n+l
2

, (4)

then appears in Eq. (3) in order to remove these components.
The Rnl(r) in Eq. (3) is the radial HO wave function with
the oscillator length parameter b =

√
h̄

A−1
A

m�
, where m is the

nucleon mass.
A conventional spectroscopic factor is obtained by integrat-

ing the square of the cluster form factor:

SAλJ

(l 1
2 )j ;(A−1)αI1

=
∫

drr2
∣∣∣gAλJ

(l 1
2 )j ;(A−1)αI1

(r)
∣∣∣2

. (5)

We calculated the 〈8B|7Be+p〉 channel cluster form factors and
the spectroscopic factors for the bound states of 8B and 7Be
from the NCSM wave functions obtained in model spaces up
to Nmax = 10 (10h̄�) in a wide HO frequency range and using
both the CD-Bonn and the INOY NN potentials. The most
important channels are the p waves, l = 1, with the proton in
the j = 3/2 and j = 1/2 states. Our selected spectroscopic
factor results are summarized in Table V. Note a very weak
dependence of the spectroscopic factors on either the basis size
or the HO frequency or the NN potential.

We also note that the 〈8Li|7Li+n〉 spectroscopic fac-
tors were obtained from 7Li(d,p)8Li stripping measurements

TABLE V. 〈8B(2+
gs)|7Be(Iπ

1 )+p(l,j)〉 spectroscopic factors
obtained within the NCSM for different HO frequencies and model
spaces for the CD-Bonn 2000 and INOY NN potentials.

CD-Bonn 2000 7Be+p Iπ
1 (l, j )

h̄� [MeV] Nmax
3
2

−
(1, 3

2 ) 3
2

−
(1, 1

2 ) 1
2

−
(1, 3

2 )

11 6 0.977 0.120 0.285
11 8 0.967 0.116 0.280
11 10 0.959 0.111 0.275
12 6 0.978 0.107 0.287
12 8 0.969 0.103 0.281
12 10 0.960 0.102 0.276
14 6 0.979 0.086 0.288
14 8 0.967 0.085 0.284
14 10 0.958 0.085 0.280

INOY 7Be+p Iπ
1 (l, j )

h̄� [MeV] Nmax
3
2

−
(1, 3

2 ) 3
2

−
(1, 1

2 ) 1
2

−
(1, 3

2 )

14 6 0.987 0.074 0.283
14 8 0.976 0.072 0.277
14 10 0.966 0.072 0.272
16 6 0.988 0.060 0.281
16 8 0.977 0.061 0.276
16 10 0.965 0.063 0.271

through a distorted-wave Born approximation (DWBA) anal-
ysis [36,37]. The NCSM 〈8Li|7Li+n〉 and 〈8B|7Be+p〉 spec-
troscopic factors are almost identical and overestimate those
extracted in Ref. [36,37] with the ground-state values of about
0.9. At the same time, the NCSM spectroscopic factors are in
good agreement with those obtained in the R-matrix analysis
by Barker [11]. Also, they are consistent with the spectroscopic
factors from the microscopic three-cluster model [17] as well
as with the Cohen-Kurath spectroscopic factors [38] with no
center-of-mass correction.

B. Correction of the overlap-function asymptotics

The dominant p-wave j = 3/2 overlap integral for the
8B and 7Be ground states obtained using the CD-Bonn NN
potential in the 10h̄� model space and the HO frequency
of h̄� = 12 MeV is presented in Fig. 6 by the full line.
Despite the fact that a very large basis was employed in the
present calculation, it is apparent that the overlap integral is
nearly zero at about 10 fm. This is a consequence of the HO
basis asymptotics. A separate issue is the incorrect threshold
placements obtained from the high-precision NN potentials
that we employ. The proton capture on 7Be to the weakly
bound ground state of 8B associated dominantly by the E1
radiation is a peripheral process. Consequently, the overlap
integral with an incorrect asymptotic behavior cannot be used
to calculate the S factor.

It is our expectation, however, that the interior part of
the overlap integral as obtained from our large-basis NCSM
calculation is realistic. This is supported by the fact that
the overlap integrals obtained using the CD-Bonn 2000
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Be+p > rg(r) FIG. 6. (Color online) Overlap integral

rg(r) for the ground state of 8B with the
ground state of 7Be plus proton as a function
of separation between the 7Be and the proton.
p-wave channel with j = 3/2 is shown. Solid
line represents the NCSM result obtained using
the CD-Bonn NN potential in the 10h̄� model
space and the HO frequency of h̄� = 12 MeV.
Dashed line represents a corrected overlap ob-
tained from a Woods-Saxon potential whose
parameters were fit to the NCSM overlap up
to 4.0 fm under the constraint to reproduce
the experimental separation energy. Dotted line
represents a corrected overlap obtained by a
direct matching of the NCSM overlap and the
Whittaker function.

and the INOY NN potentials are similar despite the fact
that the two potentials predict different binding energies and
thresholds. Furthermore, we calculated overlap integrals using
a Hamiltonian that included the three-nucleon interaction. In
those calculations, which for technical reasons were limited to
small model spaces up to 6h̄�, we obtained binding energies
closer to experiment. Still, the interior part of the overlap
integrals was almost the same as that calculated here from the
CD-Bonn 2000 in the same model space and identical HO
frequency. It is then straightforward to correct the asymptotic
behavior of the overlap integral and fix in this way both
the HO basis and the wrong threshold placement issues at
the same time. One possibility we explored utilizes solutions
of a Woods-Saxon potential. In particular, we performed a
least-square fit of a WS potential solution to the interior of
the NCSM overlap in the range 0–4 fm. The WS potential
parameters were varied in the fit under the constraint that the
experimental separation energy of 7Be+p, i.e., 0.137 MeV, was
reproduced. In this way we obtain a perfect fit to the interior
of the overlap integral and a correct asymptotic behavior at the
same time. The resulting overlap function is presented in Fig.
6 by the dashed line.

Another possibility is a direct matching of logarithmic
derivatives of the NCSM overlap integral and the Whittaker
function:

d

dr
ln(rglj (r)) = d

dr
ln(CljW−η,l+1/2(2k0r)), (6)

where η is the Sommerfeld parameter, k0 = √
2µE0/h̄ with

µ the reduced mass and E0 the separation energy (here E0 =
0.137 MeV). The NCSM overlap integral glj (r) is defined in
Eq. (2); and according to Eq. (3), it is expanded in terms of
the HO radial wave functions, i.e., rglj (r) =

∑
n
snljRnl(r)

with Rnl(r) = rRnl(r). The spectroscopic factor (5) is then
given by Slj =

∑
n
s2
nlj . For simplicity, we suppressed all

quantum numbers except the orbital momentum l, the total
proton angular momentum j, and the radial HO quantum

number n. With the help of

d

dr
Rnl(r) =

(
2n + l + 1

r
− r

b2

)
Rnl(r)

−
√

n(n + l + 1

2
)
2

r
Rn−1l(r), (7)

it is straightforward to calculate the derivative of rglj (r). Since
the asymptotic normalization constant (ANC) Clj cancels out,
there is a unique solution of Eq. (6) at r = Rm. For the
discussed overlap presented in Fig. 6, we found Rm = 4.05 fm.
Finally, by matching the value of the NCSM overlap and
the Whittaker function at Rm, we determine the ANC. The
corrected overlap using the Whittaker function matching is
shown in Fig. 6 by a dotted line. In general, we observe that the
approach using the WS fit leads to deviations from the original
NCSM overlap starting at a smaller radius. In addition, the WS
solution fit introduces an intermediate range from about 4 to
about 6 fm, where the corrected overlap deviates from both the
original NCSM overlap and the Whittaker function. Perhaps,
this is a more realistic situation compared to the direct Whit-
taker function matching. In any case, by considering the two
alternative procedures, we are in a better position to estimate
uncertainties in our S-factor results. This is discussed later.

In the end, we rescale the corrected overlap functions to
preserve the original NCSM spectroscopic factor (given in
Table V). In general, we observe a faster convergence of the
spectroscopic factors than that of the overlap functions. With
increasing basis size (Nmax), the maximum of the overlap
functions decreases while the tail extends with the integral
of the square approximately conserved. This is demonstrated
in Fig. 7, see further discussion below. The corrected overlap
function should represent the infinite space result. By rescaling
a corrected overlap function obtained at a finite Nmax, we
approach faster the infinite space result. At the same time,
without the rescaling, the spectroscopic factor sum rules [39]
would be violated.

The same procedure is applied to other relevant channels. In
Fig. 8, we present the NCSM overlap integral and its corrected
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TABLE VI. Parameters of WS potentials obtained in the fits to the interior part of the NCSM 〈8B(2+
gs)|7Be(Iπ

1 )+p(l,j)〉(r) overlap functions
under the constraint to reproduce experimental separation energies. p-wave channels for the 7Be ground and the first excited state are shown.
Results are for the 10h̄� model space and HO frequencies of h̄� = 12(14) MeV for the CD-Bonn 2000 (INOY) NN potential. WS potential
parameters from Ref. [40] (with slight modification of V0) that we use for the scattering states are also shown.

CD-Bonn 2000, 10h̄�, h̄� = 12 MeV

Iπ
1 (l, j ) V0 R0 a0 Vls Rls als RC

3
2

−
(1, 3

2 ) −51.037 2.198 0.602 −9.719 2.964 0.279 2.198
3
2

−
(1, 1

2 ) −45.406 2.613 0.631 −8.414 2.243 0.366 2.613
1
2

−
(1, 3

2 ) −49.814 2.235 0.553 −17.024 3.080 0.338 2.235

INOY, 10h̄�, h̄� = 14 MeV
Iπ

1 (l, j ) V0 R0 a0 Vls Rls als RC

3
2

−
(1, 3

2 ) −58.836 2.052 0.561 −7.518 2.768 0.253 2.052
3
2

−
(1, 1

2 ) −55.924 2.470 0.580 −17.454 2.027 0.429 2.470
1
2

−
(1, 3

2 ) −44.300 2.455 0.509 −13.325 1.011 0.347 2.455

Scattering state
V0 R0 a0 Vls Rls als RC

−42.2 2.391 0.52 −9.244 2.391 0.52 2.391

form for the other p-wave channel with proton in j = 1
2

and 8B and 7Be in their ground states. Obviously, the WS
parameters as well as the matching radii Rm obtained for the
two channels are different (in the case of the present j = 1

2
channel, we found Rm = 4.23 fm). In Table VI, we show the
fitted WS potential parameters obtained in the two discussed
cases together with parameters corresponding to a p-wave
channel with 7Be in the first excited state. In this last case, the
separation energy is E0 = 0.57 MeV. We use the definition of
the WS potential as given, e.g., in Eqs. (5)–(7) of Ref. [41].
Typically, the central potential parameters R0 and a0 are well
constrained in the fit, while the spin-orbit potential parameters
are obtained with some uncertainty. Their values then exhibit
more variation from channel to channel. The strength of the

central potential V0 was readjusted at every step during the
fit to reproduce the experimental separation energy. We note
that parameter values in Table VI are rounded compared to
the results from our fitting procedure. One needs to fine tune,
e.g., the V0, to reproduce accurately the respective separation
energy in order to use the parameters independently.

It should be noted that the Woods-Saxon potential here is
just a tool to represent the interior part of the NCSM overlap
integral as accurately as possible and correct its asymptotic
form at the same time. The range used in the least-square fit
is not arbitrary and varies from channel to channel. The aim
is to use as large a range as possible while preserving the
NCSM overlap integral as accurately as possible in that range.
A combination of eye-guided evaluation with a quantitative
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FIG. 7. (Color online) Same as in Fig. 6,
but for model spaces of 6, 8, and10h̄�. Only
corrections by the WS potential fit are shown.
Fitting ranges up to 3.6, 3.8, and 4.0 fm were
used, respectively.
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FIG. 8. (Color online) Same as in Fig. 6, but
for the p-wave channel with j = 1/2.

condition of minimizing the least-square function per fitted
point helps determine the largest possible range. Concerning
the above discussed examples (dashed line in Figs. 6 and 8),
we note that extending the range beyond 4 fm leads to a worse
fit. Finally, let us repeat that the alternative procedure of the
direct Whittaker function matching is completely unique.

The corrected overlap integrals then serve as the input
for the momentum distribution and S factor calculations as
described in the following sections.

The basis size dependence of the overlap integrals of both
the original NCSM and the corrected ones (using the WS
solution fit procedure) can be judged from Fig. 7, where
we compare results obtained in model spaces from 6h̄� to
10h̄� using the CD-Bonn 2000 NN potential and a fixed HO
frequency of h̄� = 12 MeV. With an increase of the basis,
the maximum of the overlap decreases and its tail extends

to larger distances. The corresponding spectroscopic factors
differ very little, see Table V. The change from 8h̄� to
10h̄� is smaller than that between 6h̄� and 8h̄�, a sign of
convergence. In Fig. 9, we then compare the overlap integrals,
both original and corrected, obtained in the 10h̄� model space
using three different HO frequencies. With a decrease in the
HO frequency, the maximum of the overlap decreases and
shifts to a larger distance. At the same time, the tail extends
to larger distances as well. Finally, in Fig. 10, we compare
overlap integrals obtained using the CD-Bonn 2000 and the
INOY NN potentials in the same 10h̄� model spaces and the
same HO frequency of h̄� = 14 MeV. While the spectroscopic
factors are almost identical, the CD-Bonn overlap integral has
a smaller maximum shifted to a larger distance, and the integral
also extends farther. The parameters of the WS potential that
produce the INOY corrected overlap integral are given in
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FIG. 9. (Color online) Same as in Fig. 6,
but for HO frequencies of h̄� = 11, 13, and
15 MeV. Only corrections by the WS potential
fit are shown. Fitting ranges up to 4.0, 3.8, and
3.7 fm were used, respectively.
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INOY NN potentials. Only corrections by the
WS potential fit are shown. Fitting ranges up to
3.75 and 3.7 fm were used, respectively.

Table VI. The impact of these dependencies on the 7Be( p,γ )8B
S factor is discussed in Sec. V.

IV. MOMENTUM DISTRIBUTIONS

The stripping reaction (7Be+p)+A→7Be+X cross section,
for a specified final state of the core (7Be), is given by [42]
(for more details, see Ref. [43]) as

dσstr

d3kc

= 1

(2π )3

1

2lb + 1

∑
mb

∫
d2bp[1 − |Sp(bp)|2]

×
∣∣∣∣
∫

d3re−ikc ·rSc(bc)gAλJb

(lb 1
2 )jb ;(A−1)αI1

(r)Ylbmb
(r̂)

∣∣∣∣
2

,

(8)

where r ≡ (r, θ, φ) ≡ (ρ, z, φ) = rp − rc, and Sc(Sp) are
the S matrices for the core(7Be)+target and the proton+target
scattering, respectively. The overlap integral g

AλJb

(lb 1
2 )jb ;(A−1)αI1

(r)

describing the bound state of the (7Be+p) subsystem is defined
as in Eq. (2) with its asymptotic tail corrected as described in
Sec. III B.

The cross sections for the longitudinal momentum distri-
butions are obtained by integrating Eq. (8) over the transverse
component of kc, i.e.,

dσstr

dkz

= 1

2π

1

2lb + 1

∑
mb

∫
d2bp[1 − |Sp(bp)|2]

×
∫

d2ρ|Sc(bc)|2

×
∣∣∣∣
∫ ∞

−∞
dzexp[−ikzz]gAλJb

(lb 1
2 )jb ;(A−1)αI1

(r)Ylbmb
(r̂)

∣∣∣∣
2

,

(9)

where kz represents the longitudinal component of kc.

For the transverse momentum distribution in cylindrical

coordinates k⊥ ≡ k⊥
c =

√
k2
x + k2

y ,

dσstr

d2k⊥
= 1

(2π )2

1

2lb + 1

∫ ∞

0
d2bp[1 − |Sp(bp)|2]

×
∑
mb

∫ ∞

−∞
dz

∣∣∣∣
∫

d2ρexp(−ik⊥
c ·ρ)Sc(bc)

×g
AλJb

(lb 1
2 )jb ;(A−1)αI1

(r)Ylbmb
(r̂)

∣∣∣∣
2

. (10)

It is also convenient to describe the transverse momentum
distributions in terms of the projection onto one of the
Cartesian components of the transverse momentum, i.e.,

dσstr

dky

=
∫

dkx

dσstr

d2k⊥
(kx, ky). (11)

The total stripping cross section can be obtained by integrating
either Eq. (9) or Eq. (10). The integrals in Eqs. (9) and (10), and
for the total cross sections, are done numerically with Gaussian
expansions of the S matrices, as explained in Ref. [43].

The S matrices have been obtained using the optical limit
of the Glauber theory, i.e.,

Si(b) = exp

[
i

kNN

∫ ∞

0
dqqρi(q)ρt (q)fNN (q)J0(qb)

]
, (12)

where ρi,t (q) is the Fourier transform of the nuclear densities
of the incident particle (i = p,7 Be) and target (t), and fNN (q)
is the high-energy nucleon-nucleon scattering amplitude at
forward angles, which can be parametrized by [44]

fNN (q) = kNN

4π
σNN (i + αNN ) exp(−βNNq2). (13)

In this equation, σNN, αNN, and βNN are parameters that
fit the high-energy nucleon-nucleon scattering at forward
angles [44]. We use the values from Ref. [45] which have
been extended to collisions at lower energies and corrected for
isospin average. The quantities ρi(q)(i = p,7Be) and ρt (q)
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FIG. 11. (Color online) Inclusive transverse momentum distri-
bution for the residue in the 9Be(8B,7Be)X reaction measured at
41 MeV/nucleon [46]. Theoretical calculations are based on Eqs. (10)
and (11) and using the INOY interaction for the 8B NCSM wave
function. Dotted curve is the sum of the individual contributions (full
drawn). Solid curves are defined in the key in order of increasing
magnitude. The angular resolution in the experiment broadens the
data by about 4%; this has not been included in the theoretical
curves.

are calculated from radial density distributions taken to be of
Gaussian shapes, adjusted to reproduce the rms radius of the
proton, 7Be,9Be, and 12C, respectively.

The Coulomb part of the eikonal phase is included accord-
ing the prescription described in details in Ref. [43].

As seen from Eqs. (9) and (10), the longitudinal and trans-
verse momentum distributions, as described above, are a direct
test of the 8B ground-state wave function calculated with the
NCSM. We do this by comparing our results against two sets of
experimental data. First, we compare an experiment performed
at MSU for the transverse momentum distributions of 7Be
fragments from the reaction 8B + 9Be at 41 MeV/nucleon
[46]. In spite of the absence of γ -ray coincidence data, this
is a favorable case because the ground-state cross section
dominates and because the approximately 15% branch to the
excited level also has l = 1 and has an almost identical shape.
Because the data are given in arbitrary units, we multiplied
the contributions for the momentum distributions from each
angular momentum channel by the same factor so that their
sum reproduced the maximum of the experimental distribution.
Thus, by comparing our results to this experiment, we are
testing the relative ratios between the 8B spectroscopic factors
obtained with the NCSM. Figure 11 shows our calculation with
the INOY NN potential. The same for the CD-Bonn is shown
in Fig. 2 of Ref. [20]. The WS solution fit procedure was
employed to correct the asymptotics of the NCSM overlap
functions. We used the 10h̄� model space and the optimal
HO frequencies of h̄� = 12 MeV and h̄� = 16 MeV as
determined from the ground-state energy dependencies for the
CD-Bonn and INOY potentials, respectively. In both cases, our
calculations are in excellent agreement with the data, which
they reproduce over two orders of magnitude in cross section.
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FIG. 12. (Color online) Inclusive parallel momentum distribution
of 7Be fragments from the reaction 8B + 12C→7Be + X at 936 MeV/
nucleon. Solid curves represent theoretical calculations using the
NCSM with the CD-Bonn 2000 interaction. Dashed-line, shows the
sum of three theoretical contributions.

From Fig. 11 and the corresponding CD-Bonn result, it is
difficult to judge the quality of the CD-Bonn and the INOY
interaction in reproducing the momentum distributions. Except
from a noticeable visual difference seen for the magnitude of
individual contributions for the three distinct 8B states, the
shape of the total distributions is essentially the same for the
two interactions.

We perform another comparison, this time for the longi-
tudinal momentum distributions, using Eq. (9). The data are
taken from a GSI experiment [47] which measured γ rays
in coincidence with 7Be residues and separated the cross
sections to the three final states in the reaction 8B+12C
at 936 MeV/nucleon. Figure 12 shows the data, which
are in reasonably good agreement with calculations. The
experimental cross section is σ−p = 94 ± 9 mb; whereas the
theoretical one, with NCSM wave functions and the CD-Bonn
2000 interaction, is 99.66 mb, in excellent agreement with the
experimental one. The theoretical total momentum distribution
for this reaction is wider than the experimental data. The
experimental FWHM (full width at half maximum) is 95 ±
5 MeV/c if fitted by a single Gaussian. The theoretical one has
a longer tail than the experimental one. It can be fitted by two
Gaussians. The width of the narrower Gaussian is 96 MeV/c,
also in good agreement with the experimental data. The reason
for the longer tail in the theoretical momentum distribution is
not well known, although a possible explanation is that the
comparison between experiment and theory, as described in
Ref. [47], involves a folding with the experimental resolution
and a scaling to match the amplitude of the experimental
spectrum, which has not been done here.

Figure 13 shows our results for exclusive pz distribution,
considering only the core excited contribution. The data, from
Ref. [47], has a width of 109 ± 7 MeV/c and the theoretical
one is 112 MeV/c. The total experimental cross section for
the excitation of this state is σ−p = 12 ± 3 mb, whereas the
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FIG. 13. (Color online) Exclusive pz distribution, considering
only the core excited contribution. Solid curve is the calculation
using NCSM wave function with CD-Bonn 2000 interaction.

theoretical one is 16.36 mb, again in good agreement with the
data.

Figure 14 is the same as the Fig. 12, but for NCSM
wave functions calculated with the INOY interaction. The
theoretical cross section for the inclusive reaction is 82.93 mb,
and 13.17 mb for the inclusive cross section for the excited
state. These cross sections are smaller than the ones obtained
with the CD-Bonn 2000 interaction. The probable reason is
that the INOY interaction yields a smaller 〈r2〉rms-value than
the CD-Bonn 2000 interaction. The calculations yield 92 and
108 MeV/c for the inclusive and the excited state momentum
distribution widths, respectively. Table VII summarizes the
calculations for the total cross sections.

V. S FACTOR FOR 7Be ( p, γ ) 8B

We now turn our focus to the S factor for the reaction
7Be(p,γ )8B. This reaction is very important in understanding
the structure of our Sun. The high-energy neutrinos from the
β decay of 8B come from the Sun’s center and, therefore, are
a direct measure of the conditions in its interior (temperature,
pressure, chemical composition, etc.). The wave functions
calculated with NCSM method, described in the previous
sections, will be used for the purpose.

TABLE VII. Cross sections for the proton-removal reactions 8B+
9Be at 41 MeV/nucleon (MSU) and 8B +12 C at 936 MeV/nucleon

(GSI). Calculated total inclusive cross sections are given by σ (th−B)
inc for

the CD-Bonn 2000 interaction and σ (th−I)
inc for the INOY interaction.

The 10h̄� model space and HO frequencies of 12(16) MeV were
employed for the CD-Bonn 2000 (INOY). Calculated cross sections
for the excited state are given by σ (th−B)

exc and σ (th−I)
exc .

σ
(exp)
inc σ (th−B)

inc σ (th−I)
inc σ

(exp)
exc σ (th−B)

exc σ (th−I)
exc

(mb) (mb) (mb) (mb) (mb) (mb)

MSU – 82.96 71.85 – 15.31 13.26
GSI 94 ± 9 99.66 82.93 12 ± 3 16.36 13.17

The main contribution to the S factor for the radiative
capture reaction 7Be( p,γ )8B is from the electric dipole
multipolarity [41]. To calculate the S factor, we have to
evaluate a matrix element of the electric dipole operator
�E1 = ∑A

i=1ei(�ri − �R) with ei = e for a proton and ei = 0

for a neutron and the center-of-mass coordinate �R = 1
A

∑
i
�ri .

Using the notation introduced in Eqs. (1) and (2), we calculate a
transition from a continuum state |A�

(A−1,1)Jc

(lc 1
2 )jc ;αI1

; δr〉ϕE
lcjcαI1Jc

(r)

to the bound state |AλJb〉. Here, ϕE
lcjcαI1Jc

(r) is the scattering
wave function of the 7Be+p relative motion. As the internal
excitation of 7Be by the electric dipole operator will have a
negligible overlap with the 8B ground state, we arrive at the
following result∫ ∞

0
drr2

〈
AλJb||E1(1)||A�

(A−1,1)Jc

(lc 1
2 )jc ;αI1

; δr

〉
ϕE

lcjcαI1Jc
(r)

≈ ZA−1 − (A − 1)

A
e

√
4π

3

√
A

×
∫ ∞

0
drr2

〈
AλJb||rY1||�(A−1,1)Jc

(lc 1
2 )jc ;αI1

; δr

〉
ϕE

lcjcαI1Jc
(r)

= ZA−1 − (A − 1)

A
e
∑
lbjb

{
1 Jb Jc

I1 jc jb

}
Ĵ bĴ c

×ĵ bĵ c( − 1)jb+jc+I1+Jc− 1
2

(
jc 1 jb

−1

2
0

1

2

)

×
∫ ∞

0
drg

AλJb

(lb 1
2 )jb ;(A−1)αI1

(r)r3ϕE
lcjcαI1Jc

(r), (14)

with |AλJb〉 the ground state of 8B with Jπ
b = 2+ and

|(A − 1)αI1〉 the ground state of 7Be with Iπ
1 = 3

2
−

. The
7Be proton number ZA−1 is equal to 4. The overlap integral
g

AλJb

(lb 1
2 )jb ;(A−1)αI1

(r) is defined as in Eq. (2) with its asymptotic

tail corrected as described in Sec. III B. Assuming that the
relative-motion scattering wave function is independent of the
continuous state total angular momentum Jc, ϕ

E
lcjcαI1Jc

(r) =
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FIG. 14. (Color online) Same as in Fig. 12, but using NCSM wave
functions calculated with the INOY interaction.
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FIG. 15. (Color online) 7Be( p,γ )8B S factor
obtained using the NCSM cluster form factors
with corrected asymptotics by the WS solution
fit. Dashed and dashed-dotted lines show the
contribution due to the l = 1, j = 3/2 and j =
1/2 partial waves, respectively. The CD-Bonn
2000 NN potential, the 10h̄� model space, and
the HO frequency of h̄� = 12 MeV were used.
Experimental values are from Refs. [6,7,9].

ϕE
lcjcαI1

(r), we arrive at the S factor expression [12,39]

S(E) = 4π2e2
effh̄

2

3µp7Be

(
E + Eb

h̄c

)3

exp[2πη(E)]

× (2Jb + 1)

2(2I1 + 1)

∑
lbjblcjc


jc 1 jb

−1

2
0

1

2




2

×
∣∣∣∣
∫ ∞

0
drg

AλJb

(lb 1
2 )jb ;(A−1)αI1

(r)r3ϕE
lcjcαI1

(r)

∣∣∣∣
2

, (15)

where Eb is the binding energy of the 8B bound state with
respect to 7Be + p. Furthermore, η(E) = ZaZAe2/h̄vp7Be is
the Sommerfeld parameter, k is the relative momentum, E =
h̄2k/2µp7Be is the center-of-mass energy of the proton+7Be,
and eeff = (A−1)−ZA−1

A
e = 3e/8 is the effective charge for

the E1 capture for this specific reaction. The continuum wave

functions are normalized so that

rϕE
lcjcαI1

(r → ∞) →
i

√
µp7Be

2πkh̄2 [H (−)
lc

(r) − S lcjc
H

(+)
lc

(r)]eiσlc (E), (16)

where Slcjc
= exp[2iδlcjc

], with δlcjc
(σlc ) being the nuclear

(Coulomb) phase shift, and H
(±)
lc

(r) = Glc (r) ± iFlc (r), with
Flc and Glc being the regular and irregular Coulomb wave
functions, respectively. The normalization (16) implies that
the continuum wave functions satisfy the relation〈

ϕE
η

∣∣∣ϕE′
η′

〉
= δ(E − E′)δηη′ .

Equation (15) shows that the S factor is a more stringent
test of the nuclear model. Whereas the momentum distributions
discussed in the previous section depend only on the bound

0 0.5 1 1.5

E [MeV]

0

5

10

15

20

25

30

35

S
17

 f
ac

to
r 

[e
V

 b
]

NCSM 10hΩ
NCSM   8hΩ
NCSM   6hΩ
Exp GSI-2
Exp GSI-1
Exp Weizmann
Exp MSU
Exp Seattle

7
Be(p,γ)

8
B

CD-Bonn 2000 6,8,10hΩ hΩ=12 MeV

FIG. 16. (Color online) 7Be( p,γ )8B S factor
obtained using the NCSM cluster form factors
with corrected asymptotics by the WS solution
fit. Dependence on the size of the basis from 6h̄�

to 10h̄� is shown. CD-Bonn 2000 NN potential
and HO frequency of h̄� = 12 MeV were used.
Experimental values are from Refs. [6,7,9].
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FIG. 17. (Color online) Same as in Fig. 16,
but showing dependence on the size of the HO
frequency from h̄� = 11 to 15 MeV for the
10h̄� model space.

state overlap function, g
AλJb

(lb 1
2 )jb ;(A−1)αI1

(r), obtained from the

corrected NCSM overlap integrals discussed in Sec. III B,
the S factor also depends on the continuum wave function,
ϕE

lcjcαI1
(r). Presently, we have not yet developed a theory

to extend the NCSM in order to describe continuum wave
functions. Therefore, to obtain ϕE

lcjcαI1
(r) for s and d waves, we

use a potential model with a Woods-Saxon+Coulomb+spin-
orbit interaction. In this respect, our approach is similar to
that by Nollett et al. [48,49] where ab initio variational
Monte Carlo wave functions were used in combination with
cluster-cluster potential model scattering wave functions to
describe 2H(α, γ )6Li, 3H(α, γ )7Li, and 3He(α, γ )7Be capture
reactions. Since the largest part of the integrand of the last
term in Eq. (15) stays outside the nuclear interior, one expects
that the continuum wave functions are well described by this
model. It is possible to use for this purpose the same WS

potential that we obtained from correcting the bound-state
overlap integral. Then we would have a different scattering
state for each bound-state partial wave and each NCSM model
space and HO frequency. In order to have the same scattering
wave function in all the calculations, we chose a WS potential
from Ref. [40] that was fitted to reproduce the p-wave 1+
resonance in 8B. It has been argued [12] that such a potential
is also suitable for the description of s and d waves. The
parameters of this potential are summarized in Table VI.

We note that the S factor results are very weakly dependent
on the choice of the potential that describes the scattering
state. This is particularly true at low energies. Using our fitted
potentials for the scattering state instead of the scattering
potential from Table VI changes (typically increases) the
S factor by less than 1.5 eV b at 1.6 MeV with still a smaller
change at lower energies and no change at 0 MeV.
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FIG. 18. (Color online) Same as in Fig. 16,
but for h̄� = 15 MeV.
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FIG. 19. (Color online) Same as in Fig. 16,
but for h̄� = 11 MeV.

At the same time, we note that the 7Be+p scattering length
has been measured [50]. A potential model with no spin-orbit
term was developed in Ref. [14] that fits the experimental
scattering length. It is not consistent to use that potential in the
present work, as we employ an alternative angular momentum
coupling scheme. Still, to get a further insight into the S-factor
energy dependence sensitivity to the scattering wave function,
we performed test calculations with the s = 2 potential of
Ref. [14]. Up to 100 keV, we observed very little change of
the S factor compared to the situation when the scattering
potential from Table VI was used. At higher energies, the
S factor increased by up to 5 eV b with a difference of
4 eV b at 1.6 MeV. To resolve the issue of the S factor energy
dependence at higher energies, we need to develop a theory

that extends the NCSM to describe scattering states. This is a
subject of current and future investigations.

In Fig. 15, we present our first application for the astrophys-
ical S factor of the 7Be( p,γ )8B reaction. We use bound-state
wave functions calculated with the CD-Bonn 2000 interaction
in the 10h̄� model space and the optimal HO frequency
h̄� = 12 MeV. The WS solution fit procedure was employed
to correct the asymptotics of the NCSM overlap functions.
In the figure, we show the S factor contributions from the
dominant l = 1, j = 3/2 and j = 1/2 partial waves by the
dashed lines. Clearly, the j = 3/2 partial wave is the most
important one. The upper curve, the solid line, is the sum of
the two contributions. The experimental data are a compilation
of the latest experiments for the S factor. They include
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FIG. 20. (Color online) 7Be( p,γ )8B S factor
obtained using the NCSM cluster form factors
with corrected asymptotics by the WS solution
fit. Results obtained using the CD-Bonn and
INOY NN potentials are compared. The 10h̄�

model space and h̄� = 14 MeV were used.
Experimental values are from Refs. [6,7,9].
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direct as well as some indirect measurements (Coulomb
dissociation).

The slope of the curve corresponding to the total S factor
follows the trend of the data. From Fig. 15 it is also clear
that the spectroscopic factors for the l = 1, j = 3/2 and
j = 1/2 partial waves are well described within the NCSM and
CD-Bonn 2000 interaction. Our calculation presented in
Fig. 15 is in very good agreement with the recent direct
measurement data of Ref. [7]. We note that our S-factor
energy dependence more resembles that obtained within the
three-cluster model of Ref. [17] than that obtained within the
potential model of Ref. [14].

To judge the convergence of our S factor calculation, we
performed a detailed investigation of the model space size
and the HO frequency dependencies. The dependence of the
7Be( p,γ )8B S factor on the size of the basis from 6h̄� to
10h̄� corresponding to the above-discussed calculation using
the CD-Bonn 2000 and the HO frequency of h̄� = 12 MeV
is shown in Fig. 16. One observes very little model space
dependence with some oscillatory behavior. The fact that
the calculation converges for a basis size within this energy
interval demonstrates that the optimal HO frequency deter-
mined from the ground-state energy calculation is also close
to optimal for the S-factor calculation.

To further investigate the HO frequency sensitivity, we show
in Fig. 17 the dependence of the 7Be( p,γ )8B S-factor on the
HO frequency from h̄� = 11 to 15 MeV. The CD-Bonn 2000
NN potential and the 10h̄� model space were used. Again, the
WS solution fit procedure was employed to correct the asymp-
totics of the NCSM overlap functions. In all cases, we obtain
basically identical energy dependence. The absolute values of
the S factor increase with decreasing frequency. To determine
the optimal frequency and interpolate the converged S factor
result, we examine the basis size dependence for different HO
frequencies. In Fig. 18, we show the h̄� = 15 MeV results for
model spaces from 6h̄� to 10h̄�. We observe a steady increase
in the S factor with the basis size enlargement. Contrary to this
situation, the calculation using the HO frequency of h̄� =
11 MeV presented in Fig. 19 shows that the S factor does not
increase any more with increasing Nmax. Actually, there is a
small decrease when going from 8h̄� to 10h̄�. In Table VIII,
we summarize our S factors at 10 keV obtained for different fre-
quencies and model spaces. In addition to the results obtained
using the WS solution fit procedure, we also present the S17 and
ANC obtained using the alternative direct Whittaker matching
procedure. We note that the ANC from our ab initio approach
are smaller than those obtained within the microscopic three-
cluster model [17] but still larger than the experimental ones
from the DWBA analysis of Ref. [51]. In general, both
procedures lead to basically identical energy dependence with
a difference of about 1 to 2 eV b in the S factor with the
smaller values from the direct Whittaker function matching
procedure. Taking into account that in the case of the direct
Whittaker function matching, the S17 increases with Nmax even
at the HO frequency of h̄� = 11 MeV, unlike in the case of
the WS solution fit procedure, results of the two approaches
do not contradict each other. Combining all these results, we
determine that the optimal frequency is between h̄� = 11
and 12 MeV. Results in this frequency region show very weak

TABLE VIII. Calculated 7Be( p,γ )8B S factor, in eV b, at the
energy of 10 keV. Two ways of correcting the NCSM overlap
asymptotics, by the Woods-Saxon potential solution fit (WS) and
by a direct Whittaker function matching (Whitt), are compared.
The asymptotic normalization constants, in fm−1/2, correspond to
the Whittaker function matching case. Results obtained using the
CD-Bonn 2000 and INOY NN potentials at different HO frequencies
and model spaces as well as the NCSM extrapolated S17 values with
their estimated errors are presented.

CD-Bonn 2000
h̄� (MeV) Nmax C1,3/2 C1,1/2 SWhitt

17 SWS
17

15 6 0.647 0.195 16.81 17.80
15 8 0.660 0.206 17.58 18.87
15 10 0.672 0.216 18.33 19.81
14 10 0.680 0.220 18.78 20.21
13 10 0.692 0.234 19.64 21.02
12 6 0.693 0.240 19.75 21.24
12 8 0.696 0.242 19.96 21.14
12 10 0.704 0.247 20.45 21.66
11 6 0.715 0.261 21.30 22.38
11 8 0.715 0.263 21.33 23.04
11 10 0.720 0.262 21.60 23.06

NCSM S17(10 keV) 22.1 ± 1.0

INOY
h̄� (MeV) Nmax C1,3/2 C1,1/2 SWhitt

17 SWS
17

16 10 0.641 0.182 16.34 17.49
15 10 0.649 0.189 16.83 17.95
14 6 0.652 0.190 16.94 17.78
14 8 0.654 0.194 17.12 18.21
14 10 0.660 0.198 17.44 18.46

NCSM S17(10 keV) 19.0 ± 1.0

dependence on Nmax, with relative difference between the two
methods always in the range of 5% to 8%. The full range of
results is covered by S17(10 keV) = 22.1 ±1.0 eV b.

We have performed a similar, although less extensive
study for the INOY NN interaction. Our S factor obtained
using the INOY NN interaction with the ground-state-energy-
determined optimal frequency of h̄� = 16 MeV shows slightly
weaker energy dependence compared to the CD-Bonn case and
the S factor underestimates most of the experimental data. To
make a direct comparison with the CD-Bonn calculation, we
show in Fig. 20 S factors obtained from the CD-Bonn 2000
and the INOY NN potentials using identical HO frequency
of h̄� = 14 MeV and the 10h̄� model space. Although the
spectroscopic factors are almost the same (see Table V), the
INOY S factor is significantly smaller than that of the CD-Bonn
2000. This is a consequence of different shapes of the overlap
functions displayed in Fig. 10. This result is correlated with
our radius and quadrupole moment results as well as results of
momentum distributions in knockout reactions. The fact that
the INOY NN interaction yields a smaller matter radii than
the CD-Bonn 2000 leads to a smaller S factor. The S-factor
convergence for the INOY NN potential is similar or better
than for the CD-Bonn 2000. Based on the results presented
in Fig. 20 and the Table VIII, we estimate the INOY S-factor

065801-18



7Be (p, γ )8B S FACTOR FROM abinitio NO-CORE SHELL MODEL. . . PHYSICAL REVIEW C 73, 065801 (2006)

result at 10 keV to be 19.0 ± 1 eV b. We note that the INOY
NN potential underestimates the experimental charge radii of
4He and 6He, while the CD-Bonn predicts these charge radii
in agreement with experiment [52]. Consequently, we do not
consider the S factor obtained using the INOY NN potential as
realistic as the one obtained from the CD-Bonn. This is also
the reason why our INOY calculations are less extensive than
our CD-Bonn investigation.

VI. CONCLUSIONS

We studied nuclear structure of 7Be, 8B, and 7,8Li within
the ab initio NCSM. We calculated overlap integrals of the
8B ground state with 7Be+p as a function of the separation
between the proton and 7Be using NCSM wave functions
obtained in model spaces up to 10h̄�. Assuming that the
NCSM overlap integrals are realistic in the interior part,
we utilized Woods-Saxon potential as a tool to correct
their asymptotics. We performed a least-square fit of WS
potential solutions to the NCSM overlap integrals in the
range from 0 up to about 4 fm under the constraint that the
experimental separation energy is reproduced. In addition,
we employed an alternative procedure of a direct Whittaker
function matching to correct the asymptotic tail of the NCSM
overlap integrals. The corrected overlap integrals were then
used for the 7Be( p,γ )8B S factor calculation. We investigated
the dependence of the S-factor on the size of the model
space and on HO frequency as well as on the procedure of
the asymptotic tail correction. Based on this investigation,
we arrived at the S factor result at 10 keV to be 22.1 ±
1.0 eV b and 19.0±1.0 eV b for the CD-Bonn 2000 and INOY
NN potentials, respectively. We note that the CD-Bonn 2000
results for the point-proton rms radii, quadrupole moments,

and momentum distributions in knockout reactions with 8B
projectiles are in better agreement with experiment than those
obtained using the INOY NN potential. At the same time,
the CD-Bonn 2000 predicts the point-proton rms radii of
4He and 6He in agreement with experiment, while the INOY
NN potential underpredicts both [52]. Therefore, we consider
the CD-Bonn 2000 S-factor result more realistic. The energy
dependence as well as the zero energy value of the S factor
calculated using the CD-Bonn 2000 NN potential are in
very good agreement with recent direct measurement data of
Ref. [7]. We stress that no adjustable parameters were used
in our ab initio calculations of the 8B and 7Be bound states.
Taking into account that the S factor at the lowest energies is
almost independent of the potential model used to obtain the
scattering state, we consider our results as the first ab initio
prediction of the normalization of the 7Be( p,γ )8B S factor.
The S-factor energy dependence is, on the other hand, also
sensitive to the description of the scattering state. We used
a phenomenological potential for the scattering state in this
work. Therefore, our calculated S-factor energy dependence
is not an ab initio prediction. An ab initio treatment of the
scattering state is a subject of our future investigation.
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